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Abstract

Neural networks are vulnerable to small adversarial
perturbations. While existing literature largely focused
on the vulnerability of learned models, we demonstrate
an intriguing phenomenon that adversarial robustness,
unlike clean accuracy, is sensitive to the input data
distribution. Even a semantics-preserving transforma-
tions on the input data distribution can cause a signifi-
cantly different robustness for the adversarially trained
model that is both trained and evaluated on the new dis-
tribution. We show this by constructing semantically-
identical variants for MNIST and CIFAR10 respec-
tively, and show that standardly trained models achieve
similar clean accuracies on them, but adversarially
trained models achieve significantly different robustness
accuracies. This counter-intuitive phenomenon indi-
cates that input data distribution alone can affect the
adversarial robustness of trained neural networks, not
necessarily the tasks themselves. Lastly, we discuss the
practical implications on evaluating adversarial robust-
ness, and make initial attempts to understand this com-
plex phenomenon.

1. Introduction
We study the relationship between adversarial ro-

bustness and the input data distribution. We focus on
the adversarial training method [3], arguably the most
popular defense method so far due to its simplicity, ef-
fectiveness and scalability. Our main contribution is
the finding that adversarial robustness is highly sensi-
tive to the input data distribution:

A semantically-lossless shift on the data distribution
could result in a drastically different robustness for

adversarially trained models.

Note that this is different from the transferability of
a fixed model that is trained on one data distribution
but tested on another distribution. Even retraining
the model on the new data distribution may give us a
completely different adversarial robustness on the same

new distribution. This is also in sharp contrast to the
clean accuracy of standard training, which, as we show
in later sections, is insensitive to such shifts. To our
best knowledge, our paper is the first work in the lit-
erature that demonstrates such sensitivity.

Such sensitivity raises the question of how to prop-
erly evaluate adversarial robustness. In particular,
the sensitivity of adversarial robustness suggests that
certain datasets may not be sufficiently representa-
tive when benchmarking different robust learning al-
gorithms. It also raises serious concerns about the de-
ployment of believed-to-be-robust training algorithm in
a real product. In a standard development procedure,
various models would be prototyped and measured on
the existing data. However, the sensitivity of adver-
sarial robustness makes the truthfulness of the perfor-
mance estimations questionable, as one would expect
future data to be slightly shifted. We illustrate the
practical implications in Section 3: the robust accu-
racy of PGD trained model is sensitive to gamma values
of gamma-corrected CIFAR10 images. This indicates
that image datasets collected under different lighting
conditions may have different robustness properties.

Finally, our finding opens up a new angle and pro-
vides novel insights to the adversarial vulnerability
problem, complementing several recent works on the
issue of data distributions’ influences on robustness. [6]
hypothesizes that there is an intrinsic tradeoff between
clean accuracy and adversarial robustness. Our studies
complement this result, showing that there are differ-
ent levels of tradeoffs depending on the characteristics
of input data distribution, under the same learning set-
tings (training algorithm, model and training set size).
[4] shows that different data distributions could have
drastically different properties of adversarially robust
generalization, theoretically on Bernoulli vs mixtures
of Gaussians, and empirically on standard benchmark
datasets. From the sensitivity perspective, we demon-
strate that being from completely different distribu-
tions (e.g. binary vs Gaussian or MNIST vs CIFAR10)
may not be the essential reason for having large robust-
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ness difference. Gradual semantics-preserving trans-
formations of data distribution can also cause large
changes to datasets’ achievable robustness.

2. Robustness on Datasets Variants with
Different Input Distributions

In this section we carefully design a series of datasets
and experiments to further study its influence. One im-
portant property of our new datasets is that they have
different input data distributions P(x)’s while keep-
ing the true classification P(y|x) reasonably fixed, thus
these datasets are only different in a “semantic-lossless”
shift. Our experiments reveal an unexpected phe-
nomenon that while standard learning methods man-
age to achieve stable clean accuracies across differ-
ent data distributions under “semantic-lossless” shifts,
however, adversarial training, arguably the most pop-
ular method to achieve robust models, loses this de-
sirable property, in that its robust accuracy becomes
unstable even under a “semantic-lossless” shift on the
data distribution. We emphasize that different from
preprocessing steps or transfer learning, here we treat
the shifted data distribution as a new underlying distri-
bution. We both train the models and test the robust
accuracies on the same new distribution.
2.1. Smoothing and Saturation

In general, MNIST has a more binary distribution of
pixels, while CIFAR10 has a more continuous spectrum
of pixel values. We apply different levels of “smooth-
ing” on MNIST to create more CIFAR-like datasets,
and different levels of “saturation” on CIFAR10 to cre-
ate more “binary” ones, as shown in Figure 1a and 1b.
Note that we would like to maintain the semantic in-
formation of the original data, which means that such
operations should be semantics-lossless.

