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Abstract

Compressed Sensing accelerated Magnetic Resonance Imaging (MRI) suffers from
long image reconstruction times, due to the need for solving ill-posed minimiza-
tions. This limits the clinical use of accelerated MRI techniques. We have trained a
neural network to decode accelerated, undersampled MR acquisitions, eliminating
the need for reconstruction algorithms.

1 Introduction

Magnetic Resonance Imaging (MRI) is widely used in clinical practice, and has become a preferred
or necessary tool for medical practitioners. However, long acquisition times are still a bottleneck,
limiting MRI use to only a few of the many possible contrasts, limiting spatial resolution and coverage.
In addition, long acquisition times have high associated costs and reduce patient comfort.

In the last few years, numerous acceleration techniques have sprung up, combining smart encoding
strategies with prior-knowledge reconstruction techniques, in order to reduce scan times.
Compressed Sensing (CS) enables reconstruction of measurements of fewer points than specified by
the Nyquist criterion ([[1]]). It was first used as an MRI acceleration technique by Lustig et al. [3].

Requirements for CS-MRI

e Incoherent sampling of Fourier coefficients can be achieved by sampling random coefficients.
A naive reconstruction, such as filling zeroes for all unmeasured Fourier points an performing
an inverse FFT, results in incoherent undersampling artifacts. These kind of artifacts are
noise-like in structure and can be removed in the CS reconstruction.

e MR images are assumed to be sparse in some way, for example the image of a brain, heart
or foot usually contains few sharp edges, and large areas of the images consist of connected
areas of roughly the same signal intensity. Image transforms (e.g. a wavelet transform) can
be performed on these images, and the vast majority of wavelet coefficients will be very
close to zero.

e The final problem to be solved after an accelerated measurement can be described as the
following optimization:

min | F,@ — g5 + M |[W|, (1)

where F, is the undersampled Fourier operator, Z is the desired image, ¥/ is our measurement
and W is a wavelet transform operator. With regularization parameter A, we can tune the
balance between data consistency (the [5-norm) and minimizing the sparsity (the [;-norm).
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In the last ten years, a plethora of optimization algorithms aiming to efficiently solve Equation[T|have
been devised. However, in general, solving for a multi-dimensional , multi-channel measurement
can still take minutes to hours on a dedicated server. On-line reconstruction on the MR computer
is unpractical. Furthermore, parameter tuning of A\ makes practical application of CS in the clinical
technique even more cumbersome.

In this abstract, we present experiments aiming to circumvent the optimization altogether, instead
using a learned decoder, to recover an artifact-free image from accelerated measurements. This
approach has the ability to make on-line reconstruction in clinically acceptable times within reach.

2 Methods

Data preparation To obtain training images, we used the OASIS
Alzheimer dataset [4]. Twenty thousand image sections of 64x64
pixels were randomly sampled. Image sections were randomly
rotated and reflected. An undersampled single-coil MR acquisition
was simulated, using a variable-density sampling mask, which is
shown in Figure[T} As MR data is complex-valued, the data was split
into a real and imaginary part, before being entered in the network.

Network architecture = We used the Keras framework to build a
neural network, inspired by the general purpose AUTOMAP archi-
tecture [7]] consisting of one fully connected input layer, two fully

connected layers with hyperbolic tangent activation, 3 convolution
layers (ReLu activation, 5x5), and a fully connected output layer.
The mean-squared error between the gold-standard image and the
reconstruction was used as a loss function. A RMSProp optimizer
was used for training, with a learning-rate of 0.00002. Total training
time was approximately 1 hour on a NVIDIA Titan XP GPU.

Evaluation Evaluation images were reconstructed with the learned
network model, and with the pics function of the BART toolbox [6]

Figure 1: Undersampling
mask used in this study (white
signifies measured Fourier
coefficients, black signifies
skipped coefficients).

