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Abstract

Disease progression modeling (DPM) using longitudinal data is a challenging
task in machine learning for healthcare that can provide clinicians with better
tools for diagnosis and monitoring of disease. Existing DPM algorithms neglect
temporal dependencies among measurements and make parametric assumptions
about biomarker trajectories. In addition, they do not model multiple biomarkers
jointly and need to align subjects’ trajectories. In this paper, recurrent neural
networks (RNNs) are utilized to address these issues. However, in many cases,
longitudinal cohorts contain incomplete data, which hinders the application of
standard RNNs and requires a pre-processing step such as imputation of the missing
values. We, therefore, propose a generalized training rule for the most widely used
RNN architecture, long short-term memory (LSTM) networks, that can handle
missing values in both target and predictor variables. This algorithm is applied for
modeling the progression of Alzheimer’s disease (AD) using magnetic resonance
imaging (MRI) biomarkers. The results show that the proposed LSTM algorithm
achieves a lower mean absolute error for prediction of measurements across all
considered MRI biomarkers compared to using standard LSTM networks with
data imputation or using a regression-based DPM method. Moreover, applying
linear discriminant analysis to the biomarkers’ values predicted by the proposed
algorithm results in a larger area under the receiver operating characteristic curve
(AUC) for clinical diagnosis of AD compared to the same alternatives, and the
AUC is comparable to state-of-the-art AUC’s from a recent cross-sectional medical
image classification challenge. This paper shows that built-in handling of missing
values in LSTM network training paves the way for application of RNNs in disease
progression modeling.

1 Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that begins with short-term memory
loss and develops over time, causing issues in conversation, orientation, and control of bodily functions
[1]. Early diagnosis of the disease is challenging and the diagnosis is usually made once cognitive
impairment has already compromised daily living. Hence, developing robust, data-driven methods
for disease progression modeling (DPM) utilizing longitudinal data is necessary to yield a complete
perspective of the disease for better diagnosis, monitoring, and prognosis [2].

Existing DPM techniques attempt to describe biomarker measurements as a function of disease
progression through continuous curve fitting. In the AD progression literature, a variety of regression-
based methods have been applied to fit logistic or polynomial functions to the longitudinal dynamic
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of each biomarker [3–8]. However, parametric assumptions on the biomarker trajectories limit the
applicability of such methods; in addition, none of the existing approaches considers the temporal
dependencies among measurements. Furthermore, the available methods mostly rely on independent
biomarker modeling and require alignment of subjects’ trajectories – either as a pre-processing step
or as part of the algorithm.

Recurrent neural networks (RNNs) are sequence learning based methods that can offer continuous,
non-parametric, joint modeling of longitudinal data while taking temporal dependencies amongst
measurements into account [9]. However, since longitudinal cohort data often contain missing values
due to, for instance, dropped out patients, unsuccessful measurements, and/or varied trial design,
standard RNNs require pre-processing steps for data imputation which may result in suboptimal
analyses and predictions [10]. Therefore, the lack of methods to inherently handle incomplete data in
RNNs is evident [11].

Long short-term memory (LSTM) networks are widely used types of RNNs developed to effectively
capture long-term temporal dependencies by dealing with the exploding and vanishing gradient
problem during backpropagation through time [12–14]. They employ a memory cell with nonlinear
reset units – so called constant error carousels (CECs), and learn to store history for either long or
short time periods. Since their introduction, a variety of LSTM networks have been developed for
different time-series applications [15]. The vanilla LSTM, among others, is the most commonly
used architecture that utilizes three reset gates with full gate recurrence and applies backpropagation
algorithm through time using full gradients. Nevertheless, its complete topology can include biases
and cell-to-gates (peephole) connections.

The most common approach to handling missing data with LSTM networks is data interpolation
pre-processing step, usually using mean or forward imputation. This two-step procedure decouples
missing data handling and network training, resulting in a sub-optimal performance, and it is heavily
influenced by the choice of data imputation scheme. Other approaches, update the architecture to
utilize possible correlations between missing values’ patterns and the target to improve prediction
results [10, 11]. Our goal is different; we want to make the training of LSTM networks robust to
missing values to more faithfully capture the true underlying signal, and to make the learned model
generalizable across cohorts – not relying on specific cohort or demographic circumstances correlated
with the target.

