
Published as a conference paper at ICLR 2018

DEPTHWISE SEPARABLE CONVOLUTIONS FOR
NEURAL MACHINE TRANSLATION

Łukasz Kaiser∗
Google Brain
lukaszkaiser@google.com

Aidan N. Gomez∗†
University of Toronto
aidan@cs.toronto.edu

François Chollet∗
Google Brain
fchollet@google.com

ABSTRACT

Depthwise separable convolutions reduce the number of parameters and computa-
tion used in convolutional operations while increasing representational efficiency.
They have been shown to be successful in image classification models, both in
obtaining better models than previously possible for a given parameter count
(the Xception architecture) and considerably reducing the number of parameters
required to perform at a given level (the MobileNets family of architectures). Re-
cently, convolutional sequence-to-sequence networks have been applied to machine
translation tasks with good results. In this work, we study how depthwise separable
convolutions can be applied to neural machine translation. We introduce a new
architecture inspired by Xception and ByteNet, called SliceNet, which enables a
significant reduction of the parameter count and amount of computation needed to
obtain results like ByteNet, and, with a similar parameter count, achieves better
results. In addition to showing that depthwise separable convolutions perform well
for machine translation, we investigate the architectural changes that they enable:
we observe that thanks to depthwise separability, we can increase the length of
convolution windows, removing the need for filter dilation. We also introduce a
new "super-separable" convolution operation that further reduces the number of
parameters and computational cost of the models.

1 INTRODUCTION

In recent years, sequence-to-sequence recurrent neural networks (RNNs) with long short-term memory
(LSTM) cells (Hochreiter & Schmidhuber, 1997) have proven successful at many natural language
processing (NLP) tasks, including machine translation (Sutskever et al., 2014; Bahdanau et al., 2014;
Cho et al., 2014b). In fact, the results they yielded have been so good that the gap between human
translations and machine translations has narrowed significantly (Wu et al., 2016) and LSTM-based
recurrent neural networks have become standard in natural language processing.

Even more recently, auto-regressive convolutional models have proven highly effective when applied
to audio (van den Oord et al., 2016a), image (van den Oord et al., 2016b) and text generation
(Kalchbrenner et al., 2016). Their success on sequence data in particular rivals or surpasses that of
previous recurrent models (Kalchbrenner et al., 2016; Gehring et al., 2017). Convolutions provide
the means for efficient non-local referencing across time without the need for the fully sequential
processing of RNNs. However, a major critique of such models is their computational complexity
and large parameter count. These are the principal concerns addressed within this work: inspired by
the efficiency of depthwise separable convolutions demonstrated in the domain of vision, in particular
the Xception architecture (Chollet, 2016) and MobileNets (Howard et al., 2017), we generalize these
techniques and apply them to the language domain, with great success.
∗All authors contributed equally and are ordered randomly.
†Work performed while at Google Brain.
Code available at https://github.com/tensorflow/tensor2tensor

1

https://github.com/tensorflow/tensor2tensor


Published as a conference paper at ICLR 2018

2 OUR CONTRIBUTION

We present a new convolutional sequence-to-sequence architecture, dubbed SliceNet, and apply it to
machine translation tasks, achieving results that surpass all previous reported experiments except for
the recent Transformer model (Vaswani et al., 2017). Our architecture features two key ideas:

• Inspired by the Xception network (Chollet, 2016), our model is a stack of depthwise
separable convolution layers with residual connections. Such an architecture has been
previously shown to perform well for image classification. We also experimented with using
grouped convolutions (or "sub-separable convolutions") and add even more separation with
our new super-separable convolutions.
• We do away with filter dilation in our architecture, after exploring the trade-off between filter

dilation and larger convolution windows. Filter dilation was previously a key component of
successful 1D convolutional architectures for sequence-to-sequence tasks, such as ByteNet
(Kalchbrenner et al., 2016) and WaveNet (van den Oord et al., 2016a), but we obtain better
results without dilation thanks to separability.

