
Under review as a conference paper at ICLR 2017

EFFICIENT CALCULATION OF POLYNOMIAL FEATURES
ON SPARSE MATRICES

Nystrom, Andrew
awnystrom@gmail.com ∗†

Hughes, John
jfh@cs.brown.edu †

ABSTRACT

We provide an algorithm for polynomial feature expansion that both operates on
and produces a compressed sparse row matrix without any densification. For a
vector of dimension D, density d, and degree k the algorithm has time complexity
O(dkDk) where k is the polynomial-feature order; this is an improvement by a
factor dk over the standard method.

1 INTRODUCTION

Polynomial feature expansion has long been used in statistics to approximate nonlinear func-
tions Gergonne (1974); Smith (1918). The compressed sparse row (CSR) matrix format is a widely-
used data structure to hold design matrices for statistics and machine learning applications. How-
ever, polynomial expansions are typically not performed directly on sparse CSR matrices, nor on
any sparse matrix format for that matter, without intermediate densification steps. This densification
not only adds extra overhead, but wastefully computes combinations of features that have a product
of zero, which are then discarded during conversion into a sparse format.

We provide an algorithm that allows CSR matrices to be the input of a polynomial feature expansion
without any densification. The algorithm leverages the CSR format to only compute products of
features that result in nonzero values. This exploits the sparsity of the data to achieve an improved
time complexity of O(dkDk) on each vector of the matrix where k is the degree of the expansion,
D is the dimensionality, and d is the density. The standard algorithm has time complexity O(Dk).
Since 0 ≤ d ≤ 1, our algorithm is a significant improvement. While the algorithm we describe uses
CSR matrices, it could be modified to operate on other sparse formats.

2 PRELIMINARIES

Matrices are denoted by uppercase bold letters thus: A. The ithe row of A is written ai. All vectors
are written in bold, and a, with no subscript, is a vector.

A compressed sparse row (CSR) matrix representation of an r-row matrix A consists of three vec-
tors: c, d, and p and a single number: the number of columns of A. The vectors c and d contain the
same number of elements, and hold the column indices and data values, respectively, of all nonzero
elements of A. The vector p has r entries. The values in p index both c and d. The ith entry pi of
p tells where the data describing nonzero columns of ai are within the other two vectors: cpi:pi+1

contain the column indices of those entries; dpi:pi+1 contain the entries themselves. Since only
nonzero elements of each row are held, the overall number of columns of A must also be stored,
since it cannot be derived from the other data.

Scalars, vectors, and matrices are often referenced with the superscript k. This is not to be interpreted
as an exponent, but to indicate that it is the analogous aspect of that which procedes it, but in its
polynomial expansion form. For example, c2 is the vector that holds columns for nonzero values in
A’s quadratic feature expansion CSR representation.

For simplicity in the presentation, we work with polynomial expansions of degree 2, but continue to
use the exponent k to show how the ideas apply in the general case.
∗Now at Google
†The authors contributed equally important and fundamental aspects of this work.

1

Under review as a conference paper at ICLR 2017

We do provide an algorithm for third degree expansions, and derive the big-O time complexity of
the general case.

We have also developed an algorithm for second and third degree interaction features (combinations
without repetition), which can be found in the implementation.

3 MOTIVATION

In this section, we present a strawman algorithm for computing polynomial feature expansions on
dense matrices. We then modify the algorithm slightly to operate on a CSR matrix, in order to
expose its infeasibility in that context. We then show how the algorithm would be feasible with an
added component, which we then derive in the following section.

3.1 DENSE EXPANSION ALGORITHM

A natural way to calculate polynomial features for a matrix A is to walk down its rows and, for each
row, take products of all k-combinations of elements. To determine in which column of Ak

i products
of elements in Ai belong, a simple counter can be set to zero for each row of A and incremented
efter each polynomial feature is generated. This counter gives the column of Ak

i into which each
expansion feature belongs.