Smoothing is applied on MNIST images, to make
images “less binary”. Given an image xi, its smoothed
version x̃i(s) is generated by first applying average fil-
ter of kernel size s to xi to generate an intermediate
smooth image, and then take pixel-wise maximum be-
tween xi and the intermediate smooth image.

Saturation of the image x is denoted by x̂(p),
and the procedure is defined as: x̂(p) = sign(2x −

1) |2x−1|
2
p

2 + 1
2 , where all the operations are pixel-wise

and each element of x̂(p) is guaranteed to be in [0, 1].
Saturation is used to generate variants of the CIFAR10
dataset with less centered pixel values. For different
saturation level p’s, one can see from Figure 1b that
x̂(p) is still semantically similar to x in the same clas-
sification task.
2.2. Experimental Setups

We use the smoothing and saturation to manipulate
the data distributions of MNIST and CIFAR10, and

show empirical results on how data distributions affects
robust accuracies of neural networks trained on them.
To measure the difficulty of the classification task, we
perform standard neural network training and test ac-
curacies on clean data. To measure the difficulty to
achieve robustness, we perform `∞ projected gradient
descent (PGD) based adversarial training [3] and test
robust accuracies on adversarially perturbed data. To
understand whether low robust accuracy is due to low
clean accuracy or vulnerability of model, we also re-
port robustness w.r.t. predictions, where the attack is
used to perturb against the model’s clean prediction,
instead of the true label. We use LeNet5 on all the
MNIST variants, and use wide residual networks [8]
with widen factor 4 and depth 28 for all the CIFAR10
variants. Unless otherwise specified, PGD training on
MNIST variants and CIFAR10 variants all follows the
settings in [3]. PGD attacks on MNIST variants run
with ε = 0.3, step size of 0.01 and 40 iterations, and
runs with ε = 8/255, step size of 2/255 and 10 itera-
tions on CIFAR10 variants , same as in [3].

2.3. Sensitivity of Robust Accuracy to Data Trans-
formations

Results on MNIST variants are presented in Fig-
ure 1d. The clean accuracy of standard training is
very stable across different MNIST variants. This in-
dicates that their classification tasks have similar dif-
ficulties, if the training has no robust considerations.
When performing PGD adversarial training, clean ac-
curacy drops only slightly. However, both robust ac-
curacy and robustness w.r.t. predictions drop signif-
icantly. This indicates that as smooth level goes up,
it is significantly harder to achieve robustness. Note
that for binarized MNIST with adversarial training,
the clean accuracy and the robust accuracy are almost
the same. Indicating that getting high robust accuracy
on binarized MNIST does not conflict with achieving
high clean accuracy.

CIFAR10 result tell a similar story, as reported in
Figure 1e. For standard training, the clean accuracy
maintains almost at the original level until saturation
level 16, despite that it is already perceptually very
saturated. In contrast, PGD training has a different
trend. Before level 16, the robust accuracy significantly
increases from 43.2% until 79.7%, while the clean test
accuracy drops only in a comparatively small range,
from 85.4% to 80.0%. After level 16, PGD training
has almost the same clean accuracy and robust accu-
racy. However, robustness w.r.t. predictions still keeps
increasing, which again indicates the instability of the
robustness. On the other hand, if the saturation level
is smaller than 2, we get worse robust accuracy after
PGD training, e.g. at saturation level 1 the robust ac-
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(a) MNIST variants, from left to right:
binarized, original, smoothed with ker-
nel size 2, 3, 4, 5

(b) CIFAR10 variants, from left to
right, original, saturation level 4, 8, 16,
64, ∞

(c) Gamma mapped images from left
to right 0.6, 0.8, 1.0 (original image),
1.2 , 1.4

(d) MNIST results under different
smooth levels

(e) CIFAR10 results under different
saturation levels

(f) Robustness results on gamma
mapped CIFAR10 variant

Figure 1: Variants of MNIST and CIFAR10 datasets (a, b, c), and Accuracy, Robust Accuracy and Robustness
w.r.t. Predictions on different data variants (c, d, e).

curacy is 33.0%. Simultaneously, the clean accuracy
maintains almost the same.

