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Abstract

We study the unsupervised learning of CNNs for opti-
cal flow estimation using proxy ground truth data. Super-
vised CNNs, due to their immense learning capacity, have
shown superior performance on a range of computer vision
problems including optical flow prediction. They however
require the ground truth flow which is usually not accessi-
ble except on limited synthetic data. Without the guidance
of ground truth optical flow, unsupervised CNNs often per-
form worse as they are naturally ill-conditioned. We there-
fore propose a novel framework in which proxy ground truth
data generated from classical approaches is used to guide
the CNN learning. The models are further refined in an un-
supervised fashion using an image reconstruction loss. Our
guided learning approach is competitive with or superior to
state-of-the-art approaches on three standard benchmarks
yet is completely unsupervised and can run in real time.

1. Introduction

Optical flow contains valuable information for general
image sequence analysis due to its capability to represent
motion. It is widely used in vision tasks such as human
action recognition [18], semantic segmentation [8], video
frame prediction [15], video object tracking etc.

Classical approaches for estimating optical flow are of-
ten based on a variational model and solved as an energy
minimization process [11, 4, 5]. They remain top per-
formers on a number of evaluation benchmarks; however,
most of them are too slow to be used in real time appli-
cations. Due to the great success of Convolutional Neural
Network (CNN), several works [7, 16] have proposed us-
ing CNNs to estimate the motion between image pairs and
have achieved promising results. Although they are much
more efficient than classical approaches, these methods re-
quire supervision and cannot apply to real world data where
the ground truth is not easily accessible. Thus, some re-
cent works [1, 20] have investigated unsupervised learning
through novel loss functions but they often perform worse
than supervised ones.
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(i) Average End-point Error

(i) Unsupervised Reconstruction Loss

Figure 1. An overview of our proposed guided learning frame-
work. 6@ denotes computing the per-pixel endpoint error with re-
spect to the proxy ground truth flow. < represents the inverse
warping and unsupervised reconstruction loss with respect to the
input image pairs.

To improve the accuracy of unsupervised CNNs for opti-
cal flow estimation, we propose to use the results of classi-
cal methods as guidance for our unsupervised learning pro-
cess. We refer to this as novel guided optical flow learn-
ing as shown in Fig. 1. Specifically, there are two stages.
(i) We generate proxy ground truth flow using classical ap-
proaches, and then train a supervised CNN with them. (ii)
We fine tune the learned models by minimizing an image re-
construction loss. By training the CNNs using proxy ground
truth, we hope to provide a good initialization point for sub-
sequent network learning. By fine tuning the models on tar-
get datasets, we hope to overcome the risk that CNN might
have learned the failure cases of the classical approaches.
The entire learning framework is thus unsupervised.

Our contributions are two-fold. First, we demonstrate
that supervised CNNs can learn to estimate optical flow well
even when only guided using noisy proxy ground truth data
generated from classical methods. Second, we show that
fine tuning the learned models for target datasets by mini-
mizing a reconstruction loss further improves performance.
Our proposed guided learning is completely unsupervised
and achieves competitive or superior performance to state-
of-the-art, real time approaches on standard benchmarks.

2. Method

Given an adjacent frame pair /; and I, our goal is to
learn a model that can estimate the per-pixel motion field
(U, V') between the two images accurately and efficiently.



U and V are the horizontal and vertical displacements, re-
spectively. We describe our proxy ground truth guided
framework in Section 2.1, and the unsupervised fine tuning
strategy in Section 2.2.

2.1. Proxy Ground Truth Guidance

Current approaches to the supervised training of CNNs
for estimating optical flow use synthetic ground truth
datasets. These synthetic motions/scenes are quite differ-
ent from real ones which limits the generalizability of the
learned models. And, even constructing synthetic dataset
requires a lot of manual effort [6]. The current largest syn-
thetic datasets with dense ground truth optical flow, Flying
Chairs [7] and FlyingThings3D [16], consist of only 22k
image pairs which is not ideal for deep learning especially
for such an ill-conditioned problem as motion estimation.
In order for CNN-based optical flow estimation to reach its
full potential, a learning framework is needed that can scale
the size of the training data. Unsupervised learning is one
ideal way to achieve this scaling because it does not require
ground truth flow.

