
Learning-Based Low-Rank Approximations

Piotr Indyk
CSAIL, MIT

indyk@mit.edu

Ali Vakilian∗
University of Wisconsin-Madison

vakilian@wisc.edu

Yang Yuan∗
Tsinghua University

yuanyang@tsinghua.edu.cn

Abstract

We introduce a “learning-based” algorithm for the low-rank decomposition prob-
lem: given an n× d matrix A, and a parameter k, compute a rank-k matrix A′ that
minimizes the approximation loss ‖A−A′‖F . The algorithm uses a training set of
input matrices in order to optimize its performance. Specifically, some of the most
efficient approximate algorithms for computing low-rank approximations proceed
by computing a projection SA, where S is a sparse random m × n “sketching
matrix”, and then performing the singular value decomposition of SA. We show
how to replace the random matrix S with a “learned” matrix of the same sparsity
to reduce the error.
Our experiments show that, for multiple types of data sets, a learned sketch matrix
can substantially reduce the approximation loss compared to a random matrix S,
sometimes by one order of magnitude. We also study mixed matrices where only
some of the rows are trained and the remaining ones are random, and show that
matrices still offer improved performance while retaining worst-case guarantees.

1 Introduction

The success of modern machine learning made it applicable to problems that lie outside of the
scope of “classic AI”. In particular, there has been a growing interest in using machine learning
to improve the performance of “standard” algorithms, by fine-tuning their behavior to adapt to the
properties of the input distribution, see e.g., [1–13]. This “learning-based” approach to algorithm
design has attracted a considerable attention over the last few years, due to its potential to significantly
improve the efficiency of some of the most widely used algorithmic tasks. Many applications involve
processing streams of data (video, data logs, customer activity etc) by executing the same algorithm
on an hourly, daily or weekly basis. These data sets are typically not “random” or “worst-case”;
instead, they come from some distribution which does not change rapidly from execution to execution.
This makes it possible to design better algorithms tailored to the specific data distribution, trained on
past instances of the problem.

The method has been particularly successful in the context of compressed sensing. In the latter
framework, the goal is to recover an approximation to an n-dimensional vector x, given its “linear
measurement” of the form Sx, where S is an m× n matrix. Theoretical results [14, 15] show that,
if the matrix S is selected at random, it is possible to recover the k largest coefficients of x with
high probability using a matrix S with m = O(k log n) rows. This guarantee is general and applies
to arbitrary vectors x. However, if vectors x are selected from some natural distribution (e.g., they
represent images), recent works [8, 9, 11] show that one can use samples from that distribution to
compute matrices S that improve over a completely random matrix in terms of the recovery error.

Compressed sensing is an example of a broader class of problems which can be solved using random
projections. Another well-studied problem of this type is low-rank decomposition: given an n× d
matrix A, and a parameter k, compute a rank-k matrix [A]k = argminA′: rank(A′)≤k‖A−A

′‖F .

Low-rank approximation is one of the most widely used tools in massive data analysis, machine
learning and statistics, and has been a subject of many algorithmic studies. In particular, multiple

∗This work was mostly done when the second and third authors were at MIT.



algorithms developed over the last decade use the “sketching” approach, see e.g., [16–24]. Its idea
is to use efficiently computable random projections (a.k.a., “sketches”) to reduce the problem size
before performing low-rank decomposition, which makes the computation more space and time
efficient. For example, [16, 19] show that if S is a random matrix of size m × n chosen from an
appropriate distribution, for m depending on ε, then one can recover a rank-k matrix A′ such that

‖A−A′‖F ≤ (1 + ε)‖A− [A]k‖F

by performing an SVD on SA ∈ Rm×d followed by some post-processing. Typically the sketch
length m is small, so the matrix SA can be stored using little space (in the context of streaming
algorithms) or efficiently communicated (in the context of distributed algorithms). Furthermore, the
SVD of SA can be computed efficiently, especially after another round of sketching, reducing the
overall computation time. See the survey [25] for an overview of these developments.

