Towards Model-Based Contrastive Explanations for Explainable Planning

Benjamin Krarup*, Michael Cashmore*, Daniele Magazzeni*, Tim Miller'

Abstract

An important type of question that arises in Explainable Plan-
ning is a contrastive question, of the form “Why action A
instead of action B?”. These kinds of questions can be an-
swered with a contrastive explanation that compares proper-
ties of the original plan containing A against the contrastive
plan containing B. An effective explanation of this type serves
to highlight the differences between the decisions that have
been made by the planner and what the user would expect,
as well as to provide further insight into the model and the
planning process. Producing this kind of explanation requires
the generation of the contrastive plan. This paper introduces
domain-independent compilations of user questions into con-
straints. These constraints are added to the planning model,
so that a solution to the new model represents the contrastive
plan. We introduce a formal description of the compilation
from user question to constraints in a temporal and numeric
PDDL2.1 planning setting.

1 Introduction

Explainable AI (XAI) is an emerging and important research
area within Al. Recent work has shown that Al Planning
is an important tool in XAlI, as its decision-making mecha-
nisms are model-based and so in principle more transparent.
This recent work includes many approaches towards provid-
ing explanations in Al planning.

Chakraborti et al. (2019) gives an in-depth overview of
this work and different terms used within the XAl landscape.
In particular, Zhang et al. (2017) shows that if an Al sys-
tem behaves “explicably” there is less of a need for explana-
tions. However, this is not always possible and explanation
is sometimes required. Chakraborti et al. (2017) tackles ex-
planation as a model reconciliation problem, arguing that the
explanation must be a difference between the human model
and Al model. Seegebarth et al. (2012) show that by repre-
senting plans as first order logic formulae generating expla-
nations is feasible in real time. In contrast, in this paper we
focus on contrastive “why” questions. Fox, Long, and Mag-
azzeni (2017) highlight some important questions in XAIP
and discuss possible answers, and also describe how these
“why” questions are especially important. Smith (2012) out-
lines the approach to planning as an iterative process for bet-

*King’s College London, UK, {firstname.lastname} @kcl.ac.uk
TUniversity of Melbourne, Australia, rmiller @unimelb.edu.au

c

‘_ 4 User Question

Y

Formal Question

Compilation
Y

Hypothetical Model

Contrastive Explanation

Figure 1: The four-stage process for generating a contrastive
explanation from a user question. The hypothetical model is
created by compiling the formal question into the planning
model (in PDDL 2.1).

ter modelling preferences and providing explanations. We
propose to follow this same approach.

The aim of explanations is to improve the user’s lev-
els of understanding and trust in the system they are us-
ing. These explanations can be local (regarding a specific
plan) or global (concerning how the planning system works
in general). In this paper we focus on local explanations
of temporal and numeric planning problems, introducing
an approach for explaining why a planner has made a cer-
tain decision. Through active exploration of these specific
cases, the user may also gain global insight into the way
in which the planner makes decisions. (See (Lipton 1990;
2016; Ribeiro, Singh, and Guestrin 2016)).

To achieve an understanding of a decision, it is important
that explanations adapt to the specific context and mental
model of the user. One step towards this is to support the
user iteratively asking different questions suitable for their
context. Haynes et al. (2009) identify ten question types
that a user might have about an intelligent system, also de-
scribed by Mueller et al. (2019). Lim et al. (2009) show in a
grounded study that of these, the questions why and why not
provided the most benefit in terms of objective understand-
ing and feelings of trust. In the context of planning why not

questions are contrastive questions, because the user is ask-
ing why some action was selected rather than some other
action that was not.

Instead, Miller argues that all such questions can be asked
as contrastive questions of the form “Why action A rather
than action B?” (Miller 2018). Contrastive questions capture
the context of the question; they more precisely identify the
gaps in the user’s understanding of a plan that needs to be
explained (Lewis 1986). A contrastive question about a plan
can be answered by a contrastive explanation. Contrastive
explanations will compare the original plan against a con-
trastive plan that accounts for the user expectation. Provid-
ing contrastive explanations is not only effective in improv-
ing understanding, but is simpler than providing a full causal
analysis (Miller 2019).

Following the approach of Smith (2012) we propose an
approach to contrastive explanations through a dialogue with
the user. The proposed approach consists of an iterative
four-stage process illustrated in Figure 1. First the user asks
a contrastive question in natural language. Second, a con-
straint is derived from the user question, in the following
we refer to this constraint as the formal question. Third a
hypothetical model (HModel) is generated which encapsu-
lates this constraint. A solution to this model is the hypothet-
ical plan (HPlan) that can be compared to the original plan
to show the consequence of the user suggestion. The user
can compare plans and iterate the process by asking further
questions, and refining the HModel. This allows the user to
combine different compilations to create a more constrained
HModel, producing more meaningful explanations, until the
explanation is satisfactory. Each stage of this process rep-
resents a vital research challenge. This paper describes and
formalises the third stage of this process: compiling the for-
mal question into a hypothetical model for temporal and nu-
meric planning.

We are interested in temporal and numeric planning prob-
lems, for which optimal solutions are difficult to find. There-
fore, while the process described above serves for explana-
tion, the insight of the user can also result in guiding the
planning process to a more efficient solution. As noted by
(Smith 2012), the explanations could also give the user the
opportunity to improve the plan with respect to their own
preferences. The user could have hidden preferences which
have not been captured in the model. The user could ask
questions which enforce constraints that favour these prefer-
ences. The new plan could be sub-optimal, but more prefer-
able to the user.