Note that after saturation level 64 the standard
training accuracies starts to drop significantly. This is
likely due to that high degree of saturation has caused
“information loss”. Models trained on highly saturated
CIFAR10 are quite robust and the gap between robust
accuracy and robustness w.r.t. predictions is due to
lower clean accuracy. In contrast, In MNIST variants,
the robustness w.r.t. predictions is always almost the
same as robust accuracy, indicating that drops in ro-
bust accuracy is due to adversarial vulnerability.

From these results, we can conclude that robust ac-
curacy under PGD training is much more sensitive than
clean accuracy under standard training to the differ-
ences in input data distribution. More importantly, a
semantically-lossless shift on the data transformation,
while not introducing any unexpected risk for the clean
accuracy of standard training, can lead to large vari-
ations in robust accuracy. Such previously unnoticed
sensitivity raised serious concerns in practice, as dis-
cussed in the next section.
3. Sensitivity to Image Acquisition Con-

dition and Preprocessing
The natural images are acquired under different

lighting conditions, with different cameras and differ-
ent camera settings. They are usually preprocessed in
different ways. All these factors could lead to mild
shifts on the input distribution. Therefore, we might
get very different performance measures when perform-
ing adversarial training on images taken under different
conditions. In this section, we demonstrate this phe-
nomenon on variants of CIFAR10 images under differ-
ent gamma mappings. These variants are then used to
represent image dataset acquired under different con-

ditions. Gamma mapping is a simple element-wise op-
eration that takes the original image x, and output the
gamma mapped image x̃(γ) by performing x̃(γ) = xγ .
Gamma mapping is commonly used to adjust the expo-
sure of an images. We refer the readers to [5] on more
details about gamma mappings. Figure 1c shows vari-
ants of the same image processed with different gamma
values. Lower gamma value leads to brighter images
and higher gamma values gives darker images, since
pixel values range from 0 to 1. Despite the changes in
brightness, the semantic information is preserved.

We perform the same experiments as in the satu-
rated CIFAR10 variants experiment in Section 2, with
results displayed in Figure 1f. Clean accuracies almost
remain the same across different gamma values. How-
ever, under PGD training, both accuracy and robust
accuracy varies largely under different gamma values.

These results should raise practitioners’ attention
on how to interpret robustness benchmark “values”.
For the same adversarial training setting, the robust-
ness measure might change drastically between image
datasets with different “exposures”. In other words, if
a training algorithm achieves good robustness on one
image dataset, it doesn’t necessarily achieve similar ro-
bustness on another semantically-identical but slightly
varied datasets. Therefore, the actual robustness could
be underestimated or overestimated significantly. This
raises the questions on whether we are evaluating im-
age classifier robustness in a reliable way, and how we
choose benchmark settings that can match the real ro-
bustness requirements in practice. We defer this im-
portant open question to future research.

3



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 1: PGD attack results with and without domain boundary constraints on MNIST and CIFAR10

MNIST CIFAR10

MNIST
variants

Robust Accuracy
w/ bound

Robust Accuracy
w/o bound

CIFAR10
variants

Robust Accuracy
w/ bound

Robust Accuracy
w/o bound

binarized 98.1 % 96.1 % saturate 1 33.0 % 32.7 %
original 95.1 % 95.1 % original 43.2 % 43.0 %
smooth 2 93.0 % 92.9 % saturate 4 64.0 % 64.0 %
smooth 3 91.3 % 91.5 % saturate 8 78.1 % 78.1 %
smooth 4 90.3 % 90.6 % saturate 16 79.4 % 79.4 %
smooth 5 89.6 % 89.9 % saturate inf 79.7 % 79.4 %

Table 2: Different robust accuracies on datasets with same inter-class distances

Inter-class
Distances

Smooth
level of
Smoothed
MNIST

Resilience
of

Smoothed
MNIST

Scale factor
of Scaled
Original
MNIST

Resilience
of Scaled
Original
MNIST

Scale factor
of Scaled
Binarized
MNIST

Resilience
of Scaled
Binarized
MNIST

7.12 3 91.3 % 0.970 94.6 % 0.821 98.6 %
7.01 4 90.3 % 0.955 95.5 % 0.809 98.6 %
6.85 5 89.6 % 0.932 94.9 % 0.790 98.5 %