In this paper, we propose a generalized method for training LSTM networks that can handle missing
values in both target and predictor variables. This is achieved via applying the batch gradient descent
algorithm together with normalizing the loss function and its gradients with respect to the number of
missing points in target and input, to ensure a proportional contribution of each weight per epoch.
The proposed LSTM algorithm is applied for modeling the progression of AD in the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) cohort [16] based on magnetic resonance imaging (MRI)
biomarkers, and the estimated biomarker values are used to predict the clinical status of subjects.

Our main contribution is three-fold. Firstly, we propose a generalized formulation of backpropagation
through time for LSTM networks to handle incomplete data and show that such built-in handling
of missing values provides better modeling and prediction performances compared to using data
imputation with standard LSTM networks. Secondly, we model temporal dependencies among
measurements within the ADNI data using the proposed LSTM network via sequence-to-sequence
learning. To the best of our knowledge, this is the first time such multi-dimensional sequence learning
methods are applied for neurodegenerative DPM. Lastly, we introduce an end-to-end approach for
modeling the longitudinal dynamics of imaging biomarkers – without need for trajectory alignment –
and for clinical status prediction. This is a practical way to implement a robust DPM for both research
and clinical applications.

2 Proposed LSTM algorithm

The main goal of this study is to minimize the influence of missing values on the learned LSTM
network parameters. This is achieved by using the batch gradient descend scheme together with the
backpropagation through time algorithm modified to take into account missing data in the input and
target vectors. More specifically, the algorithm accumulates the input weight gradients proportionally
weighted according to the number of available time points per input biomarker node using the subject-
specific normalization factor of βjn. In addition, it uses an L2-norm loss function with residuals
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Figure 1: An illustration of a vanilla LSTM unit with peephole connections in red. The solid and
dashed lines show weighted and unweighted connections, respectively.

weighted according to the number of available time points per output biomarker node using the
subject-specific normalization factor of βjm, and normalized with respect to the total number of
available input values for all visits of all biomarkers – propagated through the forward pass – using
the subject-specific normalization factor of βjx. Such modification of the loss function also ensures
that all gradients of the network weights are indirectly normalized. Finally, the use of batch gradient
descend ensures that there is at least one visit available per biomarker so that each input node can
proportionally contribute in the weight updates.

2.1 The basic LSTM architecture

Figure 1 shows a typical schematic of a vanilla LSTM architecture. As can be seen, the topology
includes a memory cell, an input modulation gate, a hidden activation function, and three nonlinear
reset gates, namely input gate, forget gate, and output gate, each of which accepting current and
recurrent inputs. The memory cell learns to maintain its state over time while the multiplicative
gates learn to open and close access to the constant error/information flow, to prevent exploding or
vanishing gradients. The input gate protects the memory contents from perturbation by irrelevant
inputs, while the output gate protects other units from perturbation by currently irrelevant memory
contents. The forget gate deals with continual or very long input sequences, and finally, peephole
connections allow the gates to access the CEC of the same cell state.

2.2 Feedforward in LSTM networks

Assume xtj ∈ RN×1 is the j-th observation of an N -dimensional input vector at current time t. If M
is the number of output units, feedforward calculations of the LSTM network under study can be
summarized as

f tj =Wfx
t
j + Ufh

t−1
j + Vf � ct−1j + bf −→ f̃ tj = σg(f

t
j ) ,

itj =Wix
t
j + Uih

t−1
j + Vi � ct−1j + bi −→ ĩtj = σg(i

t
j) ,

ztj =Wcx
t
j + Uch

t−1
j + bc −→ z̃tj = σc(z

t
j) ,

ctj = f̃
t
j � ct−1j + ĩtj � z̃tj −→ c̃tj = σh(c

t
j) ,

otj =Wox
t
j + Uoh

t−1
j + Vo � ctj + bo −→ õtj = σg(o

t
j) ,

htj = õ
t
j � c̃tj ,
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where {f tj , itj , ztj , ctj ,otj ,htj} ∈ RM×1 and {f̃ tj , ĩtj , z̃tj , c̃tj , õtj} ∈ RM×1 are j-th observation of
forget gate, input gate, modulation gate, cell state, output gate, and hidden output at time t before
and after activation, respectively. Moreover, {Wf ,Wi,Wo,Wc} ∈ RM×N and {Uf , Ui, Uo, Uc} ∈
RM×M are sets of connecting weights from input and recurrent, respectively, to the gates and cell,
{Vf ,Vi,Vo} ∈ RM×1 is the set of peephole connections from the cell to the gates, {bf , bi, bo, bc} ∈
RM×1 represents corresponding biases of neurons, and � denotes element-wise multiplication.
Finally, σg, σc, and σh are nonlinear activation functions assigned for the gates, input modulation,
and hidden output, respectively. Logistic sigmoid functions are applied for the gates with range [0, 1]
while hyperbolic tangent functions are applied for modulation of both cell input and hidden output
with range [−1, 1].

