
Evaluating the Cost of Employing LPs and STPs in Planning:
Lessons Learned From Large Real-Life Domains

Elad Denenberg and Amanda Coles and Derek Long
Department of Informatics, King’s College London, UK.

email: {elad.denenberg,amanda.coles,derek.long}@kcl.ac.uk

Abstract

When solving real-life problems we often encounter issues that
are not captured by academic benchmark domains. In this paper
we consider an application problem, representative of a class of
real-world problems that have interesting properties: long solution
plans with many temporal/numeric constraints. We identify a
number of limitations of a popular family of planners in solving
these problems. This family of planners perform Forward Search
and call a Linear Programming (LP) solver multiple times at
every state to check for consistency, and to set bounds on the
numeric variables in order to determine action applicability. These
checks during search allow the pruning of branches; however,
they do carry computational cost. In this paper we investigate
and analyse this trade-off, with particular reference to our class of
application problems, and show that adapting the planners to call
the LP solver less often, and using a cheaper consistency check
at each state, can improve performance.

1 Introduction
Automated Planning is concerned with using a planner to
formulate a sequence of actions that transforms a given initial
state into a desired goal state. One strength of planning is
domain-independence: a single general planner can plan in a
wide range of different application domains. For example, space
(Chien et al. 2000), battery usage (Fox, Long, and Magazzeni
2011) and software penetration testing (Obes, Sarraute, and
Richarte 2013). In order to facilitate their application in realistic
problems planners need to reason with expressive models of
the world. Such models can be temporal: finding a plan with
timestamped actions, taking into account action durations and
concurrency; as well as numeric: considering numeric variables
that change discretely, or in hybrid problems also continuously,
over time (Fox and Long 2003).

When planning in expressive domains a planner needs a
mechanism to schedule the plan, i.e. assign timestamps to
actions to meet the temporal and numeric constraints. One
option is the decision epoch mechanism of SAPA (Do and
Kambhampati 2001) and Temporal Fast Downward (Eyerich,
Mattmüller, and Röger 2009); alternatively, one can use simple
temporal networks (STNs) (Dechter, Meiri, and Pearl 1991)
e.g. as in the planner Crikey 3 (Coles et al. 2009). Approaches
to hybrid planning employ more complex mechanisms include
compiling the problem into SAT Modulo Theories (Cashmore

et al. 2016), interval relaxation (Scala et al. 2016), time
discretization (Piotrowski et al. 2016) and convex optimization
(Fernández-González, Karpas, and Williams 2017).

In this work we focus on a family of planners that make use
of LP solvers to schedule the plan. This family includes COLIN
(Coles et al. 2012), POPF (Coles et al. 2010) and OPTIC (Benton,
Coles, and Coles 2012). These planners perform forward state-
space search starting from the initial state. At each state in the
search a LP solver is used once to determine whether there
exists a consistent schedule for the plan (adhereing to temporal
and numeric constraints). If a no consistent schedule exists for
the plan to the current state, the search branch can be pruned.
If the state is consistent, the LP is then used multiple more
times to bound the numeric variables and thus prune the space of
applicable actions in this state, narrowing the search space ahead.

In this work, we analyse the performance of these planners on
a particular interesting class of real-world application problems,
illustrated in a domain provided by our industrial partner. This
domain highlights issues they encountered in using this family
of planners in their deployed applications. Specifically, the
problems require long solution plans, with large numbers of
numeric variables and temporal constraints. An important
observation made in this class of application problems is
that whilst the traditional planning benchmarks, on which the
planners were initially evaluated, lead typically to small LPs
being generated at each state (Coles et al. 2012); LP solving in
this class of application domains is much more expensive as the
long plans, hence large numbers of variables, lead to larger LPs,
which hinders planner performance.

In this paper we consider the trade-offs involved in solving
LPs to check for consistency and bound variables at every state:
theoretically, since we only require the final plan to be valid,
we could simply complete the consistency check on states the
planner believes to be goal states. The conventional wisdom has
been that checking for inconsistent plans at each state allows
pruning of the search space thus expanding fewer nodes to reach
the goal; however, this does come at the cost of a higher per-node
expansion overhead, especially if the LPs to be solved are large
and complex. Our contribution here is propose and evaluate a
range of strategies for using schedulers to prune, ranging from
the traditional use of a LP for consistency and bounds checking
at every state; though to using just an STN to check only tem-

Leg1 Leg2

Obs1 Obs2 Obs3 Obs4
Obs1 start dist. Obs3 start dist.

m

Figure 1: The flying observer

poral consistency at each state to checking only for consistency
in goal states. We thoroughly analyse planner performance
with respect to different configurations on our representative
application problems and show that we can obtain better
performance in these domains with an approach that performs
cheaper STN consistency checking on a per-state basis, whilst
stil guaranteeing plan consistency using a LP in the goal state.