2.1 SEPARABLE CONVOLUTIONS AND GROUPED CONVOLUTIONS

The depthwise separable convolution operation can be understood as related to both grouped convolu-
tions and the "inception modules" used by the Inception family of convolutional network architectures,
a connection explored in Xception (Chollet, 2016). It consists of a depthwise convolution, i.e. a
spatial convolution performed independently over every channel of an input, followed by a pointwise
convolution, i.e. a regular convolution with 1x1 windows, projecting the channels computed by the
depthwise convolution onto a new channel space. The depthwise separable convolution operation
should not be confused with spatially separable convolutions, which are also often called “separable
convolutions” in the image processing community.

Their mathematical formulation is as follow (we use � to denote the element-wise product):

Conv(W, y)(i,j) =

K,L,M∑
k,l,m

W(k,l,m) · y(i+k,j+l,m)

PointwiseConv(W, y)(i,j) =

M∑
m

Wm · y(i,j,m)

DepthwiseConv(W, y)(i,j) =

K,L∑
k,l

W(k,l) � y(i+k,j+l)

SepConv(Wp,Wd, y)(i,j) = PointwiseConv(i,j)(Wp,DepthwiseConv(i,j)(Wd, y))

Thus, the fundamental idea behind depthwise separable convolutions is to replace the feature learning
operated by regular convolutions over a joint "space-cross-channels realm" into two simpler steps, a
spatial feature learning step, and a channel combination step. This is a powerful simplification under
the oft-verified assumption that the 2D or 3D inputs that convolutions operate on will feature both
fairly independent channels and highly correlated spatial locations.

A deep neural network forms a chain of differentiable feature learning modules, structured as a
discrete set of units, each trained to learn a particular feature. These units are subsequently composed
and combined, gradually learning higher and higher levels of feature abstraction with increasing
depth. Of significance is the availability of dedicated feature pathways that are merged together
later in the network; this is one property enabled by depthwise separable convolutions, which define
independent feature pathways that are later merged. In contrast, regular convolutional layers break
this creed by learning filters that must simultaneously perform the extraction of spatial features and
their merger into channel dimensions; an inefficient and ineffective use of parameters.

Grouped convolutions (or "sub-separable convolutions") are an intermediary step between regular
convolutions and depthwise separable convolutions. They consist in splitting the channels of an input
into several non-overlapping segments (or "groups"), performing a regular spatial convolution over
each segment independently, then concatenating the resulting feature maps along the channel axis.

2



Published as a conference paper at ICLR 2018

Convolution type Parameters and approximate floating point operations per position

Non-separable k · c2
Fully-separable k · c+ c2

g-Sub-separable k · c
2

g + c2

g-Super-separable k · c+ c2

g

Table 1: Parameter count comparison across convolution types.

Depthwise separable convolutions have been previously shown in Xception (Chollet, 2016) to allow
for image classification models that outperform similar architectures with the same number of
parameters, by making more efficient use of the parameters available for representation learning. In
MobileNets (Howard et al., 2017), depthwise separable convolutions allowed to create very small
image classification models (e.g. 4.2M parameters for 1.0 MobileNet-224) that retained much of the
capabilities of architectures that are far larger (e.g. 138M parameters for VGG16), again, by making
more efficient use of parameters.

The theoretical justifications for replacing regular convolution with depthwise separable convolution,
as well as the strong gains achieved in practice by such architectures, are a significant motivation for
applying them to 1D sequence-to-sequence models.

The key gains from separability can be seen when comparing the number of parameters (which in
this case corresponds to the computational cost too) of separable convolutions, group convolutions,
and regular convolutions. Assume we have c channels and filters (often c = 1000 or more) and a
receptive field of size k (often k = 3 but we will use k upto 63). The number of parameters for a
regular convolution, separable convolution, and group convolution with g groups is:

k · c2 k · c+ c2 k · c
2

g
+ c2.