Classical approaches to optical flow estimation are un-
supervised in that there is no learning process involved
[11,4,5,2,12]. They only require the image pairs as in-
put, with some extra assumptions (like image brightness
constancy, gradient constancy, smoothness) and informa-
tion (like motion boundaries, dense image matching). These
non-CNN based classical methods currently achieve the
best performance on standard benchmarks and are thus con-
sidered the state-of-the-art. Inspired by their good perfor-
mance, we conjecture that these approaches can be used to
generate proxy ground truth data for training CNN-based
optical flow estimators.

In this work, we choose FlowFields [2] as our classical
optical flow estimator. To our knowledge, it is one of the
most accurate flow estimators among the published work.
We hope that by using FlowFields to generate proxy ground
truth, we can learn to estimate motion between image pairs
as effectively as using the true ground truth.

For fair comparison, we use the “FlowNet Simple” net-
work as descried in [7] as our supervised CNN architecture.
This allows us to compare our guided learning approach to
using the true ground truth, particularly with respect to how
well the learned models generalize to other datasets. We
use endpoint error (EPE) as our guided loss since it is the
standard error measure for optical flow evaluation
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where N denotes the total number of pixels in I;. U and V
are the proxy ground truth flow fields while U’ and V' are
the flow estimates from the CNN.

2.2. Unsupervised Fine Tuning

As stated in Section 1, a potential drawback to using
classical approaches to create training data is that the qual-
ity of this data will necessarily be limited by the accuracy
of the estimator. If a classical approach fails to detect cer-
tain motion patterns, a network trained on the proxy ground
truth is also likely to miss these patterns. This leads us to
ask if there is other unsupervised guidance that can improve
the network training?

The unsupervised approach of [20] treats optical flow es-
timation as an image reconstruction problem based on the
intuition that if the estimated flow and the next frame can
be used to reconstruct the current frame then the network
has learned useful representations of the underlying mo-
tions. During training, the loss is computed as the pho-
tometric error between the true current frame I; and the
inverse-warped next frame I

N
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i,
where I1(i,5) = I(i + U, j,7 + Vi ;). The inverse warp
is performed using a spatial transformer module [ 3] inside
the CNN. We use a robust convex error function, the gen-
eralized Charbonnier penalty p(x) = (22 + €2)®, to reduce
the influence of outliers. This reconstruction loss is similar
to the brightness constancy objective in classical variational
formulations but is quite different from the EPE loss in the
proxy ground truth guided learning. We thus propose fine
tuning our model using this reconstruction loss as an addi-

tional unsupervised guide.
During fine tuning, the total energy we aim to minimize
is a simple weighted sum of the EPE loss and the image

reconstruction loss

L(Ua V7 Il; 12) = Lepe + A Lreconsh (3)

where A controls the level of reconstruction guidance. Note
that we could add additional unsupervised guides like a
gradient constancy assumption or an edge-aware weighted
smoothness loss [10] to further fine tune our models.

An overview of our guided learning framework with both
the proxy ground truth guidance and the unsupervised fine
tuning is illustrated in Fig. 1.

3. Experiments
3.1. Datasets

Flying Chairs [7] is a synthetic dataset designed specif-
ically for training CNNSs to estimate optical flow. It is cre-
ated by applying affine transformations to real images and
synthetically rendered chairs. The dataset contains 22,872
image pairs: 22,232 training and 640 test samples according
to the standard evaluation split.



MPI Sintel [0] is also a synthetic dataset derived from a
short open source animated 3D movie. There are 1,628
frames, 1,064 for training and 564 for testing. It is the most
widely adopted benchmark to compare optical flow estima-
tors. In this work, we only report performance on its final
pass because it contains sufficiently realistic scenes includ-
ing natural image degradations.

KITTI Optical Flow 2012 [9] is a real world dataset col-
lected from a driving platform. It consists of 194 training
image pairs and 195 test pairs with sparse ground truth flow.
We report the average EPE in total for the test set.