4. Attempts to Understand the Phe-
nomenon

4.1. On the Influence of Perturbable Volume
Saturation moves the pixel values towards 0 and 1,

therefore pushing the data points to the corners of
the unit cube input domain. This makes the valid
perturbation space to be smaller, since the space of
perturbation is the intersection between the ε-`∞ ball
and the input domain. Due to high dimensionality,
the volume of “perturbable region” changes drastically
across different saturation levels. For example, the av-
erage log perturbable volume 1 of original CIFAR10
images are -12354, and the average log perturbable vol-
ume of ∞-saturated CIFAR10 is -15342, which means
that the perturbable volume differs by a factor of
22990 = 2(−12352−(−15342)). If the differences in per-
turbable volume is a key factor on the robustness’ sen-
sitivity, then by allowing the attack to go beyond the
domain boundary 2, the robust accuracies across dif-
ferent saturation levels should behave similarly again,
or at least significantly differ from the case of box con-
strained attacks. We performed PGD attack allow-
ing the perturbation to be outside of the data domain
boundary, and compare the robust accuracy to what we
get for normal PGD attack within domain boundary.
We found that the expected difference is not observed,
in Table 1, which serves as evidence that differences in
perturbable volume are not causing the differences in
robustness on the tested MNIST and CIFAR10 vari-
ants.

1Definition of “log perturbable volume” and other detailed
analysis of perturbable volume are given in Appendix C.1.

2So we have a controlled and constant perturbable volume
across all cases, where the volume is that of the ε-`∞ ball

4.2. On the Influence of Inter-Class Distance
When saturation pushes data points towards data

domain boundaries, the distances between data points
increase too. Therefore, the margin, the distance from
data point to the decision boundary, could also in-
crease. We use the “inter-class distance” as an ap-
proximation. Inter-class distance 3 characterizes the
distances between each class to rest of classes in each
dataset. Intuitively, if the distances between classes are
larger, then it should be easier to achieve robustness.
We also observed (in Appendix C.2.1 Figure 2) that
inter-class distances are positively correlated with ro-
bust accuracy. However, we also find counter examples
where datasets having the same inter-class distance ex-
hibit different robust accuracies. Specifically, We con-
struct scaled variants of original MNIST and binarized
MNIST, such that their inter-class distances are the
same as smooth-3, smooth-4, smooth-5 MNIST. The
scaling operation is defined as x̃(α) = α(x− 0.5) + 0.5,
where α is the scaling coefficient. When α < 1. each
dimension of x is pushed towards the center with the
same rate. Table 2 shows the results. We can see
that although having the same interclass distances, the
smoothed MNIST is still less robust than the their cor-
respondents of scaled binarized MNIST and original
MNIST. This indicates the complexity of the problem,
such that a simple measure like inter-class distance can-
not fully characterize robustness property of datasets,
at least on the variants of MNIST.

3The calculation of “inter-class distance” and other detailed
analyses are delayed to Appendix C.2.1 and Fig 2. Also note that
our inter-class distance is similar to the “distinguishability” in
[1], which also measures the distance between classes to quantify
easiness of achieving robustness on a certain dataset.
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A. Detailed Settings for Training

A.1. Detailed settings of adversarial training

The LeNet5 (widen factor 1) is composed of 32-
channel conv filter + ReLU + size 2 max pooling +
64-channel conv filter + ReLU + size 2 max pooling
+ fc layer with 1024 units + ReLU + fc layer with 10
output classes. We do not preprocess MNIST images
before feeding into the model.

For training LeNet5 on MNIST variants, we use the
Adam optimizer with an initial learning rate of 0.0001
and train for 100000 steps with batch size 50.

We use the WideResNet-28-4 as described in [8] for
our experiments, where 28 is the depth and 4 is the
widen factor. We use “per image standardization” 4 to
preprocess CIFAR10 images, following [3].

For training WideResNet on CIFAR10 variants, we
use stochastic gradient descent with momentum 0.9
and weight decay 0.0002. We train 80000 steps in total
with batch size 128. The learning rate is set to 0.1 at
step 0, 0.01 at step 40000, and 0.001 at step 60000.