2.2 SUPER-SEPARABLE CONVOLUTIONS

As can be seen above, the size (and cost) of a separable convolution with c channels and a receptive
field of size k is k · c + c2. When k is small compared to c (as is usuallty the case) the term
c2 dominates, which raises the question how it could be reduced. We use the idea from group
convolutions and the recent separable-LSTM paper (Kuchaiev & Ginsburg, 2017) to further reduce
this size by factoring the final 1× 1 convolution, and we call the result a super-separable convolution.

We define a super-separable convolution (denoted SuperSC) with g groups as follows. Applied to a
tensor x, we first split x on the depth dimension into g groups, then apply a separable convolution to
each group separately, and then concatenate the results on the depth dimension.

SuperSCg(Wp,Wd, x) = concatdepth(SepConv(W
1
p ,W

1
d , x

1), . . . ,SepConv(W g
p ,W

g
d , x

g)),

where x1, . . . , xg is x split on the depth axis and W i
p,W

i
d for i = 1, . . . , g are the parameters of each

separable convolution. Since each W i
d is of size k · cg and each W i

p is of size c2

g2 , the final size of a

super-separable convolution is k · c+ c2

g . Parameter counts (or computational budget per position)
for all convolution types are summarized in Table 1.

Note that a super-separable convolution doesn’t allow channels in separate groups to exchange
information. To avoid making a bottleneck of this kind, we use stack super-separable convolutions in
layer with co-prime g. In particular, in our experiments we always alternate g = 2 and g = 3.

2.3 FILTER DILATION AND CONVOLUTION WINDOW SIZE

Filter dilation, as introduced in (Yu & Koltun, 2015), is a technique for aggregating multiscale
information across considerably larger receptive fields in convolution operations, while avoiding an
explosion in parameter count for the convolution kernels. It has been presented in (Kalchbrenner et al.,

3



Published as a conference paper at ICLR 2018

Figure 1: Summary of the SliceNet architecture. See text for a detailed explanation and equations.

2016) and (van den Oord et al., 2016a) as a key component of convolutional sequence-to-sequence
autoregressive architectures.

When dilated convolution layers are stacked such that consecutive layers’ dilation values have
common divisors, an issue similar to the checkerboard artifacts in deconvolutions (Odena et al., 2016)
appears. Uneven filter coverage results in dead zones where filter coverage is reduced (as displayed
in the plaid-like appearance of Figure 1 in (Yu & Koltun, 2015)). Choosing dilation factors that are
co-prime can indeed offer some relief from these artifacts, however, it would be preferable to do away
with the necessity for dilation entirely.

The purpose of filter dilation is to increase the receptive field of the convolution operation, i.e. the
spatial extent from which feature information can be gathered, at a reasonable computational cost.
A similar effect would be achieved by simply using larger convolution windows. Besides, the use
of larger windows would avoid an important shortcoming of filter dilation, unequal convolutional
coverage of the input space. Notably, the use of depthwise separable convolutions in our network in
place of regular convolutions makes each convolution operation significantly cheaper (we are able
to cut the number of non-embedding model parameters by half), thus lifting the computational and
memory limitations that guided the development of filter dilation in the first place.

In our experiments, we explore the trade-off between using lower dilation rates and increasing the
size of the convolution windows for our depthwise separable convolution layers. In contrast to the
conclusions drawn in WaveNet and ByteNet, we find that the computational savings brought on by
depthwise separable convolutions allow us to do away with dilation entirely. In fact, we observe no
benefits of dilations: our best models feature larger filters and no dilation (see Table 2). A comparison
of the parameter count for different convolution operations is found in Table 1.

3 SLICENET ARCHITECTURE

Here we present the model we use for our experiments, called SliceNet in reference to the way
separable convolutions operate on channel-wise slices of their inputs. Our model follows the
convolutional autoregressive structure introduced by ByteNet (Kalchbrenner et al., 2016), WaveNet
(van den Oord et al., 2016a) and PixelCNN (van den Oord et al., 2016b). Inputs and outputs are
embedded into the same feature depth, encoded by two separate sub-networks and concatenated
before being fed into a decoder that autoregressively generates each element of the output. At each
step, the autoregressive decoder produces a new output prediction given the encoded inputs and
the encoding of the existing predicted outputs. The encoders and the decoder (described in Section
3.3) are constructed from stacks of convolutional modules (described in Section 3.1) and attention
(described in Section 3.2) is used to allow the decoder to get information from the encoder.