The contribution of this paper is a formalisation
of domain-independent and planner-agnostic compilations
from formal contrastive questions to PDDL2.1 (Fox and
Long 2003), necessary for providing contrastive explana-
tions. The compilations shown are not exhaustive. However,
they do cover an interesting set of questions which users
would commonly have about both classical and temporal
plans. The paper is organised as follows. The next section
describes the planning definitions we will use throughout the
paper. In Section 3 we describe the running example that we
use to demonstrate our compilations throughout the paper.
In Section 4 we list the set of formal questions that we are

interested in, and formalise the compilations of each of these
into constraints. Finally, we conclude the paper in Section 5
whilst touching on some interesting future work.

2 Background

Our definition of a planning model follows the definition of
PDDL2.1 given by (Fox and Long 2003), extended by a set
of time windows as follows.

Definition 1 A planning model is a pair 11 = (D, Prob).
The domain D = (Ps,V's, As, arity) is a tuple where Ps is
a finite set of predicate symbols, V s is a finite set of function
symbols, As is a set of action schemas, called operators,
and arity is a function mapping all of these symbols to their
respective arity. The problem Prob = (Os,I,G,W) is a
tuple where Os is the set of objects in the planning instance,
1 is the initial state, G is the goal condition, and W is a set
of time windows.

A set of atomic propositions P is formed by applying the
predicate symbols Ps to the objects Os (respecting arities).
One proposition p is formed by applying an ordered set of
objects o C O to one predicate ps, respecting its arity. For
example, applying the predicate (block_on ?a ?b) with ar-
ity 2 to the ordered set of objects {block A, blockB} forms
the proposition (block_on block A blockB). This process is
called “grounding” and is denoted with:

ground(ps,x) = p

where x C O is an ordered set of objects. Similarly the set
of primitive numeric expressions (PNEs) V' are formed by
applying the function symbols V's to Os.

A state s consists of a time ¢t € R, a logical part s; C P,
and a numeric part s,, that describes the values for the PNE’s
at that state. The initial state I is the state at time ¢ = 0.

The goal G = g1, ...,g, is a set of constraints over P
and V' that must hold at the end of an action sequence for
a plan to be valid. More specifically, for an action sequence
¢ = (a1,as,...,a,) each with a respective time denoted by
Dispatch(a;), we use the definition of plan validity from
(Fox and Long 2003) (Definition 15 “Validity of a Simple
Plan”). A simple plan is the sequence of actions ¢ which de-
fines a happening sequence, t;—...;; and a sequence of states,
Si=0...k+1 such that sy = I and foreach? = 0...k, s;41 is
the result of executing the happening at time ¢;. The simple
plan ¢ is valid if s;4+1 = G.

Each time window w € W is a tuple w = (wjp, Wyp, Wy)
where w, is a proposition which becomes true or a numeric
effect which acts upon some n € V. wy, € R is the time
at which the proposition becomes true, or the numeric effect
is applied. wy,, € R is the time at which the proposition
becomes false. The constraint w;;, < w,, must hold. Note
that the numeric effect is not effected at w,;.

Similar to propositions and PNEs, the set of ground ac-
tions A is generated from the substitution of objects for op-
erator parameters with respect to it’s arity. Each ground ac-
tion is defined as follows:

Definition 2 A ground action o« € A has a duration
Dur(a) which constrains the length of time that must

(define (domain turtlebot_demo)
(:types waypoint robot)
(:predicates
(robot_at ?v - robot ?wp - waypoint)
(connected ?from ?to - waypoint)
(visited ?wp - waypoint))
(:functions
(travel_time ?wpl ?wp2 - waypoint))
(:durative-action goto_waypoint
:parameters (?v - robot
?from ?to - waypoint)
:duration (= ?duration
(travel_time ?from ?to))
:condition (and
(at start (robot_at ?v ?from))
(over all (connected ?from ?to)))
ceffect (and
(at start (not (robot_at ?v ?from)))
(at end (visited ?to))
(at end (robot_at ?v ?to)))))

Figure 2: The robotics domain used as a running example.

pass between the start and end of a; a start (end) con-
dition Pre(a) (Pre4(a)) which must hold at the state
that a starts (ends); an invariant condition Pre.,(a) which
must hold throughout the entire execution of a, add ef-
fects Eff (a), Eff (a)} C P that are made true at the
start and ends of the action respectively; delete effects
Eff (a)C, Eff (a)5 C P that are made false at the start and
end of the action respectively; and numeric effects Eff (a)l,
Eff (a)?,, Eff (a)” that act upon some n € V.

3 Running Example

We use as a running example the following planning model.
Figure 2 shows the domain D. The domain describes a sce-
nario in which a robot is able to move between connected
waypoints and mark them as visited. The domain contains
three predicate symbols (robot_at, connected, visited)
with arities 2, 2, and 1 respectively. The domain includes
only a single function symbol travel_time with arity 2.
There is a single operator goto_waypoint.

Figure 3 shows the problem Prob. The problem speci-
fies 7 objects: wp0, wpl, wp2, wp3, wpd, wpd and kenny.
The initial state specifies which propositions are ini-
tially true, such as the current location of the robot
(robot_at kenny wp0), and the initial values of the PNEs,
e.g. (= (travel_time wp5wp3) 4.68). The goal is specified
as a constraint over PUV, in this example it is that the robot
has visited all of the locations.