SECOND ORDER (k = 2) DENSE POLYNOMIAL EXPANSION ALGORITHM(A)

1 N = row count of A
2 D = column count of A
3 Ak = empty N ×

(
D
2

)
matrix

4 for i = 0 to N − 1
5 cp = 0
6 for j1 = 0 to D − 1
7 for j2 = j1 to D − 1
8 Ak

icp
= Aij1 ·Aij2

9 cp = cp + 1

3.2 IMPERFECT CSR EXPANSION ALGORITHM

Now consider how this algorithm might be modified to accept a CSR matrix. Instead of walking
directly down rows of A, we will walk down sections of c and d partitioned by p, and instead of
inserting polynomial features into Ak, we will insert column numbers into ck and data elements
into dk.

2

Under review as a conference paper at ICLR 2017

INCOMPLETE SECOND ORDER (k = 2) CSR POLYNOMIAL EXPANSION ALGORITHM(A)

1 N = row count of A
2 pk = vector of size N + 1
3 pk

0 = 0
4 nnzk = 0
5 for i = 0 to N − 1
6 istart = pi

7 istop = pi+1

8 ci = cistart:istop

9 nnzki =
(|ci|

2

)
10 nnzk = nnzk + nnzki
11 pk

i+1 = pk
i + nnzki

// Build up the elements of pk, ck, and dk

12 pk = vector of size N + 1
13 ck = vector of size nnzk

14 dk = vector of size nnzk

15 n = 0
16 for i = 0 to N − 1
17 istart = pi

18 istop = pi+1

19 ci = cistart:istop
20 di = distart:istop
21 for c1 = 0 to |ci| − 1
22 for c2 = c1 to |ci| − 1
23 dk

n = dc0 · dc1

24 ckn =?
25 n = n+ 1

The crux of the problem is at line 24. Given the arbitrary columns involved in a polynomial feature
of Ai, we need to determine the corresponding column of Ak

i . We cannot simply reset a counter for
each row as we did in the dense algorithm, because only columns corresponding to nonzero values
are stored. Any time a column that would have held a zero value is implicitly skipped, the counter
would err.

To develop a general algorithm, we require a mapping from columns of A to a column of Ak. If
there are D columns of A and

(
D
k

)
columns of Ak, this can be accomplished by a bijective mapping

of the following form:

(j0, j1, . . . , jk−1) �� pj0j1...ik−1
∈ {0, 1, . . . ,

(
D

k

)
− 1} (1)

such that 0 ≤ j0 ≤ j1 ≤ · · · ≤ jk−1 < D where (j0, j1, . . . , jk−1) are elements of c and pj0j1...ik−1

is an element of ck.

4 CONSTRUCTION OF MAPPING

Within this section, i, j, and k denote column indices. For the second degree case, we seek a map
from matrix indices (i, j) (with 0 ≤ i < j < D) to numbers f(i, j) with 0 ≤ f(i, j) < D(D−1)

2 ,
one that follows the pattern indicated by x 0 1 3

x x 2 4
x x x 5
x x x x

 (2)

where the entry in row i, column j, displays the value f(i, j). We let T2(n) = 1
2n(n + 1) be the

nth triangular number; then in Equation 2, column j (for j > 0) contains entries with T2(j − 1) ≤

3

Under review as a conference paper at ICLR 2017

e < T2(j); the entry in the ith row is just i + T2(j − 1). Thus we have f(i, j) = i + T2(j − 1) =
1
2 (2i + j2 − j). For instance, in column j = 2 in our example (the third column), the entry in row
i = 1 is i+ T2(j − 1) = 1 + 1 = 2.

With one-based indexing in both the domain and codomain, the formula above becomes f1(i, j) =
1
2 (2i+ j2 − 3j + 2).

For polynomial features, we seek a similar map g, one that also handles the case i = j. In this case,
a similar analysis yields g(i, j) = i+ T2(j) =

1
2 (2i+ j2 + j + 1).

To handle three-way interactions, we need to map triples of indices in a 3-index array to a flat list,
and similarly for higher-order interactions. For this, we’ll need the tetrahedral numbers T3(n) =∑n

i=1 T2(n) =
1
6 (n

3 + 3n2 + 2n).