2 Problem Definition
A temporal planning problem with discrete and linear continuous
numeric effects is a tuple:

〈I,G,A,P,V〉 (1)
where P is a set of propositions and V a set of numeric variables.
I is a set of value assignments to these propositions and numeric
values, representing the initial state of the problem,G is the goal:
a conjunction of propositions in P and linear numeric conditions
over the variables in V , of the formw1v1+w2v2+...+wivi{<
,≤,=,≥>}c (w1...wi and c are constants ∈R). A is a set of
actions defined by the tuple:

〈d,pre`,eff `,pre↔,eff↔,prea,eff a〉 (2)

where d is the duration of the action constrained by a conjunc-
tion of numeric conditions. pre` and prea are conjunctions of
preconditions (facts and numeric conditions) that must be true
at the start and end of the action, pre↔ are invariant conditions
(preconditions that must hold throughout the action’s duration),
eff ` and eff a are instantaneous effects that occur at the start and
end of the action. Such effects may add or delete a proposition
p ∈ P (eff +, eff −) or update a numeric variable vi ∈ V ac-
cording to a linear instantaneous change (eff num). In this work
all effects in eff num are assumed to be linear and of the form:
vk{+=,=,-=}w1v1+w2v2+ ...+wivi+wj ∗durA+c where
durA is a special variable representing the duration of the action
A of which this is an effect (w1...wj and c∈R). eff↔ is a con-
junction of continuous effects operating throughout the duration
of the action. In this work each continuous effect is linear, i.e. of
the form dv

dt {+=,=,-=}c where c∈R is a constant.

3 Example Representative Application Domain
This example was supplied by our industrial partner. It
encapsulates the structure of problems that arise when using an
LP planner in their target application domains.

In this domain, named flying observer, the planner is required
to plan a Unmanned Aerial Vehicle (UAV) observation mission.
The UAV is required to fly legs over a desired streach of land
containing objects to be observed. Each leg is of different
length. Each observation has a different duration and requires
a different type of equipment. To mark the area within the

time

distance

Precondition

Can start
observing

Figure 2: Distance Requirement

Fly Leg 1

Configure Observe

Distance requirement

(a) Possible Plan

Fly Leg 1

Configure Observe

Distance requirement

(b) Impossible Plan

Figure 3: Durative Meaning of Distance Requirement

leg in which the observation must take place a target-start
distance is defined. The observation can take place only when
the UAV has flown more than the target-start distance of that leg
(flownl ?leg≥ target-starto). A continous numeric effect of the
flyl action updates the distance flown so far in a leg: dflownl

dt =1.
Fig 1 illustrates an instance of this domain: in this instance two

legs are defined (marked in solid blue lines), in each leg two ob-
servations are required (marked in red, pattern filled lines). All ob-
servations have a target-start distance defined, but for clarity only
the starting distance of the first and third observations are shown.

In order to perform an observation a defined piece of
equipment needs to be calibrated and configured for a specific
observation. Once the observation is done the equipment needs
to be released to become available for future observations. The
domain comprises the following actions:
• take-offl: dur = 5; pre` ={on-ground,first-legl};
eff ` ={¬on-ground, flownl = 0}; eff a ={flyingl};
• set-coursel1,l2: dur = 1; pre` ={donel1,nextl1,l2};
eff ` ={¬donel1}; eff a ={flyingl2, flownl2 = 0};
• flyl: dur=distancel/speedl;
pre` ={flyingl}; pre↔ ={flownl ≤ distancel};
eff a ={donel, ¬flyingl}; eff↔ ={dflownl/dt += 1};
• configureo,e: dur = 1; pre` ={availablee, optionforo,e};
eff ` ={¬availablee}; eff a ={configuredforo, pendingo,e};
• observel,o: dur = time-foro; pre` ={configuredforo,

containsl,o, awaitingo, target-starto≤flownl};
pre↔ ={flyingl}; eff ` ={¬awaitingo}; eff a={observedo}
• releaseo,e: dur = 1; pre` ={pendingo,e};
eff ` ={¬configuredforo, ¬pendingo,e}; eff a ={availablee};
The target distance precondition and temporal constraints of

this problem force the configure/observe actions to fit within
the fly action. The meaning of the precondition is illustrated in
Fig 2: The red line is a depiction of the distance change as the
UAV flies over the leg. The dashed blue line is the precondition
signifying the distance required for the start of the observation.

Algorithm 1: Overview of OPTIC’s Search
Data: Planning Problem 〈I,G,A,P,V 〉
Result: A solution plan

1 Q← [I];
2 whileQ is not empty do
3 S←pop the next state fromQ;
4 app←a∈Asnap·S |=pre(A);
5 foreach ai∈app do
6 S′= apply(a,S);
7 if ¬ isConsistent(S′) then continue;
8 ;
9 if S′ |=G then return plan to S′;

10 ;
11 UpdateNumericVariableRanges(S ′);
12 h(S′)=ComputeHeuristicValue(S ′);
13 if h(S’) 6=∞ then Q.enqueue(S′);
14 ;

15 return problem unsolvable;

When the distance reaches the value required in the precondition
the observation can start. The meaning of the numeric constraint
as it is manifested in the temporal state can be seen in Fig 3a.

