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ABSTRACT

We study the loss function of a deep neural network through the eigendecompo-
sition of its Hessian matrix. We focus on negative eigenvalues, how important
they are, and how to best deal with them. The goal is to develop an optimization
method specifically tailored for deep neural networks.

1 INTRODUCTION

The current mode of operation in the field of Deep Learning is that we accept the fact that saddle
points are everywhere (Choromanska et al., 2015) and that many local minima are of such high
quality that we do not need to worry about not having the global minimum. Practitioners sweep a
large collection of hyperparameter configurations, they use early stopping to prevent overfitting, and
they train their models with optimization methods such as RMSProp (Tieleman & Hinton, 2012)
and ADAM (Kingma & Ba, 2015).

Most optimization methods used in deep learning today were developed with the convex setting
in mind. We currently do not have an efficient way to specifically manage the negative eigenval-
ues of the Hessian matrix (which contains the second order derivatives and describes the curvature
of the loss). We want to develop specific methods adapted to our particular kind of non-convex
problems. Such methods will handle regions of negative curvature in a particular way, because this
phenomenon is not present in convex optimization.

We present here experimental results that

• help us better understand what is happening in the directions of negative curvature,

• suggest that we should be using a much larger step size in those directions.

2 EXPERIMENTS

2.1 METHODOLOGY

Since we are working purely in an optimization context, we are not interested in the generalization
error. We want to focus on the challenges of minimizing a loss that features saddle points and local
minima.

The size of the Hessian matrix scales proportionally to the square of the number of parameters, so
there is no way to compute and store the entire Hessian. We can still extract certain properties of the
Hessian despite this, but we find ourselves limited to smaller models and datasets.

We are going to use the architecture of the classic LeNet (LeCun et al., 1989) convolution neural
network, but with ReLU as activation function. It has two convolutional layers, two fully connected
layers, and a softmax on the last layer, for a total number of approximately d = 3.3× 106 parameter
coefficients. We performed experiments with MNIST (LeCun, 1998).

∗This work was done during an internship with the Google Brain team in Montreal.
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We have to keep in mind that there is no guarantee that phenomena observed in this setup will also
be found in a much larger convolutional neural network such as Inception (Szegedy et al., 2015), or
one with a different design such as ResNet (He et al., 2016).

While we are training our model using the typical minibatch gradient descent with RMSProp (batch
size 32), it makes sense for our analysis to study the loss L(θ) averaged over the full training set
instead of minibatches. The same applies for the gradient g(θ) ∈ Rd and the Hessian matrixH(θ) ∈
Rd×d. We made the decision to concatenate all the parameters from all layers into a single vector in
Rd. Though results on the Hessian of individual layers were not included in this study, we believe
they would also be of interest for a better understanding of deep neural networks.

Note that all the eigenvalues are real-valued because of the symmetry of the Hessian matrix, so they
can be ordered as λ1 ≥ λ2 ≥ . . . ≥ λd. See Appendix section A for details on how we can compute
the k largest or smallest eigenpairs (λi, vi).

2.2 NEGATIVE CURVATURE IS ONLY LOCAL

At any training step t, we can select an eigenpair (λi, vi) and measure the loss function when we
project the gradient g(θt) in the direction vi. With a step size of α ∈ R, we look at

L(θt − α
[
g(θ)T vi

]
vi). (1)

This becomes particularly interesting when λi is negative and when we make the mild assumption
that vi in not perfectly orthogonal to the gradient (i.e. g(θ)T vi 6= 0).

Since we observed a common behaviour all along the optimization, we show here the results for an
arbitrary iteration (t = 50). We use α ∈ [−0.1, 0.1] in Figure 1 and α ∈ [−1, 1] in Figure 2. We
compare the exact empirical loss (orange curve) alongside the quadratic approximation (green/blue
curve) of the same function given by the negative eigenvalue λi.

For small values of α, the actual loss matches the curvature sufficiently well, but for larger values of
α the two are qualitatively different. Because the loss is bounded below, it would be impossible for
the loss to go down to −∞. When using a regularizer such as an L2-norm penalty, the loss grows
to∞ when ‖θ‖ → ∞.