In light of the aforementioned work on learning-based compressive sensing, it is natural to ask
whether similar improvements in performance could be obtained for other sketch-based algorithms,
notably for low-rank decompositions. In particular, reducing the sketch length m while preserving its
accuracy would make sketch-based algorithms more efficient. Alternatively, one could make sketches
more accurate for the same values of m. This is the problem we address in this paper.

Our Results. Our main finding is that learned sketch matrices can indeed yield (much) more
accurate low-rank decompositions than purely random matrices. We focus our study on a streaming
algorithm for low-rank decomposition due to [16, 19], described in more detail in Section 2. Specifi-
cally, suppose we have a training set of matrices Tr = {A1, . . . , AN} sampled from some distribution
D. Based on this training set, we compute a matrix S∗ that (locally) minimizes the empirical loss∑

i

‖Ai − SCW(S∗, Ai)‖F (1)

where SCW(S∗, Ai) denotes the output of the aforementioned Sarlos-Clarkson-Woodruff streaming
low-rank decomposition algorithm on matrix Ai using the sketch matrix S∗. Once the the sketch
matrix S∗ is computed, it can be used instead of a random sketch matrix in all future executions of
the SCW algorithm.

We demonstrate empirically that, for multiple types of data sets, an optimized sketch matrix S∗
can substantially reduce the approximation loss compared to a random matrix S, sometimes by one
order of magnitude (see Figure 1). Equivalently, the optimized sketch matrix can achieve the same
approximation loss for lower values of m.

A possible disadvantage of learned sketch matrices is that an algorithm that uses them no longer
offers worst-case guarantees. As a result, if such an algorithm is applied to an input matrix that does
not conform to the training distribution, the results might be worse than if random matrices were
used. To alleviate this issue, we also study mixed sketch matrices, where (say) half of the rows are
trained and the other half are random. We observe that if such matrices are used in conjunction with
the SCW algorithm, its results are no worse than if only the random part of the matrix was used2.
Thus, the resulting algorithm inherits the worst-case performance guarantees of the random part of
the sketching matrix. At the same time, we show that mixed matrices still substantially reduce the
approximation loss compared to random ones, in some cases nearly matching the performance of
“pure” learned matrices with the same number of rows. Thus, mixed random matrices offer “the best
of both worlds”: improved performance for matrices from the training distribution, and worst-case
guarantees otherwise.

2 Preliminaries

Notation. Consider a distribution D on matrices A ∈ Rn×d. We define the training set as
{A1, · · · , AN} sampled from D. For matrixA, its singular value decomposition (SVD) can be written
as A = UΣV > such that both U and V have orthonormal columns and Σ = diag{λ1, · · · , λd} is a
diagonal matrix with nonnegative entries. In many applications it is quicker and more economical to

2We note that this property is non-trivial, in the sense that it does not hold for all sketching algorithms. The
proof of this property for Algorithm 1 is deferred to the longer version of this paper.

2



Algorithm 1 Rank-k approximation of a matrix A using a sketch matrix S (from Section 4.1.1 of
[19])

1: Input: A ∈ Rn×d, S ∈ Rm×n

2: U,Σ, V > ← Compact-SVD(SA) B {r = rank(SA), U ∈ Rm×r, V ∈ Rd×r}
3: Return: [AV ]kV

>

compute the compact SVD which only contains the rows and columns corresponding to the non-zero
singular values of Σ: A = U cΣc(V c)> where U c ∈ Rn×r,Σc ∈ Rr×r and V c ∈ Rd×r.

How sketching works. We start by describing the SCW algorithm (Algorithm 1) for low-rank
approximation. The algorithm computes the SVD(SA) := UΣV >, and compute the best rank-k
approximation of AV . Finally it outputs [AV ]kV

> as a rank-k approximation of A. Note that if m
is much smaller than d and n, the space bound of this algorithm is significantly better than when
computing a rank-k approximation forA in the naïve way. Thus, minimizingm automatically reduces
the space usage of the algorithm.