Figure 5 shows an example plan that solves this problem.
This plan might appear sub-optimal. The robot moves from
waypoint wp2 to wpl and then immediately returns to wp?2.
This second action might seem redundant to the user. How-
ever, upon closer inspection of the connectivity of waypoints
(shown in Figure 4) we can see that the plan is in fact the op-
timal one. Visiting waypoint wpl is a goal of the problem,
and it is only connected to waypoints wp0 and wp2, both
of which have already been visited. Waypoint wp0 is only

(define (problem task)
(:domain turtlebot_demo)

(:objects
wp0 wpl wp2 wp3 wp4 wpd - waypoint
kenny - robot)

(:init

(robot_at kenny wp0O) (visited wpO)
connected wpO wp2) (connected wp0O wp4)
connected wpl wp0O) (connected wpl wp2)
connected wp2 wpl) (connected wp2 wp4)
connected wp2 wp5) (connected wp3 wp))
connected wp5 wp0) (connected wp5 wp2)
connected wp5 wp3)

= (travel_time wp0O wp2) 1.45)

(
(
(
(
(
(
(
((travel_time wpO wp4d) 2)

(:goal (and (visited wpl) (visited wp2)
(visited wp3) (visited wp4) (visited wpb)
)))

Figure 3: Example Problem with some travel time functions
omitted for space.

Figure 4: Waypoint connectivity in the running example.
The robot is only allowed to move along the directed arrows.

0.00: (goto_waypoint kenny wp0 wp2) [1.45]
1.45: (goto_waypoint kenny wp2 wpl) [2.00]
3.45: (goto_waypoint kenny wpl wp2) [2.00]
5.45: (goto_waypoint kenny wp2 wpb) [2.00]
7.45: (goto_waypoint kenny wp5 wp3) [4.68]
12.13: (goto_waypoint kenny wp3 wpb) [4.68]
16.81: (goto_waypoint kenny wp5 wpOQ) [0.99]
17.80: (goto_waypoint kenny wpO wpé) [2.00]

Figure 5: Plan generated from the example domain and prob-
lem. The cost of the plan is its duration (19.80).

connected to waypoints wp2 and wp4, wp2 has been visited
and wp4 is a dead end. For these reasons combined, the only
logical option is to move back to wp2 after completing the
goal of visiting wpl. This type of behaviour similarly hap-
pens between waypoints wp3 and wp5.

A graphical representation such as Figure 4 is not al-
ways available, and so even for this simple model and
plan, deducing the reasoning behind the planned ac-
tions is not trivial. This is an example of where XAIP
is useful. Using our proposed approach the user could
have asked the question: “Why do we use the action
(goto_waypoint kenny wpl wp2), rather than not using

0.00: (goto_waypoint kenny wp0 wp2) [1.45]
1.45: (goto_waypoint kenny wp2 wp5) [2.00]
3.45: (goto_waypoint kenny wp5 wp3) [4.68]
8.13: (goto_waypoint kenny wp3 wpb) [4.68]
12.81: (goto_waypoint kenny wp5 wp2) [2.00]
14.81: (goto_waypoint kenny wp2 wpl) [2.00]
16.81: (goto_waypoint kenny wpl wpO) [2.00]
18.81: (goto_waypoint kenny wpO wp4) [2.00]

Figure 6: The hypothetical plan that accounts for the user’s
suggestion, avoiding the action of moving from wpl to wp2.
The cost of the plan is its duration (20.81).

it?”. From this question we could generate a contrastive plan
with this constraint enforced (shown in Figure 6). Compar-
ing the actions and costs of the original and the new plan
could shed light on why the action needed to be used. The
user can carry on asking questions until they were satisfied.

4 Formalisation

Definition 3 An explanation problem is a tuple E =
(I1, ¢, Q), in which 11 is a planning model (Definition 1),
¢ is the plan generated by the planner, and Q) is the specific
question posed by the user. The problem is to provide insight
that helps the user to answer question Q.

In this paper, we assume that the user knows the model
II and the plan ¢, so answers such as stating the goal of the
problem will not increase their understanding. Given this,
we propose the following set of questions, and provide a for-
mal description for compilations of this set of formal ques-
tions of temporal plans:

1. Why is action a used in state s, rather than action b? (Sec-
tion 4.1)

2. Why is action a not used in the plan, rather than being
used? (Section 4.2)

3. Why is action a used in the plan, rather than not being
used? (Section 4.3)

4. Why is action a used outside of time window w, rather
than only being allowed within w? (Section 4.4)

5. Why is action a not used in time window w, rather than
being used within w? (Section 4.5)

6. Why is action a used at time ¢, rather than at least some
time ¢’ after/before t? (Section 4.6)

7. Why is action a not performed before (after) action b,
rather than a being performed after (before) b? (Sec-
tion 4.7)

These questions were derived by systematically assessing
ways that counterfactual situations could occur in plans, and
choosing those that would be useful over many applications.
This is not an exhaustive list of possible constraints that can
be enforced upon the original model, however, it does repre-
sent a list of questions that would be useful in specific con-
texts and applications.

Part of being able to answer these questions is the abil-
ity to reason about what would happen in the counterfactual
cases. We approach this problem by generating plans for the

counterfactual cases via compilations. A compilation of a
planning instance where the model is given by II, and a ques-
tion is given by @ is shown as Compilation(Il, Q) = II’
where:

' = ((Ps', Vs, As', arity’), (Os, I',G', W'))

We call IT' the hypothetical model, or HModel.
However, IT’ can also be used as the input model so that
the user can iteratively ask questions about some model, i.e:

Compilation(Compilation(I1, Q), Q")

This allows the user to stack questions, further increasing
their understanding of the plan through combining compi-
lations. Combining compilations this way provides a much
wider set of possible constraints.