4



Published as a conference paper at ICLR 2018

3.1 CONVOLUTIONAL MODULES

To perform local computation, we use modules of convolutions with ReLU non-linearities and
layer normalization. A module of convolutions gets as input a tensor of shape [sequence length,
feature channels] and returns a tensor of the same shape. Each step in our module consist of three
components: a ReLU activation of the inputs, followed by a depthwise separable convolution,
followed by layer normalization. Layer normalization (Ba et al., 2016) acts over the h hidden units of
the layer below, computing layer-wise statistics and normalizing accordingly. These normalized units
are then scaled and shifted by scalar learned parameters G and B respectively, producing the final
units to be activated by a non-linearity:

LN(x) =
G

σ(x)
(x− µ(x)) +B σ(x) =

√√√√ 1

h

h∑
i

(xi − µ(x))2 µ(x) =
1

h

h∑
i

xi,

where the sum are taken only over the last (depth) dimension of x, and G and B are learned scalars.

A complete convolution step with kernel size K and dilation D is defined as:
ConvStep
k=K,d=D

(x) = LN(SepConv(Wp,Wd,ReLU(x))),

where Wp and Wd are fresh sets of trainable weights that we omit from the notation for clarity. The
convolutional steps are composed into modules by stacking them and adding residual connections as
depicted in Figure 1. We use stacks of four convolutional steps with two skip-connections between
the stack input and the outputs of the second and fourth convolutional steps:

hidden1(x) = ConvStep
k=3,d=1

(x)

hidden2(x) = x+ConvStep
k=3,d=1

(hidden1(x))

hidden3(x) = ConvStep
k=15,d=1

(hidden2(x))

hidden4(x) = x+ConvStep
k=15,d=4

(hidden3(x))

ConvModule(x) =

{
dropout(hidden4(x), 0.5) during training
hidden4(x) otherwise

Figure 2: The ConvModule architecture described in Section 3.1. We vary the convolution sizes and
dilations; see Section 3 for details on the architecture and Section 5 for the variations we study.

ConvModules are used in stacks in our module, the output of the last feeding into the next. We denote
a stack with n modules by ConvModulen.

3.2 ATTENTION MODULES

For attention, we use a simple inner-product attention that takes as input two tensors: source of shape
[m, depth] and target of shape [n, depth]. The attention mechanism computes the feature vector
similarities at each position and re-scales according to the depth:

Attend(source, target) =
1√
depth

· softmax(target · sourceT ) · source

To allow the attention to access positional information, we add a signal that carries it. We call this
signal the timing, it is a tensor of any shape [k, depth] defined by concatenating sine and cosine
functions of different frequencies calculated upto k:

timing(t, 2d) = sin(t/100002d/depth)

timing(t, 2d+ 1) = cos(t/100002d/depth)

5



Published as a conference paper at ICLR 2018

Our full attention mechanism consists of adding the timing signal to the targets, performing two
convolutional steps, and then attending to the source:

attention1(x) = ConvStep
k=1,d=1

(x+ timing)

Attention(s, t) = Attend(s,ConvStep
k=4,d=1

(attention1(t)))

3.3 AUTOREGRESSIVE STRUCTURE

As previously discussed, the outputs of our model are generated in an autoregressive manner. Unlike
RNNs, autoregressive sequence generation depends not only on the previously generated output, but
potentially all previously generated outputs. This notion of long term dependencies has proven highly
effect in NMT before. By using attention, establishing long term dependencies has been shown to
significantly boost task performance of RNNs for NMT (Cho et al., 2014a). Similarly, a convolutional
autoregressive generation scheme offer large receptive fields over the inputs and past outputs, capable
of establishing these long term dependencies.