Sketching matrix. We use matrix S that is sparse. Specifically, each column of S has exactly one
non-zero entry, which is either +1 or −1. This means that the fraction of non-zero entries in S is
1/m. Therefore, one can use a vector to represent S, which is very memory efficient. It is worth
noting, however, after multiplying S with other matrices, the resulting matrix is in general not sparse.

3 Training Algorithm

In this section, we describe our learning-based algorithm for computing a data dependent sketch
S. The main idea is to use backpropagation algorithm to compute the stochastic gradient of S with
respect to the rank-k approximation loss in Equation 1, where the initial value of S is the same random
sparse matrix used in SCW. Once we have the stochastic gradient, we can run stochastic gradient
descent (SGD) algorithm to optimize S, in order to improve the loss. Our algorithm maintains the
sparse structure of S, and only optimizes the values of the n non-zero entries (initially +1 or −1).

However, the standard SVD implementation (step 2 in Algorithm 1 ) is not differentiable, which means
we cannot get the gradient in the straightforward way. To make SVD implementation differentiable,
we use the fact that the SVD procedure can be represented as m individual top singular value
decompositions (see e.g. [26]), and that every top singular value decomposition can be computed
using the power method. The full description is deferred to the long version of this paper.

Due to the extremely long computational chain, it is infeasible to write down the explicit form of
loss function or the gradients. However, just like how modern deep neural networks compute their
gradients, we used the autograd feature in PyTorch to numerically compute the gradient with respect
to the sketching matrix S.

We emphasize again that our method is only optimizing S for the training phase. After S is fully
trained, we still call Algorithm 1 for low rank approximation, which has exactly the same running
time as the SCW algorithm, but with better performance.

4 Experimental Results

The main question considered in this paper is whether, for natural matrix datasets, optimizing
the sketch matrix S can improve the performance of the sketching algorithm for the low-rank
decomposition problem. To answer this question, we implemented and compared the following
methods for computing S ∈ Rm×n.

• Sparse Random. Sketching matrices are generated at random as in [20]. Specifically, we select a
random hash function h : [n]→ [m], and for all i ∈ [n], Sh[i],i is selected to be either +1 or −1
with equal probability. All other entries in S are set to 0.
• Dense Random. All entries in the sketching matrices are sampled from Gaussian distribution.
• Learned. Using the sparse random matrix as the initialization, we optimize the sketching matrix

using the training set, and return the optimized matrix.

3



Logo Eagle Friends Hyper Tech0

2

4

6

8

Te
st

 E
rro

r

0.1 0.2 0.2 0.5

3.0
2.1

4.3 4.1
2.9

8.0

2.0

4.7
4.0 3.5

8.0Learned
Sparse Random
Dense Random

Figure 1: Test error by datasets and sketching matrices For k = 10,m = 20

• Mixed (J). We first generate two sparse random matrices S1, S2 ∈ Rm
2 ×n (assuming m is even),

and define S to be their combination. We then optimize S using the training set, but only S1 will
be updated, while S2 is fixed. Therefore, S is a mixture of learned matrix and random matrix, and
the first matrix is trained jointly with the second one.

• Mixed (S). We first compute a learned matrix S1 ∈ Rm
2 ×n using the training set, and then append

another sparse random matrix S2 to get S ∈ Rm×n. Therefore, S is a mixture of learned matrix
and random matrix, but the learned matrix is trained separately.

Datasets. We used a variety of datasets to test the performance of our methods:

• Videos3: Logo, Friends, Eagle. We downloaded three high resolution videos from Youtube,
including logo video, Friends TV show, and eagle nest cam. From each video, we collect 500
frames of size 1920× 1080× 3 pixels, and use 400 (100) matrices as the training (test) set. For
each frame, we resize it as a 5760× 1080 matrix.