2.3 Robust backpropagation through time

Let L ∈ RM×1 be the loss function defined based on the actual target s and network output y. Here,
we consider one layer of LSTM units for sequence learning which means that the network output is
the hidden output. The main idea is to calculate the partial derivatives of the normalized loss function
(δ) with respect to the weights using the chain rule. Hence, the backpropagation calculations through
time using full gradients can be obtained as

L(m) =
1

2

∑
j,t

1

βjxβ
j
m

(ytj(m)− stj(m))2 −→ δytj(m) =
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j � f̃ t+1
j + Vf � δf t+1
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δf̃ tj = δctj � ct−1j −→ δf tj = δf̃ tj � σ′g(f tj ) ,
δxtj =WT

f δf
t
j +WT

i δi
t
j +WT

c δz
t
j +WT

o δo
t
j ,

where βjx = J
|xj |
TN and βjm = |yj(m)| are normalization factors to handle missing values of the

j-th observation with batch size J and sequence length T . Also, |xj | and |yj(m)| denote the total
number of available input values and the number of available target time points in the m-th node,
respectively. Finally, if θ ∈ {f, i, z, o} and φ ∈ {f, i}, the gradients of the loss function with respect
to the weights are calculated as

δWθ(n) =

J∑
j=1

1

βjn
δθ
{0→T}
j x
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j (n) ,
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δbθ =

J∑
j=1

T∑
t=0

δθtj ,
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Table 1: Demographics statistics of the TADPOLE dataset

Number of visits Age, year (mean±SD) Education, year
male female male female (mean±SD)

CN 1,356 1,389 76.67±6.44 75.85±6.28 16.38±2.70
MCI 2,454 1,604 75.59±7.47 73.87±8.09 15.91±2.84
AD 1,208 900 77.22±7.11 75.45±7.92 15.18±2.99
All (labeled & unlabeled) 12,741 76.00±7.38 15.91±2.86

where βjn =
|xj(n)|
T is the normalization factor handling missing input values and |xj(n)| is the

number of available input time points in the n-th node.

2.4 Momentum batch gradient descent

As an efficient iterative algorithm, momentum batch gradient descent is applied to find the local
minimum of the loss function calculated over a batch while speeding up the convergence. The update
rule can be written as

ϑnew = µϑold − α(δω + γωold) ,

ωnew = ωold + ϑnew ,

where ϑ is the weight update initialized to zero, ω is the to-be-updated weight array, δω is the
gradient of the loss function with respect to ω, and α, γ, and µ are the learning rate, weight decay or
regularization factor, and momentum weight, respectively.

3 Experiments

3.1 Data preparation

We utilize the dataset from The Alzheimer’s Disease Prediction Of Longitudinal Evolution 1 [17]
(TADPOLE) challenge for DPM using the LSTM network. The dataset is composed of data from
the three ADNI phases ADNI 1, ADNI GO, and ADNI 2. This includes roughly 1,500 biomarkers
acquired from 1,737 subjects (957 males and 780 females) during 12,741 visits at 22 distinct time
points between 2003 and 2017. Table 1 summarizes statistics of the demographics in the TADPOLE
dataset. Note that the subjects include missing measurements during their visits and not all of them
are clinically labeled.

In this work, we have merged existing groups labeled as cognitively normal (CN), significant memory
concern (SMC), and normal (NL) under CN, mild cognitive impairment (MCI), early MCI (EMCI),
and late MCI (LMCI) under MCI, and Alzheimer’s disease (AD) and Dementia under AD. Moreover,
groups with labels converting from one status to another, e.g. “MCI-to-AD”, are assumed to belong
the next status (“AD” in this example).