We performed manual hyperparameter search for
our initial experiment and do not observe improve-
ments over the above settings. Therefore we used these
settings throughout the all the experiments in the pa-
per unless otherwise indicated.

4https://www.tensorflow.org/api_docs/python/tf/
image/per_image_standardization

B. Detailed Experimental Results

We listed exact numbers of experiments involved in
the main body in Table 3, 4, 5 and 6.

C. Detailed Analyses

C.1. Detailed Analysis of Effects of Data Domain
Boundary

One natural hypothesis about the reason of achiev-
ing better robustness could be that it is the effect of the
boundaries. Indeed, if the data distribution is closer
to the data domain boundary, the valid perturbation
space, the ε-`∞ ball may be restricted since it will in-
tersect with the boundary. We then test the correla-
tion between “how close the data distribution is to the
boundary” and its achievable robustness, by examining
the volume of the allowed perturbed box across differ-
ent datasets.

The intersection of the data domain, unit cube
[0, 1]d, with the allowed perturbation space, ε-`∞ ball
[xi − ε, xi + ε]d, is the hyperrectangle [max{xi −
ε, 0},min{xi + ε, 1}]d, where i = 1, · · · , d are the in-
dexes over input dimensions. The size of the available
perturbation space at x and ε is defined by the volume
of this hyperrectangle:

Vol(x, ε) =
d∏
i=1

(min{xi + εi, 1} −max{xi − εi, 0})

In high dimensional space, when ε is fixed, this vol-
ume varies greatly based on the location of x. For
example, if x is on one of the corners of the unit cube,
Vol(xcorner, ε) = εd. If each dimension of x is at least ε
away from all the data boundaries, then the volume of
the hyperrectangle is Vol(xinside, ε) = (2ε)d. Therefore
there can be 2d times difference of perturbable space
between different data points. As shown in the average
log perturbable volumes Table 7, we can see that dif-
ferent variations of datasets has significantly different
perturbable volumes, with the same trend with previ-
ously described. It is notable that for the original CI-
FAR10 datasets has log volume -12354, which is very
close to the -12270. The different of 84 bits indicates on
average, the perturbation space is 284 smaller than the
full ε-`∞ ball if there is no intersection with the data
domain boundary. Volume differences between differ-
ent saturation or smooth level can be interpreted in
the similar way. Note that for CIFAR10 images with
large saturation, although they appear similar to hu-
man, they actually have very large differences in terms
of perturbable volumes.

If the perturbable volume hypothesis holds, then we
should observe significantly lower accuracy under PGD

5
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Table 3: Performance and Robustness of models trained on MNIST variants.

Standard Training PGD Training

MNIST
variants

Test
Acc

Test
Acc

Robust Accuracy
ε = 0.3

Robustness w.r.t. Predictions
ε = 0.3

binarized 98.5 % 98.9 % 98.1 % 98.5 %
original 99.3 % 99.2 % 95.1 % 95.1 %
smooth 2 99.3 % 98.9 % 93.0 % 93.1 %
smooth 3 99.2 % 99.0 % 91.3 % 91.4 %
smooth 4 99.1 % 98.8 % 90.3 % 90.4 %
smooth 5 99.0 % 98.7 % 89.6 % 89.7 %
smooth 6 99.1 % 98.5 % 87.6 % 87.7 %
smooth 7 99.0 % 98.3 % 85.4 % 85.5 %
smooth 8 99.0 % 97.9 % 83.1 % 83.3 %

Table 4: Performance and Robustness of models trained on CIFAR10 variants.

Standard Training PGD Training

CIFAR10
variants

Test
Acc

Test
Acc

Robust Accuracy
ε = 8/255

Robustness w.r.t. Predictions
ε = 8/255

saturate 1 93.8 % 77.5 % 33.0 % 33.6 %
saturate 1.5 94.7 % 83.7 % 38.7 % 39.1 %
saturate 1.75 95.2 % 84.9 % 41.1 % 41.5 %