Below we detail the structure of the InputEncoder, IOMixer and Decoder. The OutputEmbedding
simply performs a learning-embedding look-up. We denote the concatenation of tensors a and b
along the dth dimension as [a ‖d b].

mixi = IOMixer(InputEncoder(inputs),

OutputEmbedding(outputs<i))

o = Decoder(mix)

InputEncoder(x) = ConvModule6(x+ timing)

IOMixer(i, o) = ConvStep
k=3,d=1

([Attention(i, o) ‖2 o])

AttnConvModule(x, s) = ConvModule(x) + Attention(s, x)

Decoder(x) = AttnConvModule4(x, InputEncoder(inputs))

4 RELATED WORK

Machine translation using deep neural networks achieved great success with sequence-to-sequence
models (Sutskever et al., 2014; Bahdanau et al., 2014; Cho et al., 2014b) that used recurrent neural
networks (RNNs) with long short-term memory (LSTM, (Hochreiter & Schmidhuber, 1997)) cells.
The basic sequence-to-sequence architecture is composed of an RNN encoder which reads the source
sentence one token at a time and transforms it into a fixed-sized state vector. This is followed by
an RNN decoder, which generates the target sentence, one token at a time, from the state vector.
While a pure sequence-to-sequence recurrent neural network can already obtain good translation
results (Sutskever et al., 2014; Cho et al., 2014b), it suffers from the fact that the whole input sentence
needs to be encoded into a single fixed-size vector. This clearly manifests itself in the degradation

6



Published as a conference paper at ICLR 2018

of translation quality on longer sentences and was overcome in (Bahdanau et al., 2014) by using a
neural model of attention. We use a simplified version of this neural attention mechanism in SliceNet,
as introduced above.

Convolutional architectures have been used to obtain good results in word-level neural machine
translation starting from (Kalchbrenner & Blunsom, 2013) and later in (Meng et al., 2015). These
early models used a standard RNN on top of the convolution to generate the output. The state of this
RNN has a fixed size, and in the first one the sentence representation generated by the convolutional
network is also a fixed-size vector, which creates a bottleneck and hurts performance, especially on
longer sentences, similarly to the limitations of RNN sequence-to-sequence models without attention
(Sutskever et al., 2014; Cho et al., 2014b) discussed above.

Fully convolutional neural machine translation without this bottleneck was first achieved in (Kaiser &
Bengio, 2016) and (Kalchbrenner et al., 2016). The model in (Kaiser & Bengio, 2016) (Extended
Neural GPU) used a recurrent stack of gated convolutional layers, while the model in (Kalchbrenner
et al., 2016) (ByteNet) did away with recursion and used left-padded convolutions in the decoder.
This idea, introduced in WaveNet (van den Oord et al., 2016a), significantly improves efficiency of
the model. The same technique is used in SliceNet as well, and it has been used in a number of
neural translation models recently, most notably in (Gehring et al., 2017) where it is combined with
an attention mechanism in a way similar to SliceNet.

Depthwise separable convolutions were first studied by Sifre (Sifre & Mallat, 2013) during a 2013
internship at Google Brain, and were first introduced in an ICLR 2014 presentation (Vanhoucke,
2014). In 2016, they were demonstrated to yield strong results on large-scale image classification
in Xception (Chollet, 2016), and in 2017 they were shown to lead to small and parameter-efficient
image classification models in MobileNets (Howard et al., 2017).

5 EXPERIMENTS

We design our experiments with the goal to answer two key questions:

• What is the performance impact of replacing convolutions in a ByteNet-like model with
depthwise separable convolutions?
• What is the performance trade-off of reducing dilation while correspondingly increasing

convolution window size?

In addition, we make two auxiliary experiments:

• One experiment to test the performance of an intermediate separability point in-between
regular convolutions and full depthwise separability: we replace depthwise separable convo-
lutions with grouped convolutions (sub-separable convolutions) with groups of size 16.
• One experiment to test the performance impact of our newly-introduced super-separable

convolutions compared to depthwise separable convolutions.