Notice that by defining containsl,o for multiple legs the plan-
ner can be given a choice of multiple legs in which it can decide
to perform observation o. Further, notice that the legs must be
flown in the order defined by the predicates nextl1,l2, therefore, a
leg may not be skipped even if it does not contain an observation.

4 Linear Programming (LP) based planners
The mechanism described here allows planners to reason with
continuous numeric change. It was first described in COLIN
(Coles et al. 2012), then used in POPF and OPTIC. An overview
of this search is given in Algorithm 1.

4.1 Search In OPTIC
OPTIC performs forward search from the initial state and
branching over applicable actions, exploring partially-ordered
but un-time-stamped sequences of snap-actions. Snap-actions
are instantaneous actions marking the start (A`) and end (Aa)
of a durative action A: A` has preconditions pre` A A and
effects eff ` A; Aa has preconditions prea A and effects eff a
A. For brevity of notation we define the set Asnap to contain
all snap actions corresponding to the start and end of actions in
A (A`,Aa such that a∈A) and all instantaneous actions inA.

Each stateS in search comprises the set of propositions (S.p⊆
P) that are true in S and optimistic upper (S.max(v)) and lower
(S.min(v)) bounds on the value each variable in V can hold in
S. In the initial state all variables have max(v)=min(v)= the
value of v specified in the initial state; max(v) and min(v) will
only differ from each other in subsequent states if/when a vari-
able has been subject to continuous change in the plan so far, as
the value of v will then change as time elapses in S. Search pro-
ceeds by popping the first state from the openlist: in our work, we
use WA* (W=5) so sort the openlist by h(S)+5.g(s), using the
temporal-numeric RPG heuristic of COLIN (Coles et al. 2012).

At line 4 the planner identifies the actions applicable in S, i.e.
those whose preconditions are satisfied in S (and do not lead to a
state in which the invariants of the currently executing actions are
violated). A propositional precondition p is satisfied if it is true in
the state, i.e. p∈S.p. Numeric preconditions, of the formw1v1+
w2v2+ ...+wivi{≥,>,=,<,≤}c, are deemed satisfied if the
values of max(v) and min(v) optimistically satisfy them: that is,
for example, we consider v1−v2>=5 to be satisfied ifub(v1)−
lb(v2)≥5. Next (line 6) we use the applicable actions to generate
all successors S′ of S by adding/deleting all propositions in eff +a
and eff −a respectively, and applying all discrete numeric effects
to bothmax(v) andmin(v) for all v∈V affected by eff numa . At
this point OPTIC also adds the necessary ordering constraints to
the plan: the action that has just been applied is ordered after the
last actions to add each of its preconditions, after actions whose
preconditions it deletes, and after actions with numeric effects on
variables it updates or refers to in preconditions/effects: all such
constraints are of the form tj−ti≥ε, where tj/ti are the times
at which the new and existing action must occur respectively and
ε is a small constant enforcing separation.

4.2 Checking Temporal/Numeric Consistency
Whilst the plan generated by the above search is guaranteed
to be propositionally consistent (all propositional preconditions
are satisfied when an action is applied) it might not be tempo-
rally or numerically consistent. Temporal/numeric consistency
of plans must be explicitly checked, this is done at Line 7, using
either an STN or LP as appropriate. To illustrate why this in
the case, consier the partial plan: take-off,fly`l0, configure`o1,e2,
configureao1,e2,flyal0 in our application domain. This plan is propo-
sitionally sound, but if the duration of configure exceeded the du-
ration of fly then this would not be a temporally consistent plan.

First, consider the case where there are no continuous or
duration dependednt numeric effects in the plan (like the one
given above). In this case we can update the values of all
numeric variables in each state according to discrete numeric
effects, and know the exact values of vi in each state, allowing
us to enforce numeric preconditions correctly during search
(max(v) = min(v) = the known value of v in S). The only
remaining constraints we have are temporal constraints: ordering
constraints of the form tj− ti ≥ ε and duration constraints of
the form taa− ta`{≤,=≥}c, where c is a constant (without
loss of generality, c can be computed from the known values
of variables vi ∈ v in the state in which a` was applied). It is
well known that such a set of constraints constitutes a simple
temporal network (STN) (Dechter, Meiri, and Pearl 1991): a
solution to this represents a valid schedule for the snap-actions
in the plan. This can be solved (or proven unsolvable) in
polynomial time using an all-pairs shortest path algorithm.

Consider now the more complex case where we have a partial
plan that has a precondition on a variable that has undergone
continuous numeric change, e.g.: take-off,fly`l0, configure`o1,e2,
configureao1,e2, observe`l0,o1, observeal0,o1,flyal0. We can as above,
equally check that the plan is temporally consistent (the duration
of configure and observe actions are less than the fly action)
using a simple temporal network; if the plan were temporally
inconsistent we could prune it using only an STN. However,
we cannot be certain using an STN that this plan is valid as the

STN does not take into account the precondition of observel0,o1:
target-starto1 ≤ flownl. It might be that there is insufficient
time within the leg l0 action to wait until this constraint is met
(e.g. if leg l0 has duration 15 and observel0,o1 duration 10 and
target-start distance 11) then the plan would not be temporally
and numerically sound (this is illustrated in Fig 2–3). In this
case we need to use an LP to encode both the temporal and
numeric constraints of the problem. Section 5 details how this
LP is built in such a way that a solution is a valid assignment of
time stamps to the snap actions in the partial plan that satisfies
the temporal and numeric constraints of the problem.