After the HModel is formed, it is solved to give the HPlan.
Any new operators that are used in the compilation to en-
force some constraint are trivially renamed back to the orig-
inal operators they represent. For each iteration of compila-
tion the HPlan is validated against the original model II.

4.1 Replacing an Action in a State
Given a plan ¢, a formal question) is asked of the form:

Why is the operator o with parameters x used in state s,
rather than the operator n with parameters x'? where
oFnorx#x
For example, given the example plan in Figure 5 the user
might ask:

“Why is (goto-waypoint kenny wp2wpb) used,
rather than (goto_waypoint kenny wp2 wpd)?”

They might ask this because a goal of the problem is to visit
wp4. As the robot visits wpb from wp3 later in the plan,
it might make sense to the user for the robot to visit wp4
earlier, as wpb will be visited at a later point.

To generate the HPlan, a compilation is formed such that
the ground action b = ground(n, x’) appears in the plan in
place of the action a; = ground(o, x). Given the example
above b = ground(goto_waypoint, {kenny, wp2, wpd}),
and a; = ground(goto_waypoint, {kenny, wp2, wpb}).
Given a plan:

(]52 (al,ag,...,an>

The ground action a; at state s is replaced with b, which is
executed, resulting in state I’, which becomes the new ini-
tial state in the HModel. A time window is created for each
durative action that is still executing in state s. These model
the end effects of the concurrent actions. A plan is then gen-
erated from this new state with these new time windows for
the original goal, which gives us the plan:

¢ = {a},al,... al)

The HPlan is then the initial actions of the original plan ¢
concatenated with b and the new plan ¢':

<CL1,CL2,. .« ,ai_l,b,all,a’g, .. .,a%)
Specifically, the HModel IT’ is:
II' = ((Ps, Vs, As, arity), (Os, I',G,W U C))

where:

e I’ is the final state obtained by executing'
(a1,aq9,...,a;—1,b) from state I.

e ('isaset of time windows w,, for each durative action a;
that is still executing in the state I. For each such action,
w, specifies that the end effects of that action will be-
come true at the time point at which the action is sched-
uled to complete. Specifically: w, = (Dispatch(a;) +
Dur(aj;) — Dispatch(b), in f,u) where u = Eff (a;)] U
Eff (a)% U Eff (a;)7.

In the case in which an action a; that is executing in state

I’ has an overall condition that is violated, this is detected

when the plan is validated against the original model. As an

example, given the user question above, the new initial state

I’ from the running example is shown below:

(:init

(robot_at kenny wp4) (visited wp2)

(visited wpl) (visited wp4)

(connected wpO wp2) (connected wpO wp4)

(connected wpl wpO) (connected wpl wp2)

L)

(:goal (and (visited wpl) (visited wp2)
(visited wp3) (visited wp4) (visited wpb5)
)))

This captures the state I, resulting from executing the
actions ay, as, ag, and b:

0.00: (goto_waypoint kenny wp0O wp2) [1.45]
1.45: (goto_waypoint kenny wp2 wpl) [2.00]
3.45: (goto_waypoint kenny wpl wp2) [2.00]
5.45: (goto_waypoint kenny wp2 wpé) [2.00]

In this state the robot has visited the waypoints wp2, wpl,
and wp4, and is currently at wp4. This new initial state is
then used to plan for the original goals to get the plan ¢,
which, along with b and ¢, gives the HPlan. However, the
problem is unsolvable from this state as there are no con-
nections from wp4 to any other waypoint. By applying the
user’s constraint, and showing there are no more applicable
actions, it answers the above question: “because by doing
this there is no way to complete the goals of the problem”.

This compilation keeps the position of the replaced ac-
tion in the plan, however, it may not be optimal. This is be-
cause we are only re-planning after the inserted action has
been performed. The first half of the plan, because it was
originally planned to support a different set of actions, may
now be inefficient, as shown by Borgo, Cashmore, and Mag-
azzeni (2018).

If the user instead wishes to replace the action without
necessarily retaining its position in the plan, then the fol-
lowing constraints on adding and removing an action from
the plan can be applied iteratively, as mentioned previously.

4.2 Add an Action to the Plan
Given a plan ¢, a formal question () is asked of the form:
Why is the operator o with parameters x not used,

rather than being used?

'We use VAL to validate this execution. We use the add and
delete effects of each action, at each happening (provided by VAL),
up to the replacement action to compute I’

For example, given the example plan in Figure 5 the user
might ask:

“Why is (goto_waypoint kenny wp2 wp4) not used,
rather than being used?”

They might ask this because a goal of the problem is to visit
wp4. As the robot is at wp2 early in the plan, and you can
visit wp4 from wp2, it might make sense to the user for the
robot to visit wp4 at that time.

To generate the HPlan, a compilation is formed such that
the action a = ground(o, x) must be applied for the plan
to be valid. The compilation introduces a new predicate
has_done_a, which represents which actions have been ap-
plied. Using this, the goal is extended to include that the user
suggested action has been applied. The HModel IT’ is:

' = ((Ps', Vs, As'arity’), (Os, I, G', W))
where
e Ps' = PsU{has_done_a}
As' = {0’} U As\ {o}
arity’(x) = arity(x), Vo € arity

arity’ (has_done_a) = arity’(o') = arity(o)
e ' = GU {ground(has_done_a,x)}

where the new operator o’ extends o with the add effect
has_done_a with corresponding parameters, i.e.