• Hyper. We use matrices from HS-SOD, a dataset for hyperspectral images from natural scenes
[27]. Each matrix has 1024× 768 pixels, and we use 400 (100) matrices as the training (test) set.

• Tech. We use matrices from TechTC-300, a dataset for text categorization [28]. Each matrix has
835, 422 rows, but on average only 25, 389 of the rows contain non-zero entries. On average each
matrix has 195 columns. We use 200 (95) matrices as the training (test) set.

Evaluation metric. To evaluate the quality of a sketching matrix S, it suffices to evaluate the output
of Algorithm 1 using the sketching matrix S on different input matrices A. For a collection of
matrices Te, we define the error of the sketch S as Err(Te, S) , EA∼Te‖A − SCW(S,A)‖F −
EA∼Te‖A− [A]k‖F , where the second term denotes the optimal approximation loss on Te.

In our datasets, some of the matrices have much larger singular values than the others. To avoid
imbalance in the dataset, we normalize the matrices so that their top singular values are all equal.

Table 1: Test error in various settings
k,m, Sketch Logo Eagle Friends Hyper Tech
10, 20,Learned 0.10 0.18 0.22 0.52 2.95
10, 20,Random 2.09 4.31 4.11 2.92 7.99
20, 20,Learned 0.61 0.66 1.41 1.68 7.79
20, 20,Random 4.18 5.79 9.10 5.71 14.55
20, 40,Learned 0.18 0.41 0.42 0.72 3.09
20, 40,Random 1.19 3.50 2.44 2.23 6.20
30, 30,Learned 0.72 1.06 1.78 1.90 7.14
30, 30,Random 3.11 6.03 6.27 5.23 12.82

Table 2: Comparison with mixed sketches
k,m, Sketch Logo Hyper Tech
10, 20,Learned 0.10 0.52 2.95
10, 20,Mixed (J) 0.20 0.78 3.73
10, 20,Mixed (S) 0.24 0.87 3.69
10, 20,Random 2.09 2.92 7.99
10, 40,Learned 0.04 0.28 1.16
10, 40,Mixed (J) 0.05 0.34 1.31
10, 40,Mixed (S) 0.05 0.34 1.20
10, 40,Random 0.45 1.12 3.28

We first test all methods on different datasets, with various combination of k,m. See Figure 1 for the
results when k = 10,m = 20. As we can see, for video datasets, learned sketching matrices can get
20× better test error than the sparse random or dense random sketching matrices. For other datasets,
learned sketching matrices are still more than 2× better. We also include the test error results in Table
1 for the case when k = 20, 30.

In Table 2, we investigate the performance of the mixed sketching matrices by comparing them with
random and learned sketching matrices. In all scenarios, mixed sketching matrices yield much better
results than random sketching matrices, and sometimes the results are comparable to those of learned
sketching matrices. This means, in most cases it suffices to train one half of the sketching matrix to
obtain good empirical results, and at the same time, we can use the remaining random half of the
sketch matrix to obtain worst-case guarantees.

3They can be downloaded from http://youtu.be/L5HQoFIaT4I, http://youtu.be/xmLZsEfXEgE and
http://youtu.be/ufnf_q_3Ofg

4

http://youtu.be/L5HQoFIaT4I
http://youtu.be/xmLZsEfXEgE
http://youtu.be/ufnf_q_3Ofg


References
[1] Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. Learning to hash for indexing big data -

a survey. Proceedings of the IEEE, 104(1):34–57, 2016.

[2] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information Processing Systems,
pages 6348–6358, 2017.

[3] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned
index structures. In Proceedings of the 2018 International Conference on Management of Data,
pages 489–504, 2018.

[4] Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch.
In International Conference on Machine Learning, pages 353–362, 2018.