At line 7 OPTIC intelligently selects the scheduler used based
on the constraints in the plan and will use the cheaper STN by
default, using the LP only when constraints that necessitate it are
present. If the LP, or STN, determines that there is no consistent
schedule for the plan reaching a state, the plan is temporally
or numerically invalid and so the state is pruned. If the LP
determines there is a valid schedule of the actions that satisfies
the temporal/numeric constraints thenS′ is a valid successor ofS.
If S′ satisfies the goal, we have as solution plan. Otherwise, the
LP is used again to find the range on each state variable (line 11)
prior to heuristic evaluation, using the standard temporal/numeric
relaxed planning graph heuristic of Colin (Coles et al. 2012). It
is then inserted into the openlist, providing h(S′) 6=∞, i.e. the
heuristic does not indicate S′ is a dead-end.

To understand this use of the LP consider the partial plan:
take-off,fly`l0, flyl0`, configure`o1,e1, configureao1,e1. As soon as
the action fly`l0 is applied we have a continuous effect increasing
the value of the numeric variable flownl0, so we can now no
longer say flown is in the range [0,0] (as in the initial state) but
it could be anywhere in the range [0,∞] as an effect increasing
it has started but not yet ended. In the general case we can
exploit the same LP we used for consistency checking to tighten
the bounds on numeric variables in each state: for each v∈V
that has been subject to any continuous or duration-dependent
change in the plan to reach S′ we set the LP objective function
to maximise (and then minimise) v to find out the maximum
possible value of v admitted by the plan. Again, we explain how
the LP is used to do this in Section 5.

We make two observations about this use of the LP to tighten
variable bounds. First it is effectively optional: even if we as-
sumed the bounds on v were [0,∞] then when S′ is later ex-
panded, and isConsistent() is used on its successors, this would
prune any reached by an action whose preconditions were not
satisfiable in S′. Though, the use of the LP to generate tighter
bounds on the value of v helps prune the list of applicable actions:
if an action can be pruned because its numeric preconditions are
unsatisfied according to the tighter bounds on v, this saves build-
ing another LP and using isConsistent for the corresponding suc-
cessor: this is a key trade-off that we investigate in this paper. The
second observation is that these bounds are optimistic: that is, we
ask the LP to maximise v and separately to minimisew however,
it might be the case that the maximum value of v and the mini-
mum value of w are not achievable by the same schedule; so the
precondition v−w>=5 might still not be satisfiable even if the
bounds state that it is; thus we always need the is consistent check
upon expanding S′ to confirm its preconditions are satisfied;
although this would be needed anyway, to ensure any other tem-

Step Action variables constraints comment
0 TakeOff t0 ≥0

1 Fly`l0

t1 −t0≥ε Step1 afer Step0
flown l01 =0 Initial Assignlemt

flown l0′1
flown l01 Value after action
≤distance l0 Invariant

2 Configure`o1,e1

t2 −t1≥ε Step2 after Step1

flown l02
=flown l0′1+1∗(t2−t1) Value before action
≤distance l0 Invariant

flown l0′2
=flown l02 Value before Action
≤distance l0 Invariant

3 Configureao1,e1

t3 −t2≥ε Step2 after Step1

flown l03
=flown l0′2+1∗(t3−t2) Value before action
≤distance l0 Invariant

flown l0′3
=flown l02 Value before Action
≤distance l0 Invariant

4 Observe`o1,l0

t4 −t3≥ε Step3 after Step2

flown l04

=flown l0′3+1∗(t4−t3) Value before action
≥target-start o1 Start precondition
≤l0 dist Invariant

flown l0′4

=flown l04 Value after action
≥Target dist o1 Strat precondition
≤l0 length Invariant

5 Observeao1,l0

t5
−t4≥ε Step4 after Step3
−t4≤time−for Action duration

flown l05
=flown l0′4+1∗(t5−t4) Value before action
≤distance l0 Invariant

flown l0′5
=flown l05 Value after action
≤l0 length Invariant

6 now tnow
−t5≥ε,−t4≥ε,−t3≥ε, After All Steps−t2≥ε,−t1≥ε,−t0≥ε

flown l0now =flown l0′5+1∗(tnow−t5) Value Now

Table 1: LP Equations of a Partial Plan

poral/numeric constraints are satisfied when applying the action.

5 Building LPs in OPTIC
In this section we detail how the LP to check plan consistency
is formulated at each state. We refer throughout to Table 1
which shows an example LP for the partial-plan: take-off, fly`l0,
configure`o1,e1, configureao1,e1, observe`o1,l0, observeao1,l0.