Eff%(0') = Eff % (0) U {has_done_a}

For example, given the user question above, the opera-
tor goto_waypoint from the running example is extended to
goto_waypoint’ with the additional add effect has_done_a:

(:durative—action goto_waypoint’
:parameters (?v - robot
?from ?to - waypoint)
:duration(= ?duration
(travel_time ?from ?to))
:condition (at start (robot_at ?v ?from)
(over all (connected ?from ?to))
reffect (and (at end (visited ?to))
(at start (not (robot_at ?v ?from)))
(at end (robot_at ?v ?to))
(at end (has_done_goto_waypoint’ ?v ?from

?to)))))

and the goal is extended to include the proposition:
(has-done_goto_waypoint kenny wp2 wpd).

4.3 Remove a Specific Grounded Action

Given a plan ¢, a formal question () is asked of the form:

Why is the operator o with parameters x used, rather
than not being used?

For example, given the example plan in Figure 5 the user
might ask:

“Why is (goto_waypoint kenny wpl wp2) used,
rather than not being used?”

A user might ask this because the robot has already sat-
isfied the goal to visit wp2 before this point with the action
(goto_waypoint kenny wp0 wp2). The user might think the
second action (goto_waypoint kenny wpl wp2) seems re-
dundant.

The specifics of the compilation is similar to the compi-
lation in Section 4.2. The HModel is extended to introduce
a new predicate not_done_action which represents actions
that have not yet been performed. The operator o is extended
with the new predicate as an additional delete effect. The ini-
tial state and goal are then extended to include the user se-
lected grounding of not_done_action. Now, when the user
selected action is performed it deletes the new goal and so
invalidates the plan. This ensures the user suggested action
is not performed.

For example, given the user question above, an
HPlan is generated that does not include the action
(goto_waypoint kenny wpl wp2), and is shown in Fig-
ure 6.

4.4 Forbid an Action Outside a Time Window
Given a plan ¢, a formal question () is asked of the form:

Why is the operator o with parameters x used outside
of time b < t < ub, rather than only being allowed
within this time window?

For example, given the example plan in Figure 5 the user
might ask:

“Why is (goto-waypoint kenny wp0 wp4) used out-
side of times O and 2, rather than being restricted to
that time window?”

A user can ask this because the action
(goto-waypoint kenny wp0wpd) is used at the end
of the plan, the robot starts at wp0O and must visit wp4 to
satisfy a goal. The user might think that satisfying this goal
earlier in the plan will free up time for the robot to complete
the other goals.

To generate the HPlan, the planning model is compiled
such that the ground action a = ground(o, x) can only be
used between times [b and ub. To do this, the original op-
erator o is replaced with two operators o, and o-,, which
extend o with extra constraints.

Operator o-, replaces the original operator o for all
other actions ground(o,x’), where x’ # x. The action
ground(o—,,x) cannot be used (this is enforced using
the compilation for forbidding an action described in Sec-
tion 4.3). Operator o, acts as the operator o specifically for
the action a = ground(o, x), which has an added constraint
that it can only be performed between [b and ub. Specifically,
the HModel IT’ is:

' = ((Ps', Vs, As',arity’), (Os, I' ,G', W'))
where:
e Ps' = PsU{can-do_a,not_done_a}
o As' = {04,004} U As\ {0}
o arity'(z) = arity(x),Vx € arity

arity’ (can_do_a) = arity’ (not_done_a) =
arity’(0q) = arity’'(0-q) = arity(o)

o ' = T U{ground(not_done_a, x)}
e G' = GU{ground(not_done_a, x)}
o W' =W U {(lb, ub, ground(can_do_a, x))}

where the new operators o, and o, extend o with the delete
effect not_done_a and the precondition can_do_a, respec-
tively. i.e:

Eff = (0-a) = Eff (0) U {not_done_a}
Prer(0,) = Pre-(0) U{can-do_a}

As the proposition ground(can_do-a, x) must be true for
ground(og, X) to be performed, this ensures that the action
a can only be performed within the times (b and ub. Other
actions from the same operator can still be applied at any
time using the new operator o—,. As in Section 4.3 we make
sure the ground action ground(o-,, x) can never appear in
the plan.

For example, given the user question above, the operator
goto_waypoint from Figure 2 is extended to o, and o, as
shown below:

(:durative—action goto_waypoint_nota

:parameters (?v - robot
?from ?to - waypoint)
:duration (= ?duration

(travel_time ?from ?to))
:condition (and

(at start (robot_at ?v ?from))

(over all (connected ?from ?to)))
reffect (and

(at end (visited ?to))

(at start (not (robot_at ?v ?from)))

(at end (robot_at ?v ?to))

(at start (not (not_done_goto._waypoint ?v

?from ?to)))))

(:durative—action goto_waypoint_a
:parameters (?v — robot
?from ?to - waypoint)
:duration (= ?duration
(travel_time ?from ?to))
:condition (and (at start
(can_do_goto_waypoint ?v ?from ?to))
(at start (robot_at ?v ?from))
(over all (connected ?from ?to)))
ceffect (and (at end (visited ?to))
(at start (not (robot_at ?v ?from)))
(at end (robot_at ?v ?to))))

The initial state is extended to include the proposition
(not_done_goto_waypoint kenny wp0wpd) and the time
window (0, 2, (can_do_goto_waypoint kenny wp0 wpd)).
This time window enforces that the proposition
(can_do_goto_waypoint kenny wp0 wpd) is true between
times 0 and 2. The resulting HPlan is:

0.00: (goto_waypoint kenny wpO wp2) [1.45]
1.45: (goto_waypoint kenny wp2 wpl) [2.00]
3.45: (goto_waypoint kenny wpl wp2) [2.00]
5.45: (goto_waypoint kenny wp2 wpb) [2.00]
7.45: (goto_waypoint kenny wp5 wp3) [4.69]

12.14: (goto_waypoint kenny wp3 wpb) [4.69]
16.83: (goto_waypoint kenny wp5 wp2) [2.00]
18.84: (goto_waypoint kenny wp2 wp4) [2.98]

Following the user suggestion, the action is no longer ap-
plied outside of the time window, and in fact does not appear
in the plan at all.