original 95.0 % 85.4 % 43.2 % 43.6 %
saturate 2.25 94.8 % 85.4 % 44.4 % 44.9 %
saturate 2.5 94.8 % 84.8 % 46.4 % 47.0 %
saturate 3 94.5 % 82.9 % 51.7 % 52.9 %
saturate 4 93.8 % 80.4 % 64.0 % 68.7 %
saturate 8 93.3 % 80.4 % 78.1 % 93.8 %
saturate 16 92.9 % 79.9 % 79.4 % 98.4 %
saturate 64 89.6 % 79.5 % 79.3 % 99.1 %
saturate 128 85.3 % 80.2 % 79.9 % 99.1 %
saturate 256 83.0 % 80.0 % 79.7 % 99.2 %
saturate inf 80.3 % 80.0 % 79.7 % 99.2 %

attack if we allow perturbation outside of data domain
boundary. Since this greatly increases the perturbable
volume. We measure the accuracy under PGD attack
with and without considering data domain boundary
for both MNIST and CIFAR10 variants. The results
are shown in Table 1. “With considering boundary”
corresponds to regular PGD attacks. We can see that
allowing PGD to perturb out of bound do not re-
duce accuracy under attack. This means that PGD
is not able to use the significantly larger additional
volumes even for binarized MNIST or highly saturated
CIFAR10, whose data points are on or very close to the
corner. In some cases, allowing perturbation outside of
domain boundary makes the attack slightly less effec-
tive. This might be due to that data domain boundary
constrained the perturbation to be in an “easier” re-
gion. This might seem surprising considering the huge
difference in perturbable volumes, these results con-
form with empirical results in previous research [2, 7]
that adversarial examples appears in certain directions
instead of being distributed in small pockets across
space. Therefore, the perturbable volume hypothesis
is rejected.

C.2. Detailed Analyses of Inter-class Distance

C.2.1 Calculation of Inter-class Distance

We calculate the inter-class distance as follows. Let
D = {xi} denote the set of all the input data points,
Dc = {xi|yi = c} denote the set of all the data points
in class c, and D¬c = {xi|yi 6= c} denote all the
data points not in class c. Our goal is to calculate
d(Dc, D¬c) for all the classes, where d(Dc, D¬c) ap-
proximates the margin between class c and the rest.
To estimate d(Dc, D¬c), we first compute the margin
for each data point x in class c. To do that, we calcu-
late the average ‖x−xj‖2, where xj ∈ D¬c is one of x’s
10% nearest neighbors in D¬c. Lastly, the inter-class
distance of class c, d(Dc, D¬c), is then calculated as the
average of smallest 10% d(x,D¬c) for x ∈ Dc.

Note that we choose `2 distance for inter-class dis-
tance, instead of using the `∞ which measures the ro-
bustness. This is because `∞-distance between data
examples is essentially the max over the per pixel dif-
ferences, which is always very close to 1. Therefore
the `∞-distance between data examples is not really
representative / distinguishable.

Figure 2 shows the inter-class distances (averaged
over all classes) calculated on MNIST and CIFAR10
variants. The binarized MNIST has a significantly
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Table 5: Performance and robustness of different sized LeNet5 models on MNIST variants

Standard Training, Accuracy
Training Set Test Set

Widen factor 0.125 0.25 0.5 1 2 4 0.125 0.25 0.5 1 2 4

binarized 99.9% 100.0% 100.0% 99.6% 100.0% 100.0% 98.7% 99.0% 99.2% 98.5% 99.4% 99.2%
original 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 98.8% 99.2% 99.2% 99.3% 99.4% 99.3%
smooth 2 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 98.8% 99.0% 99.1% 99.3% 99.3% 99.4%
smooth 3 99.9% 99.9% 100.0% 100.0% 100.0% 100.0% 98.8% 98.8% 99.2% 99.2% 99.1% 99.3%
smooth 4 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 98.7% 99.0% 99.0% 99.1% 99.4% 99.4%
smooth 5 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 98.5% 99.0% 99.2% 99.0% 99.3% 99.3%
smooth 6 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 98.4% 98.9% 99.0% 99.1% 99.2% 99.3%
smooth 7 99.8% 99.9% 100.0% 100.0% 100.0% 100.0% 98.5% 98.8% 99.0% 99.0% 99.3% 99.3%
smooth 8 99.7% 100.0% 100.0% 100.0% 100.0% 100.0% 98.4% 98.9% 98.9% 99.0% 99.2% 99.0%