To represent the planning problem as an LP the following LP
variables are defined for each step i of the partial plan: ti defining
the time at which the step is to be taken, vi the value of variable
v∈V just before the application of the action and v′i ∈V the
value of variable v just after the application of the action.
Temporal Constraints: Ordering constraints can be enforced
exactly as written, when step j must occur after step i we write:

tj−ti≥ε (3)

Duration constraints can also be formulated directly:

tj−ti{≥,≤,=}w1
i v

1
i +w

2
i v

2
i +...c (4)

For example, in Table 1 ordering constraints enforce that
observe`o1,l0 occurs at least ε after configureao1,e1 as the latter
achieves a precondition of the former; and duration constraints
enforce that observeao1,l0 occurs exactly the defined duration
after observe`o1,l0 (tObs1a−tObs1` =durObs1). Recall that in the
absence of continuous numeric effects and duration-dependent
effects, the LP need only contain these temporal constraints,
and the right hand sides of all duration constraints are known
constants, therefore an STN solver suffices.
Numeric Constraints: To manage linear continuous change
an additional variable δvi stores the sum of change acting on

variable v after step i. IfA is a durative action with a continuous
linear effect, and cA the constant defining said linear change
(i.e. dvi

dt +=cA). Then δvi is calculated thus:

δvi=

{
δvi−1+cA ifAi=A`
δvi−1−cA ifAi=Aa

(5)

This, ifA starts at stepi, cA will be added to δvi. IfA ends at
stepj, cA will be removed from δvj. Thus δvi is the sum of all ef-
fects currently active on v∈V after stepi. We use δvi to compute
the value of variables undergoing continuous numeric change:

vi=v
′
i−1+δvi−1.(ti−ti−1)

This can be seen in Table 1: the only continuous effect is acting
on flown l0i from step 2 onward. Thus δflown l0i = 1 (for
i≥2) and the value of flown l0i is calculated according to this
at each step (e.g. flown l02=flown l0′1+1.(t2−t1)).

Numeric preconditions pre` and prea are formulated over
the respective variables vi. We formulate the invariant conditions
pre↔ of actions at the start and end steps of the action and at
every step between them. This is sound because all effects are
linear so no turning points can be present between the steps.

In the example LP for the flying observer (Table 1) the
distance-flown (flownl1) precondition on the observe`o1,l1 action
is encoded at step3 over the variable (flown l03); and the
invariant (flownlegj≤distancel0) of flyl0 can be seen enforced
immediately after step1 (i.e. on flown l0′1) and before and after
all subsequent steps that refer to flown l0 (over flown l0i and
flown l0′i).

A solution to this LP gives us an assignment to each ti
representing a valid time stamp for each stepi in the partial plan;
if the LP solver reports that no solution exists then the plan is
inconsistent and we can prune the resulting state. If the state
is deemed consistent the formulated LP problem is used again
(Algorithm 1, Line 11) to determine bounds on the numeric
variables. To do this we create new step now, with associated
timestamp variable tnow ordered after all existing steps; then
for each variable v∈V we create vnow, and calculate its value
at tnow in the usual way. The LP is solved with an objective
minimise (then again to maximise) vnow yielding the minimal
(maximal) possible value v may hold in the current state. Table 1
illustrates this for the variable flown l0. tnow is constrained to
come after all other plan steps, and the value of flown l0now
is computed as flown l0′5+1.(tnow− t5); using the objective
miminise (maximise) flown l0now will tell us the maximum
and minimum feasible values of flown l0 we can expect to rely
on for the precondition of any action to be applied in this state.

Prior work observed that the formulation of the LP was
expensive and solving was cheap (Coles et al. 2012). Therefore
since the LP is not reformulated, but simply resolved for
different vnows, computing bounds was relatively inexpensive.
However, this did not match our observations when examining
our complex real-life problems with large LPs1.

6 LP vs STN Scheduling in OPTIC
It is well known that the scalability of planners is affected by
both the number of applicable actions per state (branching

1OPTIC’s LP building code is also more optimized than COLIN’s

Instance Observations Legs Observations
Required in Goal

1 10 28 4
2 15 38 6
3 20 48 8
4 25 58 10
5 30 68 12

Table 2: Single Observation Per-Leg Instances

factor) and the length of the required solution plan (depth to
which the search tree must be explored). The latter of these
factors is magnified in planners using LP schedulers because
the size of the LP being solved increases with the length of the
plan being scheduled. In this section we explore the scalability
of LP based planners in our complex real-life observer domain,
which involves continuous numeric change and requires long
solution plans compared to conventional benchmark domains.

6.1 Standard OPTIC Performance
To explore this behaviour we ran the flying observer domain on
5 instances increasing in difficulty. In this domain, there is never
more than one observation that can be chosen to happen in each
leg (i.e. if containsl1,o1 is defined then there does not exist any
other observation oi such that containsl1,oi is defined). Further,
there is no choice over which leg each observation can occur
in (i.e. if containsl1,o1 is defined then there does not exist any
other leg li such that containsli,o1 is defined). Each observation
requires one piece of equipment out of the three available. The
number of observations defined, the number of legs, and the
number of observations required in the goal differs between the
instances as specified in Table 2.