Note that, if we were to optimize for long enough, we would get into the neighborhood of a local
minimum and we would not observe any negative eigenvalues anymore. In that later regime, there
is nothing to gain from having an optimizer designed to deal with negative eigenvalues. However,
there are no theoretical results clarifying when that regime starts. In practice, when early stopping
is used as an approach to avoid overfitting, is it also unclear in what regime we stop training.

Figure 1: Looking at the total loss when mov-
ing by α in the direction of most negative cur-
vature. Evaluated at training step t = 50.
Zoomed in.

Figure 2: Same direction of negative curvature
as Figure 1, but zoomed out.
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2.3 MINIMIZING LOSS IN DIRECTIONS OF NEGATIVE CURVATURE

What is the connection between λi and the optimal step size to be taken in the direction of vi?

We go back to the question of finding the optimal α to minimize the line search problem in
Equation (1). It is simple enough (albeit costly) to run through the whole training set and evalu-
ate the loss at multiple values of α, spanning a few orders of magnitude. For all the eigenpairs
(λi, vi) that we have access to, we can look at

• what is the best loss decrease that we can obtain by moving along vi? (see Figure 3)

• what is the optimal step size α∗ to achieve it? (see Figure 4)
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Figure 3: Best loss decrease possible (y-axis)
when following eigenvector associated with λ
(x-axis). Lower is better. Directions of negative
curvature (left side) were empirically observed
to bring larger improvements in the loss than di-
rections of positive curvature (right side). Ear-
lier time steps t are shown blue, and later are
shown in green. In terms of Equation (1), this
plot shows the relation between λi and L(α∗).
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Figure 4: Reporting the actual optimal step sizes
found empirically. In terms of the variables in-
volved in Equation (1), this plot shows the re-
lation between λi (x-axis) and 1/α∗ (y-axis).
On the right side of the plot, we can report that
in direction of positive curvature we have that
1/α∗ ≈ λi. On the left side of the plot, the small
values reported mean that the optimal step sizes
were quite large. Earlier time steps t are shown
red, and later are shown in yellow.

Figures 3 and 4 suggest that important gains are to be made in directions of negative curvature, and
that in directions of negative curvature the optimal step sizes are of a greater order of magnitude
than in directions of positive curvature. Refer to Appendix section C for a longer discussion about
optimal step sizes. Note that in Figures 3 and 4 we are showing a certain range where we find
eigenvalues λ ∈ [−1, 1]. This is the most informative plot for us, but are not showing everything
here. Keep in mind also that we are using numerical methods that report eigenvalues with the largest
magnitude |λ|, so those figures are missing more than 99.99% of the eigenvalues with very small
magnitude. This is why those figures do not have any points shown around the origin.

3 FUTURE WORK AND CONCLUSION

The current results need to be validated in more settings of architectures and optimizers.

Considerable work was required for us to extract negative eigenvalues for every checkpoint of train-
ing. This is not a pratical thing to do during training. In Appendix E we propose a new method
that maintains an estimate of the most negative eigenvector and uses it to update the parameters. We
have not yet tried this method in practice.

The main contribution of our work is that we have observed and studied an example where the
directions of negative curvature are not being exploited properly by the popular convex optimizer.
We have seen how great gains could be made in those directions. This reinforces the belief that
there are opportunities to develop new optimization techniques that capitalize on the specific case of
neural networks.
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A JACOBIAN VECTOR PRODUCT

With d = 3.3 × 106, the storage required to store the symmetric Hessian matrix with float32 co-
efficients is approximately 20 terabytes, which makes it close to impossible to store in RAM. The
task of computing all the d eigenvalues is absolutely out of reach, but by using the ”Jacobian Vector
Product” trick (Townsend, 2017), along with Scipy (Jones et al., 2014; Lehoucq et al., 1998), we
can compute the k largest or smallest eigenpairs (λi, vi).

The Scipy library function scipy.sparse.linalg.eigsh is able to accept either a symmetric
matrix, or a function that computes the product v 7→ H(θ)v. We define a Python function that makes
many internal calls to Tensorflow to iterate over the whole training set (or a fixed subset thereof).
We aggregate the results and return them. This enables a Scipy library function to make calls to
Tensorflow without being aware of it.