We consider guided learning with and without fine tun-
ing. In the no fine tuning regime, the model is trained using
the proxy ground truth produced using a classical estimator.
In the fine tuning regime, the model is first trained using
the proxy ground truth and then fine tuned using both the
proxy ground truth and the reconstruction guide. The Sintel
and KITTT datasets are too small to produce enough proxy
ground truth to train our model from scratch so the models
evaluated on these datasets are first pretrained on the Chairs
dataset. These models are then either applied to the Sin-
tel and KITTI datasets without fine tuning or are fine tuned
using the target dataset (proxy ground truth).

3.2. Implementation

As shown in Fig. 1, our architecture consists of con-
tractive and expanding parts. In the no fine tuning learning
regime, we calculate the per-pixel EPE loss for each expan-
sion. There are 5 expansions resulting in 5 losses. We use
the same loss weights as in [7]. The models are trained us-
ing Adam optimization with the default parameter values
B1 = 0.9 and B2 = 0.999. The initial learning rate is set
to 10~ and divided by half every 100k iterations after the
first 300k. We end our training at 600k iterations.

In the fine tuning learning regime, we calculate both the
EPE and reconstruction loss for each expansion. Thus there
are a total of 10 losses. The generalized Charbonnier pa-
rameter « is set to 0.25 in the reconstruction loss. A is 0.1.
We use the default Adam optimization with a fixed learning
rate of 1076 and training is stopped at 10k iterations.

We apply the same intensive data augmentation as in
[7] to prevent over-fitting in both learning regimes. The
proxy ground truth is computed using the FlowFields binary
kindly provided by authors in [2].

3.3. Results and Discussion

We have three observations given the results in Table 1.
Observation 1: We can use proxy ground truth generated
by state-of-the-art classical flow estimators to train CNNs
for optical flow prediction. A model trained using the Flow-
Fields proxy ground truth achieves an average EPE of 3.34
on Chairs which is comparable to the 2.71 achieved by the
model trained using the true ground truth. Note that the

Method Chairs | Sintel | KITTI
FlowFields [2] 2.45 5.81 3.5
FlowNetS (Ground Truth) [7] 2.71 8.43 9.1
UnsupFlowNet [20] 5.30 11.19 11.3
FlowNetS (FlowFields) 3.34 8.05 9.7
FlowNetS (FlowFields) + Unsup | 3.01 7.96 9.5

Table 1. Results reported using average EPE, lower is better. Bot-
tom section shows our guided learning results, the models are
trained using the FlowFields proxy ground truth. The last row
includes fine tuning.

proxy ground truth is still quite noisy with an average EPE
of 2.45 away from the true ground truth.

The model trained using the FlowFields proxy ground

truth (EPE 3.34) performs worse than the FlowFields esti-
mator (EPE 2.45), which is expected. This is because Flow-
Fields adopts a hierarchical approach which is non-local in
the image space. It also uses dense correspondence to cap-
ture image details. Thus, FlowFields itself can output crisp
motion boundaries and accurate flow. However, unlike the
CNN model, it cannot run in real time.
Observation 2: Sometime, training using proxy ground
truth can generalize better than training using the true
ground truth. The model trained using the Chairs proxy
ground truth (computed with FlowFields) performs better
(EPE 8.05) on Sintel than the model trained using the Chairs
true ground truth (EPE 8.43). We make similar observations
for KITTI'. This improved generalization might result from
over-fitting when training with the true ground truth since
the three datasets are quite different with respect to object
and motion types. The proxy is noisier which could serve
as a form of data augmentation for unseen motion types.