MRI biomarkers are used for AD progression modeling. This includes T1–weighted brain MRI
volumes of ventricles, hippocampus, whole brain, fusiform, middle temporal gyrus, and entorhinal
cortex. We normalize the MRI measurements with respect to the corresponding intracranial volume
(ICV). Out of 22 visits, we select 11 visits – including baseline – with a fix interval of one year to
span the majority of measurements and subjects. Next, we filter data outliers based on the specified
range of each biomarker and normalize the measurements to be in the range [−1, 1]. Finally, subjects
with less than three distinct visits for any biomarker are removed to obtain 742 subjects. This is to
ensure that at least two visits are available per biomarker for performing sequence learning through
the feedforward step and an additional visit for backpropagation.

For evaluation purpose, we partition the entire dataset to three non-overlapping subsets for training,
validation, and testing. To achieve this, we randomly select 10% of the within-class subjects for

1https://tadpole.grand-challenge.org
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validation and the same for testing. More specifically, based on the baseline labels of subjects, we
randomly pick within-class samples ensuring to have enough subjects with few and large number of
visits in each subset. This process results in 592, 76, and 74 subjects for training, validations, and
testing, respectively.

3.2 Evaluation metrics

Mean absolute error (MAE) and multi-class area under the receiver operating characteristic (ROC)
curve (AUC) are used to assess the modeling and classification performances, respectively. MAE
measures accuracy of continuous prediction per biomarker by computing the difference between
actual and estimated values as follows

MAE =
1

I
∑
j,t

|ytj − stj | ,

where stj and ytj are the ground-truth and estimated values of the specific biomarker for the j-th
subject at the t-th visit, respectively, and I is the number of existing points in the target array s.
Multi-class AUC [18], on the other hand, is a measure to examine the diagnostic performance in
a multi-class test set using ROC analysis. It can be calculated using the posterior probabilities as
follows

AUC =
1

(nc(nc − 1))

nc−1∑
i=1

nc∑
k=i+1

1

nink

[
SRi −

ni(ni + 1)

2
+ SRk −

nk(nk + 1)

2

]
,

where nc is the number of distinct classes, ni denotes the number of available points belonging to
the i-th class, and SRi is the sum of the ranks of posteriors p(ci|si) after sorting all concatenated
posteriors {p(ci|si), p(ci|sk)} in an increasing order, where si and sk are vectors of scores belonging
to the true classes ci and ck, respectively.

3.3 Experimental setup

All the evaluated methods in this study are developed in-house in MATLAB R2017b and run on a
2.80 GHz CPU with 16 GB RAM. We initialize the LSTM network weights by generating uniformly
distributed random values in the range [−0.05, 0.05] and set the weights’ updates and weights’
gradients to zero. We set the batch size to the number of available training subjects. Furthermore, for
simplicity, we use the first ten visits to estimate the second to eleventh visits per subject and use the
estimated values for evaluation. Finally, we train the network using feedforward and the proposed
method of backpropagation through time where the network replace the input missing values and
corresponding error of the output missing values with zero.

We utilize the validation set to tune the network optimization parameters each time by adjusting
one of the parameters while keeping the rest at fixed values to achieve the lowest average MAE.
Peephole connections are used in the network as they intend to improve the performance. Based
on these strategies, the optimal parameters are obtained as α = 0.1, µ = 0.9, and γ = 0.0001 with
1,000 epochs. The corresponding MAE’s for the validation set are also calculated as 2.9590× 10−3,
2.4603 × 10−4, 1.4943 × 10−2, 2.4161 × 10−4, 7.5522 × 10−4, 9.6592 × 10−4, respectively for
ventricles, hippocampus, whole brain, entorhinal cortex, fusiform, and middle temporal gyrus.
Moreover, it takes about 340 seconds and 0.025 seconds for training and validation, respectively. It
is worthwhile mentioning that all the estimated biomarker’s measurements are transformed back to
their actual ranges while calculating MAE’s.

3.4 Results

After successfully training our LSTM network, we examine it using the obtained test subset. Next,
we train the network using mean imputation (LSTM-Mean) [11] and forward imputation (LSTM-
Forward) [10]. Moreover, we use the parametric, regression-based method of [3] to model the AD
progression. Table 2 compares the test modeling performance (MAE) of the MRI biomarkers using
aforementioned approaches. As it can be deduced from Table 2, our proposed method outperforms all
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Table 2: Test modeling performance (MAE) of the MRI biomarkers using different DPM methods.