PGD Training, Accuracy
Training Set Test Set

Widen factor 0.125 0.25 0.5 1 2 4 0.125 0.25 0.5 1 2 4

binarized 97.8% 99.6% 100.0% 100.0% 100.0% 100.0% 97.4% 98.3% 98.8% 98.9% 99.0% 99.2%
original 97.0% 98.4% 99.8% 100.0% 100.0% 100.0% 97.0% 98.2% 98.9% 99.2% 99.1% 99.2%
smooth 2 96.1% 98.1% 99.0% 99.9% 100.0% 100.0% 96.1% 97.8% 98.5% 98.9% 99.0% 99.0%
smooth 3 96.3% 97.8% 98.9% 99.7% 99.9% 100.0% 96.5% 97.6% 98.6% 99.0% 99.1% 99.1%
smooth 4 95.3% 97.3% 98.5% 99.5% 99.8% 99.9% 95.4% 97.2% 98.1% 98.8% 99.0% 99.0%
smooth 5 94.9% 96.5% 98.0% 99.3% 99.6% 99.8% 95.0% 96.5% 97.9% 98.7% 98.9% 98.9%
smooth 6 93.2% 95.6% 97.4% 99.0% 99.5% 99.7% 93.5% 95.7% 97.1% 98.5% 98.7% 98.7%
smooth 7 91.9% 95.0% 97.5% 98.7% 99.2% 99.4% 92.4% 95.2% 97.2% 98.3% 98.5% 98.7%
smooth 8 89.4% 94.2% 96.5% 98.4% 99.0% 99.3% 89.7% 94.4% 96.4% 97.9% 98.2% 98.4%

PGD Training, Robust Accuracy
Training Set Test Set

Widen factor 0.125 0.25 0.5 1 2 4 0.125 0.25 0.5 1 2 4

binarized 95.2% 98.5% 100.0% 100.0% 100.0% 100.0% 94.5% 96.5% 98.0% 98.1% 98.0% 98.0%
original 86.9% 90.8% 97.9% 99.3% 99.6% 99.8% 87.1% 89.9% 95.2% 95.1% 94.8% 94.9%
smooth 2 80.5% 87.6% 90.9% 98.0% 99.1% 99.5% 81.2% 87.0% 88.7% 93.0% 92.3% 92.1%
smooth 3 75.2% 82.0% 90.3% 95.5% 97.8% 98.7% 75.7% 81.5% 88.5% 91.3% 91.6% 90.8%
smooth 4 71.9% 77.6% 87.5% 93.9% 96.8% 97.9% 72.7% 77.7% 86.3% 90.3% 90.6% 90.0%
smooth 5 65.7% 77.1% 85.7% 92.5% 94.6% 95.0% 66.2% 77.1% 85.1% 89.6% 89.8% 88.4%
smooth 6 58.0% 71.5% 80.5% 90.6% 93.1% 93.8% 59.3% 72.0% 80.2% 87.6% 88.0% 87.2%
smooth 7 61.7% 74.2% 83.3% 87.6% 90.5% 92.6% 62.8% 75.3% 83.0% 85.4% 86.7% 87.8%
smooth 8 70.3% 72.4% 80.3% 85.3% 90.5% 88.7% 71.7% 73.2% 80.3% 83.1% 86.9% 83.8%

larger inter-class distance. As smoothing kernel size
increases, the distance also decrease slightly. On CI-
FAR10 variants, as the saturation level gets higher, the
inter-class distance increases monotonically. We also
directly plot inter-class distance vs robust accuracy on
MNIST and CIFAR10 variants. In general, inter-class
distance shows a strong positive correlation with ro-
bust accuracy under these transformations. With one
exception that original MNIST has smaller inter-class
distance, but is sightly more robust than smooth-2
MNIST. This, together with the counter examples we
gave in Table 2, suggests that inter-class distance can-
not fully explain the robust variation across different
dataset variants.
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Table 6: Performance and robustness of different sized Wide ResNet models on CIFAR10 variants