Following again the notation section 2.1, we order the eigenvalues as λ1 ≥ λ2 ≥ . . . ≥ λd. They
are all real-valued because the Hessian matrix is symmetric and contains only real coefficients.
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We are mainly interested in the eigenvalues closest to ±∞, so we define the following notation to
refer to the k most extreme eigenpairs on each side.

LA(k) = {(λ1, v1), . . . , (λk, vk)}
SA(k) = {(λd−k+1, vd−k+1), . . . , (λd, vd)} .

Note that the costs of computing those sets depends a lot of the magnitude of the eigenvalues.
In practice we observed that the LA eigenvalues have a much larger magnitude than the SA (see
Appendix B). This leads to the task of computing LA(20) being much cheaper than LA(3), despite
the fact that it involves more eigenvalues.

For reasons of computational costs, we resorted to using a fixed subset of the training set when we
performed the eigendecompositions (done after training).

B PROGRESSION OF EIGENVALUES DURING TRAINING

In Figure 5 and Figure 6 we show the evolution of the eigenvalues on models training on MNIST and
CIFAR10. The largest eigenvalues LA(20) are shown in blue/green, while the smallest eigenvalues
SA(3) are shown in red. We use log-scale on the vertical axis, so this means that the smallest
eigenvalues, which are negative, are plotted as log |λ|. We also report the total loss as a dotted black
curve, also in log-scale, with their scale shown in the right side of the figures.

Figure 5: log |λ| for eigenvalues of Hessian
on MNIST, computed separately at many
moments of training. Largest in blue/green,
smallest in red.

Figure 6: Same as left figure, but with
CIFAR10. We are not sure how to interpret
the spikes.

The first surprising observation that we made was that the largest and smallest eigenvalues are not
affected a lot during training. They stabilize very quickly (2000 minibatches of size 32 is only
slightly more than a full epoch) while the loss is still in the process in being minimized. Note that
this does not necessarily mean that the leading eigenvector v1 stays constant during all that time.
The leading eigenvalue might hover around λ1 = 4.0, but its associated vector v1 can change.

It is worth keeping in mind that the traditional SGD with RMSProp does not focus specifically on the
directions of negative curvature, so plots like those of Figure 5 and Figure 6 might turn out different
if an optimizer focused on exploiting those directions. We might “exhaust” or “harvest” the most
dominant ones, and then find ourselves new directions in which the negative curvature is now the
most extreme.

One of the motivations for studying the evolution of the Hessian matrix is that its stability is im-
portant in certain optimization methods where an estimate of the Hessian is refined over many con-
secutive steps. If the actual Hessian changes too drastically, then the estimate is not going to be
meaningful, and this may be detrimental to the optimizer.
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C OPTIMAL STEP SIZES

A strictly-convex loss function f(θ) has a positive-definite Hessian matrix H(θ) for all values of θ.
That is, all its eigenvalues will be strictly greater than zero.

To perform an update with Newton’s method, we update the parameters θt according to
θt+1 = θt − αH(θt)

−1g(θt)

where g(θt) is the gradient of f(θ) and α is the learning rate.

In the special case when f(θ) is quadratic, the Hessian is constant and we can use one Newton
update with α = 1 to jump directly to the optimum. We can compute what that means in terms of
the optimal step size to update θ along the direction of one of the eigenvector vi.

Let {(λ1, v1), . . . , (λd, vd)} be the eigendecomposition of the Hessian matrix. If we project the
gradient in the basis of eigenvectors, we get

g(θ) =

N∑
i=1

[
g(θ)T vi

]
vi.

Note that H−1vi =
1
λi
vi, so we have that

H−1g(θ) =

N∑
i=1

[
g(θ)T vi

] 1

λi
vi.

Thus, when minimizing a strictly-convex quadratic function f(θ), the optimal step size along the
direction of an eigenvector is given by

α∗ = argmin
α

L
(
θ − α

[
g(θ)T vi

]
vi
)
=

1

λi
. (2)

If we are dealing with a strictly-convex function that is not quadratic, then the Hessian is not constant
and we will need more than one Newton update to converge to the global minimum. We can still
hope that a step size of 1/λi would be a good value to use.