We evaluate all models on the WMT English to German translation task and use newstest2013
evaluation set for this purpose. For two best large models, we also provide results on the standard test
set, newstest2014, to compare with other works. For tokenization, we use subword units, and follow
the same tokenization process as Sennrich et al. (2015). All of our experiments are implemented
using the TensorFlow framework (Abadi et al., 2015). A comparison of our different models in
terms of parameter count and Negative Log Perplexity as well as per-token Accuracy on our task are
provided in Table 2. The parameter count (and computation cost) of the different types of convolution
operations used was already presented in Table 1. Our experimental results allow us to draw the
following conclusions:

• Depthwise separable convolutions are strictly superior to regular convolutions in a ByteNet-
like architecture, resulting in models that are more accurate while requiring fewer parameters
and being computationally cheaper to train and run.
• Using sub-separable convolutions with groups of size 16 instead of full depthwise separable

convolutions results in a performance dip, which may indicate that higher separability (i.e.

7



Published as a conference paper at ICLR 2018

Dilations Filter Size Separability Parameters (Non-Emb.) Neg. Log Accuracy

1-2-4-8 3-3-3-3 None 314 M (230 M) -1.92 62.41
1-2-4-8 3-3-3-3 Full 196 M (112 M) -1.83 63.87
1-1-2-4 3-7-7-7 Full 197 M (113 M) -1.80 64.37
1-1-1-2 3-7-15-15 Full 197 M (113 M) -1.80 64.30
1-1-1-1 3-7-15-31 Full 197 M (113 M) -1.80 64.36
1-2-4-8 3-3-3-3 16 Groups 207 M (123 M) -1.86 63.46
1-1-1-1 3-7-15-31 Super 2/3 253 M (141 M) -1.78 64.71

1-1-1-1 3-7-15-31-63 Full (2048) 349 M (265 M) -1.68 66.71
1-1-1-1 3-7-15-31 Super 2/3 (3072) 348 M (222 M) -1.64 67.27

Table 2: Performance on WMT EN-DE after 250k gradient descent steps.

Model BLEU (newstest14) Params.

SliceNet (Full, 2048) 25.5 349 M
SliceNet (Super 2/3, 3072) 26.1 348 M

ByteNet (Kalchbrenner et al., 2016) 23.8 -
GNMT (Wu et al., 2016) 24.6 278 M
ConvS2S (Gehring et al., 2017) 25.1 -
GNMT+Mixture of Experts (Shazeer et al., 2017) 26.0 8700 M
Transformer (Vaswani et al., 2017) 28.4 213 M

Table 3: Performance of our larger models compared to best published results.

groups as small as possible, tending to full depthwise separable convolutions) is preferable
in this setup, this further confirming the advantages of depthwise separable convolutions.

• The need for dilation can be completely removed by using correspondingly larger convolu-
tion windows, which is made computationally tractable by the use of depthwise separable
convolutions.

• The newly-introduced super-separable convolution operation seems to offer an incremental
performance improvement.

Finally, we run two larger models with a design based on the conclusions drawn from our first round
of experiments: a SliceNet model which uses depthwise separable convolutions and a SliceNet model
which uses super-separable convolutions, with significantly higher feature depth in both cases. We
achieve results that surpass all previously reported models except for the recent Transformer (Vaswani
et al., 2017), as shown in Table 3, where we also include previously reported results for comparison.
For getting the BLEU, we used a beam-search decoder with a beam size of 4 and a length penalty
tuned on the evaluation set (newstest2013).

5.1 CONCLUSIONS

In this work, we introduced a new convolutional architecture for sequence-to-sequence tasks, called
SliceNet, based on the use of depthwise separable convolutions. We showed how this architecture
achieves results beating not only ByteNet but also the previous best Mixture-of-Experts models while
using over two times less (non-embedding) parameters and floating point operations than ByteNet.