Note that to emulate a real life scenario where the instance of
the problem may contain many optional actions, not all of which
are required for the goal, the number of observations and legs
here is much greater than is required for the goal. For instance,
leg number 25 and higher is not required, yet is a possibility
that the planner might consider. The same goes for observation
number 20 - it is defined, but not required for the goal. Solving
the hardest instance of this domain was slow and took OPTIC
about 260 seconds on an Intel i7 2.80GHz.

A second variant of the domain, again representing an
additional challenge encountered in our application, adds
a global variable counting the total distance flown, and a
precondition to the “configure” action requiring that this is not
greater than 1000 units. The changed actions would therefore be:
1. flyl: dur=distancel/speedl; pre` ={flyingl};
pre↔ ={flownl ≤ distancel}; eff a ={donel, ¬flyingl};
eff↔ ={dflownl/dt += 1,dtotalFlown/dt += 1};

2. configureo,e: dur = 1; pre` ={availablee,
optionforo,e, totalFlown≤1000}; eff ` ={¬availablee};
eff a ={configuredforo, pendingo,e};

Before adding this variable the “configure” action was entirely
propositional, and therefore consistency of plans containing it
could be confirmed using an STN. Now it has a precondition
that inspects a variable affected by continuous numeric change
so, as discussed in Section 4, any plan containing this action
requires a LP to confirm consistency.

51%
30%

18%
1%

(a) With Total-Flown
Precondition

33%

27%

38%

2%

(b) Without Total-Flown
Precondition

Update Bounds Consistency Check Forward Search Other

Figure 4: Single Observation Per Leg Profiling (Instance 5)

Solving the hardest instance without the total-flown variable
(the initially described domain) took about 260 seconds 60%
of which were spent solving the LP. However, when solving the
hardest instance with the total-flown variable and precondition,
planning took about 560 seconds 81% of which were spent in
the LP. Fig 4 shows the profiling results of the 5th instance in
the domain with the total-flown precondition and without. STN
solving takes negligible time, and is included in the ‘Forward
Search’ measurement; LP takes the most time, particularly
with ‘total-flown’. Inspecting further, the more nodes generated
during search (the more LPs solved) the slower it is. For instance,
in general it was seen that running the domain lacking the
total-flown requirement was faster, however, in instance 3 of the
domain, more nodes were visited during search, and the runtime
on that instance specifically was slower.

Also notable is that in our domain, more time is spent com-
puting variable bounds than consistency checking. This suggests
these LP calls are expensive, so avoiding them may be beneficial.

6.2 Proposals to Improve Performance
Since the LP solving is computationally expensive, we try to
reduce the number of times the LP solver is called during search.
Four options for reducing the amount of calls for the solver are
presented here:

1. Call updateVariableRanges (Algorithm 1 Line 11) only for
the variables which have an active continuous effect acting
on them in the partial plan (i.e. an action with a continuous
effect on v has started, but not yet finished);

2. Solve the LP only to check for consistency (Line 7), and don’t
call updateVariableRanges for any variables (i.e. skip Line 11);

3. Solve an STN to check only temporal consistency (at Line 7)
even if an LP would normally be used. Solve the LP to check
for consistency only in possible goal states (i.e. at Line 9);

4. Solve neither the LP nor an STN at each state (remove
Line 7), and solve the LP only in possible goal states.

The first option, updating only the active variables, reduces
the number of LPs solved in each state by only increasing
bounds due to effects, but not always tightening them based on
the preconditions. A continuous change can increase the bounds
on a variable, whereas preconditions may only tighten the

Nodes Nodes STN Nodes LP
Generated Expanded Evaluated Checked Pruned Checked Pruned

N
or

m
al

1 413 41 407 309 0 309 2
2 4976 395 4750 4855 0 4855 222
3 28465 1570 28032 28315 0 28315 429
4 92358 6683 91115 92195 0 92195 1239
5 135043 10479 133251 134879 0 134879 1788

LP
fo

rG
oa

ls 1 413 41 409 409 0
2 4976 395 4972 4972 0
3 28465 1570 28461 28461 0
4 92358 6683 92354 92354 0
5 135043 10479 135039 135039 0

Table 3: Nodes in Search, Single Observation Per Leg

bounds. In the default configuration OPTIC updates bounds on
all variables that have ever been subject to continuous numeric
change; here we suggest optimizing only the variables that are
acted upon by currently executing actions. This is a compromise:
by checking the effect we guarantee the most optimistic bounds,
while reducing the number of LPs solved.

The second option is to solve the LP only for consistency
checks (i.e. do not use the LP to update variable bounds). This
means fewer actions will be marked as inapplicable, and the
pruning of branches is done based on consistency only. Updating
bounds is done to narrow the search space; however, if the cost
of this is more expensive than the search effort saved this is not
worthwhile.