With a deep neural network, we no longer have any guarantees. We can still measure optimal step
sizes experimentally, which is what we have done in Section 2.3. We saw in Figure 4 that the optimal
step sizes in directions vi of positive curvature matched rather well with the value of 1/λi. It has
been suggested in Dauphin et al. (2014) that in directions of negative curvature, the optimal step
size could be 1/ |λi|, but our empirical results are much larger than that. Again, we have to keep in
mind that a general theory cannot be extrapolated from only one model and one dataset.

D ON ESTIMATING THE HESSIAN

Given that the full Hessian matrix has more than 1013 coefficients, and that the entire training set has
50000 ∗ 282 coefficients, we might be concerned about whether the value of the Hessian is possible
to estimate statistically.

In a way, much like the loss L(θ) =
∑N
n=1 Lθ(xi, yi) is an exact quantity defined over the whole

training set, the Hessian is the same. The notion of an estimator variance would come into play if
we estimated H(θ) from a minibatch instead.

Given the computational costs of evaluating L(θ) and H(θ) on the whole training set every time
that the Scipy function scipy.sparse.linalg.eigsh wants us to evaluate the Jacobian vec-
tor product, we tried to see if it was possible to get away with only using 5% of the training set
for that purpose. That 5% has to always contain the same samples, or otherwise we violate as-
sumptions made by Scipy (in a way similar to how the usual quicksort implementation would fail if
comparisons were no longer deterministic).

Now H5%(θ) is an estimator of H(θ), and we have verified experimentally that the first elements of
the eigenspectrum of those two matrices are close enough for the purposes of our analysis. We did
this by comparing LA(10) and SA(10) in both cases, checking the differences between eigenvalues
and the angles between the eigenvectors.

6



Workshop track - ICLR 2018

E SUGGESTION FOR NEW OPTIMIZATION METHOD

Considerable work was required for us to extract negative eigenvalues for every checkpoint of train-
ing. This is not a practical thing to do during training, so we want to introduce here the idea of
keeping a running approximation of the smallest eigenvector of the Hessian.

We know that the Jacobian vector product H(θ)v can be evaluated on a minibatch at the same time
that we compute the gradient. Some people report an overhead of 4× the computational costs, but
we have not measured any benchmarks in that regards.

The smallest eigenvector is a unit vector v that minimizes the value of m(v) = vTH(θ)v. This is a
quadratic in the coefficients of v (along with a constraint on the norm of v), and it’s something that
we can minimize using a method similar to SGD. We can easily see that ∇vm(v) = 2H(θ)v, so
we can minimize simultaneously m(v) and the usual model loss L(θ). This means that we can keep
a running estimate (λ̃, ṽ) of (λd, vd), and we can alternate between one update to θ with the usual
RMSProp/Adam optimizer, and then one update in the direction of

[
g(θ)T ṽ

]
ṽ. Different learning

rates could be used for those updates.

This is not something that we have tried in practice, but it would be the most direct way to implement
a training method based on the ideas of this paper.

F EXTRA PLOTS

We provide here a few extra plots to accompany Figure 3 and Figure 4 in order to paint a more
complete picture.
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Figure 7: Same as Figure 3 but with a different interval. On the left we have the interval [−5, 5],
and on the right we look more closely to the origin. We are using a color gradient to differentiate
blue points coming from an earlier training step (closer to t = 0) and green points coming later in
the optimization. It is not easy to interpret whether there is a significant difference between the two.
In terms of Equation (1), these plots show the relation between λi and L(α∗).
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Figure 8: Same as Figure 4 but with a different interval. On the left we have the interval [−5, 5], and
on the right we look at [−100, 100]. We are using a color gradient to differentiate red points coming
from an earlier training step (closer to t = 0) and yellow points coming later in the optimization.
One of the interesting observations is that the direct correspondence between 1/α∗ (the y-axis) and
λ (the x-axis) seems to hold relatively well for larger values λ. We knew from Figure 4 that it
approximately held for small positive values of λ, which is something that can also be observed on
the left plot here. In terms of the variables involved in Equation (1), these plots show the relation
between λi (x-axis) and 1/α∗ (y-axis).
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