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Abstract

Most of the current state-of-the-art methods to classify medical images is to first
train a deep model on ImageNet, then transfer all network weights to a new network
except for the last softmax layer, and then fine-tune on the target dataset. When
the amount of training data in the target dataset is sufficient, this method is able
to surpass the level of a trained doctor on several datasets; however, when it is
insufficient, which is common in a lot of real medical applications, this method
may lead to mediocre results. To address the small dataset problem, we apply a
meta-learning method to train, and then fine-tune on the target dataset. We show
our results surpass the state-of-the-art method on a popular medical image dataset.

1 Introduction

Meta-learning (or learning to learn) has been an active research area in recent years due to its promise
to be able to generalize well given limited amount of training data [1]. Meta-learning generally
involves two components, i.e., the learner, which learns a new task, and the meta-learner, which trains
the learner. There are many ways to make use of meta-learning in deep learning, and in this work, we
are interested in using it to find an attractive initialization point, such that the subsequent fine-tuning
step on the target dataset can achieve more accurate results than the current state-of-the-art method
[2, 3].

Although meta-learning is an active research area in the machine learning community, it has not
been widely applied in the medical imaging domain. One reason is that many current meta-learning
approaches do not work well if there is a significant domain shift between meta training and meta test
set. For example, Vinyals et al. show their meta-learning model is unable to work well if there is
little concept overlap between the two sets [4].

2 Methodology

In recent years, deep learning [5] has been rapidly adopted in various real-world tasks, such as image
recognition, speech recognition and autonomous driving, etc. One prerequisite for deep learning
to perform well is to have a sufficient amount of training data. This amount should typically be on
the order of hundreds of thousands. However, in many real-world domains, it is very expensive to
annotate the object of interest, such as a medical image. For example, it can take up to minutes
for a certified doctor to label the medical condition of one medical image. To address the small
dataset problem, we apply a meta-learning method to obtain attractive initialization weights of a
network. Then we transfer these weights except for the last softmax layer to a new network of the
same architecture, and fine-tune on the target dataset. We achieve better classification results than the
current state-of-the-art method.

The meta-learning model used in this work is called Reptile [6], which is closely related to but
different from MAML [7]. The latter is one of the first meta-learning methods that aims to find
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attractive initialization weights of a network for further fine-tuning. The former then simplifies this
model and makes it more scalable. We use the same network architecture as in these works in pre-
training (for baseline) and meta-learning (for the proposed model). In both cases, during fine-tuning
we remove the batch normalization layer [8]. The reason is we found the batch normalization weights
are less transferable when we tried to reproduce the top results in this Kaggle competition using the
current state-of-the-art method with the Inception-v3 model [9] and ImageNet [10] for pre-training.

We train Reptile under the "5-shot 5-way" setting on mini-ImageNet [11] (the hyper-parameters for
this setting are shown in Table 4 of their paper [6]). The mini-ImageNet dataset consists of 100
classes randomly selected from ImageNet, where each class has 600 images. The reason we use
this dataset instead of the original ImageNet is because it is convenient for rapid prototyping and
experiments.

For our proposed model, we transfer all weights trained by Reptile except for the last softmax layer to
a new network, then fine-tune on the target dataset. For fine-tuning, we use the Adam optimizer [12]
with its default parameter values: learning rate 0.001, β1 = 0.9, β2 = 0.999, and a batch size of 32.

There are two baseline models. For baseline 1, we randomly initialize the network weights and then
fine-tune on the target dataset. For baseline 2, we first train the network on mini-ImageNet dataset,
and then fine-tune on the target dataset via transfer learning excluding the last softmax layer. The
hyper-parameters used in both baselines are the same as the ones used in the fine-tuning stage of our
proposed method.

All models are selected via early stopping. This includes the pre-training model for the baseline,
the meta-learning model for the proposed method, and the fine-tuning models for both. We run
every experiment for 200,000 iterations, and the models are evaluated every 1,000 iterations. Each
experiment was run four times with four different random seeds.

3 Experiments

3.1 Data

We use the Kaggle’s Diabetic Retinopathy Detection dataset [13]. According to its website’s descrip-
tion, "[d]iabetic retinopathy is the leading cause of blindness in the working-age population of the
developed world. It is estimated to affect over 93 million people." Hence, it is important to accurately
classify the condition of a diabetic retinopathy (DR) screening, such that the patient can receive the
appropriate treatment. The images in this dataset have 5 condition levels, namely, healthy, mild,
moderate, severe or proliferative. The task is that given a DR screening, use the model to predict its
condition. This dataset has 35,126 training images, and we randomly split these images into 80%
training and 20% validation, and make sure the screenings of both eyes from the same patient falls in
the same set.

3.2 Results

We use the quadratic weighted kappa (QWK) to evaluate the models, which is the same evaluation
metric used in the Kaggle competition for this dataset. The reason for using this evaluation metric
rather than the classification accuracy is because the dataset is highly unbalanced: there is one class
which takes up more than 50% of the data. Thus, one can achieve high classification accuracy by
predicting all labels to be the majority class. In contrast, QWK will assign the lowest score 0 to this
case. Table 1 shows the fine-tuning results comparison on the Kaggle test set. We vary the amount
of training and validation data by keeping 50% and 100% for each condition level. In other words,
if we only use 50% of the training data, then we will also only use 50% of the validation data to
simulate the "small dataset" scenario. We find our method performs the best in both cases, and the
performance gain widens when we reduce the amount of training data. If we further reduce the
amount of training data, the amount of validation data will then be very small, so early stopping will
not be very effective for model selection.
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Table 1: Comparison on fine-tuning test results

Percentage kept Baseline 1 Baseline 2 Our method
50% 0.145 ± 0.021 0.101 ± 0.027 0.161 ± 0.028

100% 0.165 ± 0.040 0.171 ± 0.028 0.175 ± 0.028

4 Conclusion

In this short paper we present a simple experiment to demonstrate how to use meta-learning to
learn network initialization weights for fine-tuning on a medical image dataset. We achieve better
classification performance than the current state-of-the-art method. The results are interesting because
the medical image dataset is very different than the natural images presented in the ImageNet, and the
between-class differences are much smaller for medical images than natural images, which increases
the difficulty for correct classification. For future work, we would like to scale up the meta-learning
algorithm such that it can use advanced models, such that Inception-v4 [14], as well as a bigger
training set, such as ImageNet.
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