The third option is to solve the LP only on the states which
the forward search finds as possible goal states. This means
that fewer actions are marked as inapplicable during the search
and the states are only tested for temporal consistency, not for
numeric consistency, until branching reaches a goal state. Search
finds an ordering of actions that transform the initial into a
goal state, here the LP solver is called to schedule the ordered
actions. If a schedule is found then this indeed is a goal state.
If a schedule cannot be found than this is an invalid branch and
the planner needs to backtrack.

The fourth option is ploughing through forwards search
disregarding any temporal or numerical constraints, then, when a
possible goal state is reached, solve a LP to check whether it can
be scheduled. When this method finds a solution, it is not much
faster than method 3. Sadly though, it almost never finds one.
In the domains we checked this method was only able to solve
the first and second instances of the single observation-per-leg
domain, and did so quite quickly. However, it timed out on
all other instances and domains we checked. Because hardly
any pruning is done it is quite easy for search to get stuck in a
fruitless subspace when this method is employed. It is therefore
not recommended, and is not shown in the results.

6.3 Comparison of Proposals
Fig 5 presents the results of the first three options on the 5 in-
stances. Fig 5a lists the results on the domain with the total-flown
precondition on the “configure” action, and Fig 5b without.

The slowest method, named “Normal” (blue, northeast to
southwest pattern) is running OPTIC with the default configura-
tion: solving the LP for consistency, then several more times to
find the bounds on the numeric variables, and is always the most
computationaly expensive. Next (olive, dotted pattern) is the

0 100 200 300 400 500 600

1

2

3

4

5

0.5

7.09

48.59

274.7

565.58

0.1

1.52

13.04

70.68

159.41

0.3

4.36

31.9

194.2

373.74

0.39

6.42

43.71

241.24

452.15

Normal

On Goal

Only Consistency

Only Active

(a) With Total Flown Constraint

0 100 200 300 400 500 600

1

2

3

4

5

0.59

5.62

80.83

160.69

262.06

0.12

1.28

25.23

65.63

125.44

0.35

3.31

51.59

110.92

191.33

0.44

4.84

70.75

143

238.19

(b) Without Total Flown Constraint

Figure 5: Single Observation Per Leg Runtime (seconds)

option that solves the LP for consistency checking, but updates
only the bounds of the variables currently subject to continuous
numeric change. Faster still is the option that solves the LP only
for consistency checking (gray, horizontal pattern) but does not
update bounds. Finally, the fastest option on these instances is
the third option: solving the LP only at at the goal state while
using STN in non-goal states for the consistency check (marked
red, with northwest to southeast pattern). As stated before the
4th option performance was too poor to include here.

Table 3 shows the number of nodes generated, expanded
and evaluated during the search, as well as the number of times
STN and LP solvers were called for consistency checks and the
number of times each found a branch to be inconsistent. The
number of nodes examined in the default configuration was
identical to those in the update of the active variables only and
when no update took place, and therefore are not shown here.
The fact the number of nodes were similar suggests that setting
and updating the bounds on the variables did not help flagging
actions as invalid, and therefore, in these domains and problem
instances slowed the planning process down. In addition, the
number of nodes examined when calling the LP only on the
goal state was not greatly different to the normal run, suggesting
the consistency check of the LP also did little to prune branches.

These results show that in this case, whilst the small cost
of the STN is outweighed by significant search pruning; it is

0 100 200 300 400

1

2

3

4

5

7.48

38.4

126.58

279.29

338.02

6.56

32.06

103.81

225.37

249.19

Normal

On Goal

Only Consistency

Only Active

(a) With Total Flown Constraint

0 100 200 300 400

1

2

3

4

5

6.36

31.88

103.25

221.6

249.53

5.71

26.86

85.56

179.39

193.44

(b) Without Total Flown Constraint

Figure 6: Multiple Observation Per Leg Runtime (seconds)

most beneficial to avoid LPs as much as possible using them only
when necessary, to check whether a goal is valid or not. However,
not solving the LP might have a hindering effect on the search.

Fig 7 supports the above claim. It presents the profiling of
the different methods. It shows the correlation between the total
runtime and the call for the LP solver. The less time is invested in
the solving of the LP the faster the planner reaches the goal state.