4.5 Add an Action Within a Time Window
Given a plan ¢, a formal question () is asked of the form:

Why is the operator o with parameters x not used at
time [b < t < ub, rather than being used in this time
window?

For example, given the example plan in Figure 5 the user
might ask:

“Why is (goto-waypoint kenny wp0wp4) not used
between times 0 and 2, rather than being used in this
time window?”

The HPlan given in Section 4.4 shows the user that there
is a better plan which does not have the action in this time
window. However, the user may only be satisfied once they
have seen a plan where the action is performed in their given
time window. To allow this the action may have to appear in
other parts of the plan as well.

This constraint differs from Section 4.4 in two ways: first
the action is now forced to be applied in the time window,
and second the action can be applied at other times in the
plan. This constraint is useful in cases such as a robot that
has a fuel level. As fuel is depleted when travelling between
waypoints, the robot must refuel, possibly more than once.
The user might ask “why does the robot not refuel between
the times z and y (as well as the other times it refuels)?”.

To generate the HPlan, the planning model is compiled
such that the ground action a = ground(o, x) is forced to
be used between times /b and ub, but can also appear at any
other time. This is done using a combination of the com-
pilation in Section 4.2 and a variation of the compilation
in Section 4.4. Simply, the former ensures that new action
ground(o,, x) must appear in the plan, and the latter en-
sures that the action can only be applied within the time
window. The variation of the latter compilation is that the
operator o—,, is not included, and instead the original oper-
ator is kept in the domain. This allows the original action
a = ground(o,x) to be applied at other times in the plan.
Given this, the HModel IT' is:

' = ((Ps', Vs, As' arity’), (Os, [, G',W"))

where:
o Ps' = PsU{can_do_a, has_done_a}
o As' ={o,} U As
o arity'(z) = arity(z),Va € arity
e arity’(can_do-a) = arity’ (has_done_a)

= arity’(0,) = arity(o)
o G' = G U {ground(has_done_a,x)}
o W' =W U {(lb, ub, ground(can_do_a, x))}

As wp4 is a dead end there is no valid HPlan following this
suggestion.

4.6 Delay/Advance an Action
Given a plan ¢, a formal question () is asked of the form:

Why is the operator o with parameters x used at time
t, rather than at least some duration t' after/before t?

For example, given the example plan in Figure 5 the user
might ask:

“Why is (goto_waypoint kenny wp2 wp5) used at
time 5.45, rather than at least 4 seconds earlier?”

A user might ask this question in general because they
expected an action to appear earlier or later in a plan. This
could happen for a variety of reasons. In domains with re-
sources that are depleted by specific actions, and are replen-
ished by others, such as fuel for vehicles, these questions
may arise often. A user might want an explanation for why a
vehicle was refueled earlier or later than what was expected.
In this case the refuel action can be delayed or advanced to
answer this question.

For this particular example the user might want the action
(goto_waypoint kenny wp2wp5) to be advanced nearer
the start of the plan. The user might see that in the origi-
nal plan the robot goes from wp2 to wpl at time 1.45 and
then instantly goes back again. The user might think that a
better action would be to go from wp2 to wpb before this.
The user might notice that wpb is connected to more way-
points than wpl. Having these extra options might prevent
redundant actions that revisit waypoints.

To generate the HPlan, the planning model is compiled
such that the ground action a = ground(o, x) is forced to
be used in time window w which is at least ¢’ before/after
t. This compilation is an example of a combination of two
other compilations: adding an action (in Section 4.2) and for-
bidding the action outside of a time window (in Section 4.4).
The latter enforces that the action can only be applied within
the user specified time window, while the former enforces
that the action must be applied. The HModel IT' is:

' = ((Ps', Vs, As',arity’), (Os, I', G, W'))

where:
e Ps' = PsU{can_do-a,not_done_a, has_done_a}
o As' ={04,0-0} U As\ {0}
o arity'(z) = arity(x),Vz € arity
e arity’(can_do_a) = arity’ (not_done_a) =

arity’ (has_done_a) = arity’(o,) =

arity’ (0-q) = arity(o)
o ' =T U {ground(not_done_a,x)}

;L ground(not_done_a, x),
* G'=GU{ ground(has_done_a, x) }
o W' — WU before : (07tRegl,ground(can,do,a, X))
after : (tReal,inf, ground(can_do_a,x))
where the new operators o, and o_, both extend o. The latter
with the delete effect not_done_a, while o, extends o with
the precondition can_do_a and add effect has_done_a; i.e.:
Eff {(0-a) = Eff (0) U {not_done_a}
Pre(0,) = Pres (o) U{can_do-a}
Eff? (0a) = Eff % (0) U {has_done_a}