In addition, we experiment on directly training a Sin-
tel model from scratch without using the pretrained Chairs
model. We use the same implementation details. The per-
formance is about one and half pixel worse in terms of EPE
than using the pretrained model. Therefore, pretraining
CNNs on a large dataset (with either true or proxy ground
truth data) is important for optical flow estimation.
Observation 3: Our proposed fine tuning regime improves
performance on all three datasets. Fine tuning results in an
average EPE decrease from 3.34 to 3.01 for Chairs, 8.05 to
7.96 for Sintel, and 9.7 to 9.5 for KITTI. Note that an aver-
age EPE of 3.01 for Chairs is very close to performance of
the supervised model FlowNetS (EPE 2.71). This demon-
strates that image reconstruction loss is effective as an ad-
ditional unsupervised guide for motion learning. It can act
like fine tuning without requiring ground truth flow of the
target dataset.

We also investigate training a network from scratch using
a joint training regime. That is, using both Lepe and Lyeconst,
not only using Lyeconst in the fine tuning stage. The per-

INote that FlowNetS’s performance on KITTI (EPE 9.1) is fine tuned.
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Figure 2. Visual examples of predicted optical flow from different methods. Top two are from Sintel, and bottom two from KITTL.

formance was worse on all three benchmarks. The reason
might be that pretraining using just the proxy ground truth
prevents the model from becoming trapped in local minima.
It thus can provide a good initialization for further network
learning. A joint training regime using both losses may hurt
the network’s convergence in the beginning.

However, we expect unsupervised learning to bring more
complementarity. Image reconstruction loss may not be the
most appropriate guidance for learning optical flow predic-
tion. We will explore how to best incorporate additional
unsupervised objectives in future work.

3.4. Comparison to State-of-the-Art

We compare our proposed method to recent state-of-the-
art approaches. We only consider approaches that are fast
because optical flow is often used in time sensitive applica-
tions. We evaluated all CNN-based approaches on a work-
station with Intel Core 17 with 4.00GHz and a Nvidia Ti-
tan X GPU. For classical approaches, we just use their re-
ported runtime. As shown in Table 2, our method performs
the best for Sintel even though it does not require the true
ground truth for training. For Chairs, we achieve on par
performance with [7]. For KITTI, we perform inferior to
[19]. This is likely because the flow in KITTI is caused
purely by the motion of the car so the segmentation into lay-
ers performed in [19] helps in capturing motion boundaries.
Our approach outperforms the state-of-the-art unsupervised
approaches of [1, 20] by a large margin, thus demonstrat-
ing the effectiveness of our proposed guided learning us-
ing proxy ground truth and image reconstruction. Visual
comparison of Sintel and KITTI results are shown in Fig.
2. We can see that UnsupFlowNet [20] is able to produce
reasonable flow fields estimation, but quite noisy. And it
doesn’t perform well in highly saturated and very dark re-
gions. Our results are much more detailed and smoothed
due to the proxy guidance and unsupervised fine tuning.

Method Chairs | Sintel | KITTI | Runtime

EPPM [3] — 8.38 9.2 0.25
PCA-Flow [19] — 8.65 6.2 0.19*
DIS-Fast [14] — 10.13 14.4 0.02*
FlowNetS [7] 2.71 8.43 9.1 0.06
UnsupFlowNet [20] | 5.30 | 11.19 | 11.3 0.06

USCNN [1] — 8.88 - -
Ours 3.01 7.96 9.5 0.06

Table 2. State-of-the-art comparison, runtime is reported in sec-
onds per frame. Top: Classical approaches. Middle: CNN-based
approaches. Bottom: Ours. * indicates the algorithm is evaluated
using CPU, while the rest are on GPU.

4. Conclusion

We propose a guided optical flow learning framework
which is unsupervised and results in an estimator that can
run in real time. We show that proxy ground truth data pro-
duced using state-of-the-art classical estimators can be used
to train CNNs. This allows the training sets to scale which
is important for deep learning. We also show that training
using proxy ground truth can result in better generalization
than training using the true ground truth. And, finally, we
also show that an unsupervised image reconstruction loss
can provide further learning guidance.

More broadly, we introduce a paradigm which can be in-
tegrated into future state-of-the-art motion estimation net-
works [17] to improve performance. In future work, we
plan to experiment with large-scale video corpora to learn
non-rigid real world motion patterns rather than just learn-
ing limited motions found in synthetic datasets.
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