[5] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
In International Conference on Machine Learning, pages 3302–3311, 2018.

[6] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml predictions.
In Advances in Neural Information Processing Systems, pages 9661–9670, 2018.

[7] Michael Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching. In
Advances in Neural Information Processing Systems, pages 464–473, 2018.

[8] Ali Mousavi, Ankit B Patel, and Richard G Baraniuk. A deep learning approach to structured
signal recovery. In Communication, Control, and Computing (Allerton), 2015 53rd Annual
Allerton Conference on, pages 1336–1343. IEEE, 2015.

[9] Luca Baldassarre, Yen-Huan Li, Jonathan Scarlett, Baran Gözcü, Ilija Bogunovic, and Volkan
Cevher. Learning-based compressive subsampling. IEEE Journal of Selected Topics in Signal
Processing, 10(4):809–822, 2016.

[10] Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed sensing using
generative models. In International Conference on Machine Learning, pages 537–546, 2017.

[11] Chris Metzler, Ali Mousavi, and Richard Baraniuk. Learned d-amp: Principled neural network
based compressive image recovery. In Advances in Neural Information Processing Systems,
pages 1772–1783, 2017.

[12] Paul Hand and Vladislav Voroninski. Global guarantees for enforcing deep generative priors by
empirical risk. In Conference On Learning Theory, 2018.

[13] Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
algorithms. International Conference on Learning Representations, 2019.

[14] David L Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289–
1306, 2006.

[15] Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information. IEEE Transactions on
information theory, 52(2):489–509, 2006.

[16] Tamas Sarlos. Improved approximation algorithms for large matrices via random projections.
In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 143–152,
2006.

[17] Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert. A fast randomized algorithm
for the approximation of matrices. Applied and Computational Harmonic Analysis, 25(3):335–
366, 2008.

[18] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review,
53(2):217–288, 2011.

[19] Kenneth L Clarkson and David P Woodruff. Numerical linear algebra in the streaming model.
In Proceedings of the forty-first annual symposium on Theory of computing (STOC), pages
205–214, 2009.

[20] Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in input
sparsity time. Journal of the ACM (JACM), 63(6):54, 2017.

5



[21] Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra algorithms via sparser
subspace embeddings. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual
Symposium on, pages 117–126, 2013.

[22] Xiangrui Meng and Michael W Mahoney. Low-distortion subspace embeddings in input-sparsity
time and applications to robust linear regression. In Proceedings of the forty-fifth annual ACM
symposium on Theory of computing, pages 91–100, 2013.

[23] Christos Boutsidis and Alex Gittens. Improved matrix algorithms via the subsampled random-
ized hadamard transform. SIAM Journal on Matrix Analysis and Applications, 34(3):1301–1340,
2013.

[24] Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu.
Dimensionality reduction for k-means clustering and low rank approximation. In Proceedings
of the forty-seventh annual ACM symposium on Theory of computing, pages 163–172, 2015.

[25] David P Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends R©
in Theoretical Computer Science, 10(1–2):1–157, 2014.

[26] Zeyuan Allen-Zhu and Yuanzhi Li. Lazysvd: even faster svd decomposition yet without
agonizing pain. In Advances in Neural Information Processing Systems, pages 974–982, 2016.

[27] Nevrez Imamoglu, Yu Oishi, Xiaoqiang Zhang, Guanqun Ding, Yuming Fang, Toru Kouyama,
and Ryosuke Nakamura. Hyperspectral image dataset for benchmarking on salient object
detection. In Tenth International Conference on Quality of Multimedia Experience, (QoMEX),
pages 1–3, 2018.

[28] Dmitry Davidov, Evgeniy Gabrilovich, and Shaul Markovitch. Parameterized generation of
labeled datasets for text categorization based on a hierarchical directory. In Proceedings of the
27th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’04, pages 250–257, 2004.

6


	Introduction
	Preliminaries
	Training Algorithm
	Experimental Results