This ensures that the ground action a = ground(og, X)
must be present in the plan between the times 0 and t Real,
or tReal and inf, depending on the user question, and be-
tween those times only. In addition, the user selected action
is forced to be performed using the same approach as in Sec-
tion 4.2. Given the user question above, the HPlan is:

0.00: (goto_waypoint kenny wp0O wp2) [1.45]
1.45: (goto_waypoint_a kenny wp2 wp5) [2.00]

3.45: (goto_waypoint kenny wp5 wp3) [4.68]
8.13: (goto_waypoint kenny wp3 wpb) [4.68]
12.81: (goto_waypoint kenny wp5 wp2) [2.00]
14.81: (goto_waypoint kenny wp2 wpl) [2.00]
16.81: (goto_waypoint kenny wpl wpO) [2.00]
18.81: (goto_waypoint kenny wpO wp4) [2.00]

4.7 Reordering Actions
Given a plan ¢, a formal question () is asked of the form:

Why is the operator o with parameters X used before
(after) the operator n with parameters X', rather than
after (before)? where o # nor x # X'

For example, given the example plan in Figure 5 the user
might ask:

“Why is (goto_waypoint kenny wp2wpl) used be-
fore (goto_waypoint kenny wp2 wpb), rather than af-
ter?”

A user might ask this because there are more connections
from wpb than wp2. The user might think that if the robot
has more choice of where to move to, the planner could
make a better choice, giving a more efficient plan.

The compilation to the HModel is performed in the fol-
lowing way. First, a directed-acyclic-graph (DAG) (N, E) is
built to represent each ordering between actions suggested
by the user. For example the ordering of @) is a < b where
a = ground(o, x) and b = ground(n, x').

This DAG is then encoded into the model IT to create IT'.
For each edge (a,b) € E two new predicates are added:
ordered,, representing that an edge exists between a and
b in the DAG, and traversed,, representing that the edge
between actions a and b has been traversed.

For each node representing a ground action a € N, the
action is disallowed using the compilation from Section 4.3.
Also, for each such action a new operator o, is added to the
domain, with the same functionality of the original operator
o. The arity of the new operator, arity(o,) is the combined
arity of the original operator plus the arity of all of a’s sink
nodes. Specifically, the HModel IT’ is:

' = ((Ps', Vs, As',arity’), (Os, I', G' , W))
where:
o Ps' = PsU{ordered,,} U{traversed,}, V(a,b) € E
o As' ={o,}UAs,Vae N
o arity’(x) = arity(x), Vo € arity
0q) = arity(o) + 3, pep arity(b),Va € N
orderedqy) = arity(a) + arity(b),¥(a,b) € E
traversedqy) = arity(b),V(a,b) € E

o arity’

o arity’

~ o~ o~ o~

e arity’

o I' = IUground(ordereday, x+X'), ¥(a,b) € E, where

x and x' are the parameters of a and b, respectively.

In the above, we abuse the arity notation to specify the
arity of an action to mean the arity of the operator from
which it was ground; e.g. arity(a) = arity(o) where a =
ground(o, x).

Each new operator o, extends o with the precondition that
all incoming edges must have been traversed, i.e. the source
node has been performed. The effects are extended to add
that its outgoing edges have been traversed. That is:

Prey(0,) = Prer(o) U {ordered,, € Ps’,Vb}
U {traversed., € Ps',Vc}
Eff% (0a) = Eff%(0) U {traversed,, € Ps',Vb}

This ensures that the ordering the user has selected is
maintained within the HPlan.

As the operator o, has a combined arity of the orig-
inal operator plus the arity of all of a’s sink nodes,
there exists a large set of possible ground actions. How-
ever, for all b € N, orderedy, is a precondition of o,;
and for each edge (a,b) € FE the ground proposition
ground(ordered,y, X, X') is added to the initial state to rep-
resent that the edge exists in the DAG. Therefore, the only
grounding of the operator that can be performed is the action
with parameters x + x’. This drastically reduces the size of
the search space.

For example given the user question above, two new op-
erators node_goto_waypoint_kenny_wp2_wpb (shown in
Figure 7) and node_goto_waypoint_kenny_ wp2_wpl are
added to the domain. These extend operator goto_waypoint
from Figure 2 as described above. The HPlan generated is
shown below:

(:durative-action
node_goto_waypoint_kenny_wp2_wpb

:parameters (?vl ?v2 - robot
?froml ?tol ?from2 ?to2 - waypoint)
:duration (= ?duration

(travel_time ?froml ?tol))
:condition (and (at start
(robot_at ?v1l ?froml))
(over all (connected ?from ?to))
(at start (ordered wp2 wp5 wp2 wpl ?vl
?v2 ?froml ?tol ?from2 ?to2)))
reffect (and (at end (visited ?tol))
(at start (not (robot_at ?vl ?froml)))
(at end (robot_at ?vl ?tol))
(at end (traversed v2_from2 to2 ?v2
?from2 ?to2))))

Figure 7: An operator added to the original domain to cap-
ture an ordering constraint between actions. The operator ex-
tends the original goto_waypoint operator.

0.00: (goto_waypoint kenny wp0O wp2) [1.45]
1.45: (node_goto_waypoint_kenny wp2 wp5 kenny
kenny wp2 wp5 wp2 wpl) [2.00]

3.45: (goto_waypoint kenny wpb5 wp3) [4.68]
8.13: (goto_waypoint kenny wp3 wpb) [4.68]
12.81: (goto_waypoint kenny wp5 wp2) [2.00]

14.81: (node_goto_waypoint_kenny wp2 wpl kenny
wp2 wpl) [2.00]

16.81: (goto_waypoint kenny wpl wpO)
18.81: (goto_waypoint kenny wpO wp4)

[2.00]
[2.00]

5 Conclusion

In this paper we have presented an approach to compiling a
set of formal contrastive questions into domain independent
constraints. These are then used within the XAI paradigm
to provide explanations. We have described how these com-
pilations form a part of a series of stages which start with
a user question and end with an explanation. This paper
formalises and provides examples of these compilations in
PDDL 2.1 for temporal and numeric domains and planners.