Proposed LSTM-Mean [11] LSTM-Forward [10] Jedynak et al. [3]

Ventricles 3.0674× 10−3 6.2010× 10−3 4.7204× 10−3 8.0718× 10−3

Hippocampus 2.3267× 10−4 5.0916× 10−4 3.3977× 10−4 5.1455× 10−4

Whole brain 1.3298× 10−2 2.3746× 10−2 1.6389× 10−2 5.5125× 10−3

Entorhinal cortex 2.1138× 10−4 3.0324× 10−4 2.5489× 10−4 3.4660× 10−4

Fusiform 6.7932× 10−4 1.2964× 10−3 1.0044× 10−3 9.0342× 10−4

Middle temporal gyrus 8.6750× 10−4 1.2606× 10−3 1.1759× 10−3 1.1092× 10−3

Table 3: Test diagnostic performance (AUC) of the MRI biomarkers using LDA with different DPM
methods.

Proposed LSTM-Mean [11] LSTM-Forward [10] Jedynak et al. [3]

CN vs. MCI 0.5914 0.5838 0.5800 0.5468
CN vs. AD 0.9029 0.8404 0.8150 0.7826
MCI vs. AD 0.7844 0.6936 0.6890 0.7330
CN vs. MCI vs. AD 0.7596 0.7059 0.6947 0.6875

other modeling techniques in all categories. It should be noticed that when we apply data imputation,
the backpropagation formulas simply generalize to the standard LSTM network.

To assess the ability of the estimated biomarkers’ measurements in predicting the clinical labels, we
apply a linear discriminant analysis (LDA) classifier to the multi-dimensional training data estimations
to compute the posterior probability scores in the test data. The obtained scores are then used to
calculate the AUC’s. The diagnostic prediction results for the test set are shown in Table 3 for the
utilized methods. As can be seen, the proposed method outperforms all other schemes in predicting
clinical status of subjects per visits. This, in turn, reveals the effect of modeling on classification
performance. One could of course use different classifiers to improve the results. But our focus in
this paper is on DPM or sequence-to-sequence learning. On the other hand, it is possible to train
the LSTM network for a classification (sequence-to-label) problem. However, since this approach
requires labeled data, it would only be able to use a subset of the utilized data in training.

Furthermore, the diagnostic classification results of the predicted MRI biomarkers’ measurements
using the proposed approach are comparable to state-of-the-art cross-sectional MRI-based classifica-
tion results in the recent challenge on Computer-Aided Diagnosis of Dementia (CADDementia) [19].
To be more specific, LDA classification on predicted features using the proposed method achieves a
multi-class AUC of 0.76 which is within the top-five multi-class AUCs in the challenge that ranged
from 0.79 to 0.75.

4 Summary and discussion

In this paper, a training algorithm was proposed for LSTM networks aiming to improve robustness
against missing data, and the robustly trained LSTM network was applied for AD progression
modeling using longitudinal measurements of imaging biomarkers. To the best of our knowledge this
is the first time RNNs have been studied and applied for DPM within the ADNI cohort. The proposed
training method demonstrated better performance than using imputation prior to a standard LSTM
network and outperformed an established parametric, regression-based DPM method, in terms of
both biomarker prediction and subsequent diagnostic classification.

Moreover, the classification results using the predicted MRI measurements of the proposed method
are comparable to those of the CADDementia challenge. It should, however, be noted that there
are important differences between this study and the CADDementia challenge. Firstly, this work
has the advantage of training and testing features from the same cohort whereas CADDementia
algorithms were applied to classify data from independent cohorts. Secondly, the top performing
CADDementia algorithms incorporated different types of MRI features besides volumetry. Thirdly,
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in contrast to CADDementia where features were completely available, this work predicts features
based on longitudinal data before classification.

This study highlights the potential of RNNs for modeling the progression of AD using longitudinal
measurements, provided that proper care is taken to handle missing values and time intervals. In
general, standard LSTM networks are designed to handle sequences with a fixed temporal or spatial
sampling rate within longitudinal data. We used the same approach in the AD progression modeling
application by disregarding, for example, visiting months 3, 6 and 18, and confining the experiments
to yearly follow-up in the ADNI data. However, one could utilize modified LSTM architectures such
as time-aware LSTM [20] to address irregular time steps in longitudinal patient records.
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