For three indices, i, j, k, with 0 ≤ i < j < k < D, we have a similar recurrence. Calling the
mapping h, we have

h(i, j, k) = i+ T2(j − 1) + T3(k − 2); (3)

if we define T1(i) = i, then this has the very regular form

h(i, j, k) = T1(i) + T2(j − 1) + T3(k − 2); (4)

and from this the generalization to higher dimensions is straightforward. The formulas for “higher
triangular numbers”, i.e., those defined by

Tk(n) =

n∑
i=1

Tk−1(n) (5)

for k > 1 can be determined inductively.

The explicit formula for 3-way interactions, with zero-based indexing, is

h(i, j, k) = 1 + (i− 1) +
(j − 1)j

2
+ (6)

(k − 2)3 + 3(k − 2)2 + 2(k − 2)

6
. (7)

5 FINAL CSR EXPANSION ALGORITHM

With the mapping from columns of A to a column of Ak, we can now write the final form of the
innermost loop of the algorithm from 3.2. Let the mapping for k = 2 be denoted h2. Then the
innermost loop becomes:

for c2 = c1 to |ci| − 1
j0 = cc0
j1 = cc1
cp = h2(j0, j1)
dk
n = dc0 · dc1

ckn = cp
n = n+ 1

The algorithm can be generalized to higher degrees by simply adding more nested loops, using
higher order mappings, modifying the output dimensionality, and adjusting the counting of nonzero
polynomial features in line 9.

6 TIME COMPLEXITY

6.1 ANALYTICAL

Calculating k-degree polynomial features via our method for a vector of dimensionality D and
density d requires

(
dD
k

)
(with repetition) products. The complexity of the algorithm, for fixed k �

4

Under review as a conference paper at ICLR 2017

dD, is therefore

O

((
dD + k − 1

k

))
= O

(
(dD + k − 1)!

k!(dD − 1)!

)
(8)

= O

(
(dD + k − 1)(dD + k − 2) . . . (dD)

k!

)
(9)

= O ((dD + k − 1)(dD + k − 2) . . . (dD)) for k � dD (10)

= O
(
dkDk

)
(11)

6.2 EMPIRICAL

To demonstrate how our algorithm scales with the density of a matrix, we compare it to the tradi-
tional polynomial expansion algorithm in the popular machine library scikit-learn Pedregosa et al.
(2011) in the task of generating second degree polynomial expansions. Matrices of size 100× 5000
were randomly generated with densities of 0.2, 0.4, 0.6, 0.8, and 1.0. Thirty matrices of each den-
sity were randomly generated, and the mean times (gray) of each algorithm were plotted. The red or
blue width around the mean marks the third standard deviation from the mean. The time to densify
the input to the standard algorithm was not counted.

The standard algorithm’s runtime stays constant no matter the density of the matrix. This is because
it does not avoid products that result in zero, but simply multiplies all second order combinations of
features. Our algorithm scales quadratically with respect to the density. If the task were third degree
expansions rather than second, the plot would show cubic scaling.

The fact that our algorithm is approximately 6.5 times faster than the scikit-learn algorithm on 100×
5000 matrices that are entirely dense is likely a language implementation difference. What matters
is that the time of our algorithm increases quadratically with respect to the density in accordance
with the big-O analysis.

Figure 1: Our algorithm (bottom) scales with the density of a matrix, unlike the traditional polyno-
mial feature expansion method (top). The task was a second degree expansion, which is why the
time of our algorithm scales quadratically with the density.

5

Under review as a conference paper at ICLR 2017

7 CONCLUSION

We have developed an algorithm for performing polynomial feature expansions on CSR matrices
that scales polynomially with respect to the density of the matrix. The areas within machine learning
that this work touches are not en vogue, but they are workhorses of industry, and every improvement
in core representations has an impact across a broad range of applications.

REFERENCES

J.D. Gergonne. The application of the method of least squares to the interpolation of sequences.
Historia Mathematica, 1(4):439–447, 1974.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Kirstine Smith. On the standard deviations of adjusted and interpolated values of an observed poly-
nomial function and its constants and the guidance they give towards a proper choice of the dis-
tribution of observations. Biometrika, 12(1/2):1–85, 1918.

6

	Introduction
	Preliminaries
	Motivation
	Dense Expansion Algorithm
	Imperfect CSR Expansion Algorithm

	Construction of Mapping
	Final CSR Expansion Algorithm
	Time Complexity
	Analytical
	Empirical

	Conclusion