We have defined a series of questions which we believe
a user may have about a plan in a PDDL2.1 setting. These
questions cover a large set of scenarios, and can be stacked
to create new interesting constraints which may answer a
much richer set of questions.

We acknowledge that the questions we provide compila-
tions for do not cover the full set of contrastive questions one
may have about a plan. For example the question, “Why is
the operator o with parameters x used at time (b < t < ub,
rather than not being used in this time window?”, can be an-
swered using a variant of Section 4.5. For future work we
plan to investigate which compilations will form an atomic
set whose elements can be stacked to cover the full set of
possible contrastive questions. We also acknowledge that the
compilations we have formalised may have equivalent com-
pilations. However, the ones we have described have proven
successful for explanations.

In future work, we will look to extend this work in several
ways. While we define how to calculate plans for contrastive
cases, we do not take full advantage of contrastive explana-
tions by explaining the difference between two plans (Miller
2018). In particular, we will look to extend the presentation
beyond just plans into showing the difference between two
causal chains as well.

We will explore contrastive explanations with preferences
in PDDL 3 (Gerevini and Long 2005).

We will look at producing a language for expressing ques-
tions and constraints on plans. LTL will likely play a role
in defining the semantics of any such language. Additional
concepts concerning plan structure, such as the ability to
specify that an action is part of the causal support for a goal
or sub-goal, will be needed. As it stands when we add a con-
straint to include an action, the constraint may be satisfied
in trivial ways not relevant to answering the users question.
The action may be redundant, or undone in the HPlan as de-
scribed in (Fox, Long, and Magazzeni 2017). In this case
the explanation may not be deemed satisfactory. These ad-
ditional concepts will help solve this problem, as well as al-
lowing users to ask more expressive questions such as, “Why
did you use action A rather than action B for achieving P?”.

Finally, we will provide functional and human-
behavioural evaluations of our explanations, to assess
their effectiveness. To make sure they are both satisfactory
from a user perspective, and that they provide actionable
insight into the plan.

Acknowledgements This work was partially supported by
Innovate UK grant 133549: Intelligent Situational Aware-
ness Platform, and by EPSRC grant EP/R033722/1: Trust in
Human-Machine Partnerships.

References

Borgo, R.; Cashmore, M.; and Magazzeni, D. 2018. Towards
providing explanations for Al planner decisions. IJCAI-18
Workshop on Explainable Al

Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. In IJCAI.

Chakraborti, T.; Kulkarni, A.; Sreedharan, S.; Smith, D. E.;
and Kambhampati, S. 2019. Explicability? legibility? pre-
dictability? transparency? privacy? security? the emerging
landscape of interpretable agent behavior. In ICAPS.

Fox, M., and Long, D. 2003. PDDL2.1: An extension to
pddl for expressing temporal planning domains. Journal of
Artificial Intelliigence Research 20:61-124.

Fox, M.; Long, D.; and Magazzeni, D. 2017. Explain-
able planning. IJCAI-17 workshop on Explainable Al
abs/1709.10256.

Gerevini, A., and Long, D. 2005. Plan constraints and
preferences in pddl3 - the language of the fifth international
planning competition. Technical report.

Haynes, S. R.; Cohen, M. A.; and Ritter, F. E. 2009. Designs
for explaining intelligent agents. International Journal of
Human-Computer Studies 67(1):90 — 110.

Lewis, D. 1986. Causal explanation. In Lewis, D., ed.,
Philosophical Papers Vol. Ii. Oxford University Press. 214—
240.

Lim, B. Y.; Dey, A. K.; and Avrahami, D. 2009. Why and
why not explanations improve the intelligibility of context-
aware intelligent systems. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI
’09, 2119-2128.

Lipton, P. 1990. Contrastive explanation. Royal Institute of
Philosophy Supplement 27:247266.

Lipton, Z. C. 2016. The mythos of model interpretability.
CoRR abs/1606.03490.

Miller, T. 2018. Contrastive explanation: A structural-model
approach. CoRR abs/1811.03163.

Miller, T. 2019. Explanation in artificial intelligence: In-
sights from the social sciences. Artificial Intelligence 267:1—
38.

Mueller, S. T.; Hoffman, R. R.; Clancey, W. J.; Emrey, A.;
and Klein, G. 2019. Explanation in human-ai systems: A lit-
erature meta-review, synopsis of key ideas and publications,
and bibliography for explainable Al. CoRR abs/1902.01876.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. “why
should I trust you?”: Explaining the predictions of any clas-
sifier. CoRR abs/1602.04938.

Seegebarth, B.; Miiller, F.; Schattenberg, B.; and Biundo, S.
2012. Making hybrid plans more clear to human users —
a formal approach for generating sound explanations. In
ICAPS.

Smith, D. 2012. Planning as an iterative process. In AAAL
Zhang, Y.; Sreedharan, S.; Kulkarni, A.; Chakraborti, T.;
Zhuo, H.; and Kambhampati, S. 2017. Plan explicability
and predictability for robot task planning. In /CRA.