(parameters: wavelet regularization, A = 0.001, 100 iterations). For a range of accelerations, the
structural similarity index (SSIM) was compared in 50 test images. Zero-filled references were

calculated by an inverse FFT of the raw measurement data.
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(a) Reconstruction results, for 2 times acceleration, on
5 test images. First row: learned reconstructor. Second
row: pics. Third row: gold-standard. Fourth row: zero-
filled.
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(b) Structural Similarity Index (SSIM) + stan-
dard deviation for different acceleration factors,
ranging from 2 to 5 times. For all accelerations
the learned reconstructor has a higher SSIM than

the pics-algorithm.

Figure 2: Model Evaluation results



3 Results

A comparison between the learned network reconstructions, the pics-algorithm, zero-filled recon-
structions and a gold standard is shown in Figure[2(a)l] Reconstruction time was 2 seconds for the
pics-algoritm, and 2 ms for the learned network. Both methods recover details lost in the zero-filled
reconstruction, such as tissue edges. The learned reconstructor seems to have a better white/grey
matter contrast than the pics-algorithm. For acceleration factors of 2 to 5, the learned reconstructor
outperformed pics in terms of SSIM (Figure [2(b)).

4 Discussion

We have shown that compressed sensing reconstruction is comparable to state-of-the-art optimization
algorithm reconstruction. Recent work has suggested the feasibility of good-quality Deep Learning-
based reconstruction of MR data ([[7]], [2]). Mousavi and Baraniuk [5] have shown that for general
compressed sensing (1D), deep learning networks, trained on a particular undersampling pattern,
outperformed the best optimization algorithms.

In contrast to optimization-based reconstruction, the machine learning approach is less flexible,
requiring MR measurements with a specific mask, while the optimization-based reconstruction could
in principle work with every undersampling pattern and resolution. However, a fixed undersampling
pattern is easily programmed in an MR scanner. Future work will include prospective measurement
of undersampled MR signal and a radiologist-scoring of image quality. Additionally, we will train on
larger image sizes and include multi-channel data.

5 Conclusions

We successfully implemented simulated the CS measurement encoding, and used this to train a neural
network to do a reconstruction. In our experiments, we saw results superior to the state-of-the-art
optimization algorithms.

Acknowledgments

We gratefully acknowledge hardware support from the NVIDIA Corporation with the donation of a
Titan XP GPU used for this research.

References

[1] David L Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289-1306, 2006.

[2] Kerstin Hammernik, Teresa Klatzer, Erich Kobler, Michael P Recht, Daniel K Sodickson, Thomas Pock, and Florian Knoll. Learning a
variational network for reconstruction of accelerated mri data. Magnetic resonance in medicine, 2017.

[3] Michael Lustig, David Donoho, and John M Pauly. Sparse mri: The application of compressed sensing for rapid mr imaging. Magnetic
resonance in medicine, 58(6):1182-1195, 2007.

[4] Daniel S Marcus, Tracy H Wang, Jamie Parker, John G Csernansky, John C Morris, and Randy L Buckner. Open access series of
imaging studies (oasis): cross-sectional mri data in young, middle aged, nondemented, and demented older adults. Journal of cognitive
neuroscience, 19(9):1498-1507, 2007.

[5] Ali Mousavi and Richard G Baraniuk. Beyond 11: Data driven sparse signal recovery using deepinverse.

[6] Martin Uecker, Frank Ong, Jonathan I Tamir, Dara Bahri, Patrick Virtue, Joseph Y Cheng, Tao Zhang, and Michael Lustig. Berkeley
advanced reconstruction toolbox. In Proc. Intl. Soc. Mag. Reson. Med, volume 23, page 2486, 2015.

[71 Bo Zhu, Jeremiah Z Liu, Stephen F Cauley, Bruce R Rosen, and Matthew S Rosen. Image reconstruction by domain-transform manifold
learning. Nature, 555(7697):487, 2018.



	Introduction
	Methods
	Results
	Discussion
	Conclusions