Additionally, we have shown that filter dilation, previously thought to be a key component of
successful convolutional sequence-to-sequence architectures, was not a requirement. The use of
depthwise separable convolutions makes much larger convolution window sizes possible, and we
found that we could achieve the best results by using larger windows instead of dilated filters. We
have also introduced a new type of depthwise separable convolution, the super-separable convolution,
which shows incremental performance improvements over depthwise separable convolutions.

8



Published as a conference paper at ICLR 2018

Our work is one more point on a significant trendline started with Xception and MobileNets, that
indicates that in any convolutional model, whether for 1D or 2D data, it is possible to replace
convolutions with depthwise separable convolutions and obtain a model that is simultaneously
cheaper to run, smaller, and performs a few percentage points better. This trend is backed by both
solid theoretical foundations and strong experimental results. We expect our current work to play a
significant role in affirming and accelerating this trend. We only experimented on translation, but we
expect that our results will apply to other sequence-to-sequence tasks and we hope to see depthwise
separable convolutions replace regular convolutions in more and more use cases in the future.

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems, 2015. URL http://download.tensorflow.org/
paper/whitepaper2015.pdf.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473, 2014. URL http://arxiv.org/abs/
1409.0473.

K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio. On the properties of neural machine
translation: Encoder-decoder approaches. CoRR, abs/1409.1259, 2014a.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. CoRR, abs/1406.1078, 2014b. URL http://arxiv.org/abs/1406.1078.

François Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint
arXiv:1610.02357, 2016.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. arXiv preprint arXiv:1705.03122, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Łukasz Kaiser and Samy Bengio. Can active memory replace attention? In Advances in Neural
Information Processing Systems, (NIPS), 2016.

Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In
Proceedings EMNLP 2013, pp. 1700–1709, 2013. URL http://nal.co/papers/
KalchbrennerBlunsom_EMNLP13.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves, and Koray
Kavukcuoglu. Neural machine translation in linear time. arXiv preprint arXiv:1610.10099, 2016.

Oleksii Kuchaiev and Boris Ginsburg. Factorization tricks for LSTM networks. CoRR,
abs/1703.10722, 2017. URL http://arxiv.org/abs/1703.10722.

9

http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1406.1078
http://nal.co/papers/KalchbrennerBlunsom_EMNLP13
http://nal.co/papers/KalchbrennerBlunsom_EMNLP13
http://arxiv.org/abs/1703.10722


Published as a conference paper at ICLR 2018

Fandong Meng, Zhengdong Lu, Mingxuan Wang, Hang Li, Wenbin Jiang, and Qun Liu. Encoding
source language with convolutional neural network for machine translation. In ACL, pp. 20–30,
2015.

Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard artifacts.
Distill, 1(10):e3, 2016.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. CoRR, 2015.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Laurent Sifre and Stéphane Mallat. Rotation, scaling and deformation invariant scattering for texture
discrimination. In 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland,
OR, USA, June 23-28, 2013, pp. 1233–1240, 2013.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Systems, pp. 3104–3112, 2014. URL http:
//arxiv.org/abs/1409.3215.

Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw
audio. CoRR abs/1609.03499, 2016a.

Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional
image generation with pixelcnn decoders. In Advances in Neural Information Processing Systems,
pp. 4790–4798, 2016b.

Vincent Vanhoucke. Learning visual representations at scale. ICLR, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, 2017. URL http:
//arxiv.org/abs/1706.03762.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson,
Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex
Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural
machine translation system: Bridging the gap between human and machine translation. CoRR,
abs/1609.08144, 2016. URL http://arxiv.org/abs/1609.08144.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. arXiv
preprint arXiv:1511.07122, 2015.

10

http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1609.08144

	Introduction
	Our contribution
	Separable convolutions and grouped convolutions
	Super-separable convolutions
	Filter dilation and convolution window size

	SliceNet architecture
	Convolutional modules
	Attention modules
	Autoregressive structure

	Related Work
	Experiments
	Conclusions