Standard Training, Accuracy
Training Set Test Set

Widen factor 0.25 1 4 0.25 1 4

saturate 1 85.5% 99.9% 100.0% 82.4% 91.1% 93.8%
saturate 1.5 87.0% 99.9% 100.0% 84.2% 92.1% 94.7%
saturate 1.75 87.4% 99.9% 100.0% 84.5% 93.0% 95.2%

original 87.2% 99.9% 100.0% 84.4% 92.5% 95.0%
saturate 2.25 87.3% 99.9% 100.0% 84.5% 92.5% 94.8%
saturate 2.5 86.4% 99.9% 100.0% 83.7% 92.3% 94.8%
saturate 3 86.2% 99.9% 100.0% 84.0% 92.2% 94.5%
saturate 4 85.8% 99.9% 100.0% 83.1% 91.1% 93.8%
saturate 8 84.6% 99.8% 100.0% 81.2% 90.1% 93.3%
saturate 16 83.5% 99.7% 100.0% 81.0% 89.4% 92.9%
saturate 64 80.5% 99.4% 100.0% 79.2% 86.9% 89.6%
saturate 128 77.1% 98.7% 100.0% 74.6% 83.0% 85.3%
saturate 256 73.7% 97.6% 100.0% 70.7% 76.5% 83.0%
saturate inf 73.2% 97.3% 99.9% 70.6% 76.3% 80.3%

PGD Training, Accuracy
Training Set Test Set

Widen factor 0.25 1 4 0.25 1 4

saturate 1 45.4% 68.3% 93.1% 46.8% 66.9% 77.5%
saturate 1.5 52.1% 76.5% 98.0% 53.3% 74.1% 83.7%
saturate 1.75 53.8% 79.5% 99.2% 55.3% 77.0% 84.9%

original 56.1% 81.4% 99.7% 57.1% 78.4% 85.4%
saturate 2.25 56.8% 82.7% 99.9% 58.1% 78.8% 85.4%
saturate 2.5 57.6% 83.9% 100.0% 58.3% 79.1% 84.8%
saturate 3 60.0% 86.3% 100.0% 60.8% 79.5% 82.9%
saturate 4 62.8% 91.3% 100.0% 63.7% 77.9% 80.4%
saturate 8 67.7% 96.1% 100.0% 67.0% 76.6% 80.4%
saturate 16 67.2% 96.1% 99.9% 66.0% 76.4% 79.9%
saturate 64 70.0% 96.5% 99.9% 68.6% 75.8% 79.5%
saturate 128 71.4% 96.4% 99.9% 68.9% 76.6% 80.2%
saturate 256 68.6% 96.9% 99.9% 65.7% 76.6% 80.0%
saturate inf 71.5% 96.9% 99.9% 69.7% 76.1% 80.0%

PGD Training, Robust Accuracy
Training Set Test Set

Widen factor 0.25 1 4 0.25 1 4

saturate 1 24.0% 36.9% 71.1% 25.6% 34.4% 33.0%
saturate 1.5 29.0% 44.4% 81.3% 31.6% 40.7% 38.7%
saturate 1.75 30.9% 47.8% 86.0% 32.7% 44.0% 41.1%

original 32.4% 50.4% 90.3% 35.0% 45.5% 43.2%
saturate 2.25 33.9% 52.9% 93.4% 36.1% 47.3% 44.4%
saturate 2.5 35.5% 55.4% 96.0% 37.5% 49.1% 46.4%
saturate 3 38.4% 61.5% 98.9% 40.6% 52.5% 51.7%
saturate 4 44.9% 77.4% 99.7% 46.1% 60.4% 64.0%
saturate 8 62.3% 95.0% 99.8% 61.9% 74.9% 78.1%
saturate 16 66.0% 95.5% 99.9% 65.0% 75.5% 79.4%
saturate 64 69.1% 96.3% 99.9% 67.6% 75.5% 79.3%
saturate 128 70.7% 96.2% 99.9% 68.2% 76.2% 79.9%
saturate 256 68.0% 96.7% 99.9% 65.2% 76.3% 79.7%
saturate inf 70.9% 96.7% 99.9% 69.2% 75.8% 79.7%

Table 7: Perturbable volumes of different variants of MNIST and CIFAR10. Values shown in table are the average
log value (in bits) of volumes of test data. For MNIST, ε = 0.3, for CIFAR10 ε = 8/255.

MNIST (valid range -1361 to -577) CIFAR10 (valid range -15342 to -12270)

binary original 3 5 original 4 8 16 64 256 512 inf

-1361 -1297 -1265 -1234 -12354 -12394 -12477 -12657 -13620 -14747 -15028 -15342
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(a) Processing levels vs inter-class distances

(b) Inter-class distance vs robust accuracy

Figure 2: Inter-class distance’s influence on robust accuracy on different MNIST and CIFAR10 variants
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