The above claim, however, cannot be said to be generally
true. We tested the same two domains with a different set of
problem instances which also represent a problem that may arise
in real life. Here, instance n-1 contains n legs (0..n-1) with 6
observations that must take place in each leg (i.e. for k∈1...n,
i ∈ [6k,6k+5] containslk,oi) all of which are required in the
goal (and require a different one of 6 pieces of equipment).
There is no choice over which leg each observation can occur
in (i.e. if containsl1,o1 is defined then there does not exist any
other leg li such that containsli,o1 is defined); except for o5,
which can be performed in either leg0, or legn−1 (containsl1,o5
and containsln−1,o5). To compensate for this legn−1 has only
5 additional observations (o6n to o6n+4) rather than the usual
6. The instances are engineered such that the duration of leg0
is too short for o6 to fit inside: target-starto6 is defined such
that waiting long enough for (target-starto6 ≤ flownleg1) to be
satisfied, means o6 cannot finish within leg0 as illlustrated in

48.7%

27%

23%
1.3%

(a) Update Only Variables on which the Current
Action is Operating

64.5%
35%

0.5%

(b) Only Solve LP for Consistency

98% 2%

(c) Solve LP on Goal States Only

Update Bounds Consistency Check Forward Search Other

Figure 7: Profiling Suggested Improvements, Single Observation Per-Leg, Instance 5

Nodes Nodes STN Nodes LP
Instance Generated Expanded Evaluated Checked Pruned Checked Pruned

1 3510 1316 3393 3470 112 3358 0
2 11170 3631 10956 11111 208 10903 0
3 24639 7778 24280 24523 352 24171 0
4 38244 11309 37812 38108 425 37683 0
5 38981 11336 38549 38840 425 38415 0

Table 4: Nodes in Search, Multi Observation Per Leg

Fig 3b. legn is, however, long enough to accomodate o6 with
the precondition satisfied.

Fig 6 presents the results of these multiple-observations per
leg instances. Fig 6a on the domain with the precondition for the
total-flown in the “configure” action, and Fig 6b without. Table 4
presents the number of nodes using option 1 and the normal
configuration, as did Table 3 in the previous set of instances.

As can be seen in Fig 6, on these instances when solving
without checking for consistency at each state (option 3) the
planner timed out (1000 seconds). Inspection of the states the
planner visited during the forward search revealed that this is
because the planner added the invalid action to the first leg, and
went on searching down the branch. When it reached the goal
state it found that it was inconsistent, and started backtracking,
but never backtracked enough to find the valid solution. This can
also be inferred from Table 4, unlike in the previous case, search
makes use of the updated bounds on the variables to prune some
branches, similarly actions are being marked as innaplicable in
the search (specificially it can infer target−starto6≤flownleg1
will never be satisfied so does not consider putting o6 in leg0).

When solving using the second option, the planner timed
out as well. This is because the planner kept trying to add the
non-valid action, and found it inconsistent. Since there are
ordering constraints on the observations, the planner would try
to fit the inconsistent observation as the first observation, then,
when failed, it would try it as the second, then the third, and so
on. This is an expensive process, and it timed out as well.

In this instance updating the bounds was beneficial. Updating
only for the active variables was more efficient, as this
guaranteed that each variable would be updated at least once,
and therefore narrowed down the search space by marking the
problematic observation as a non valid action for the first leg.

7 Discussion and Conclusions
The profiling results presented here suggest that the Simple
Temporal Network (STN) is much faster than the LP solver.
In the domain discussed, which was supplied by an industrial
partner, it was shown that the time to solve many LPs which
grow in size may not be negligible, and may lead to the planner
having difficulties reaching a solution.

Four options were proposed for reducing planning time:
updating the bounds on fewer variables by selecting only those
currently undergoing continuous numeric change; not updating
the bounds at all (solving the LP only for consistency); using an
STN on non goal states (while solving the LP only on possible
goal states) and not using any solver on a non-goal state (calling
the STN and LP only at a goal state).

Solving the STN on non-goal states allows a large number
of states to be explored quickly. However, this is only useful
in the cases in which actions cannot be marked as inapplicable
by their numerical preconditions (they can only be marked as
such by their propositions). Using this option in problems with
non-cosmetic numeric precondition might cause the planner
to search down a branch that is not valid, and to remain in that
branch for too long to practically be able to reach a solution.

Solving the LP only to check consistency speeds search up
by avoiding LP calls to determine variable bounds. But, again,
this increases the branching factor, generating more states, thus
slowing the search down.

The last option, not calling any solver on non-goal, was
shown to be inefficient, it carries no advatages over the others.

Finally, updating only the active variables was found to
be a good compromise. It reduces the per-state LP overheads
compared to the default configuration of OPTIC, with a net
reduction in planning time; in principle, it has a higher branching
factor, so it is not guaranteed to pay off, but we did not encounter
such a case in this work.

These four options have been implemented in an updated ver-
sion of OPTIC, allowing the user to choose from them if needs
be. Future research would involve the automatic identification
of cases in which per-node LP solving is non beneficial, and
the selective update of the variables to facilitate faster search.

Acknowledgements
This work was supported by the UK Engineering and Physical
Sciences Research Council (EPSRC) grant EP/R511559/1

(Deployment of Expressive Continuous Numeric Planners in
Large Scale Applications).

References
Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal planning
with preferences and time-dependent continuous costs. In
ICAPS, volume 77, 78.
Cashmore, M.; Fox, M.; Long, D.; and Magazzeni, D. 2016.
A Compilation of the Full PDDL+ Language into SMT. In
Proceedings of ICAPS.
Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Engelhardt,
B.; Mutz, D.; Estlin, T.; Smith, B.; Fisher, F.; Barrett, T.;
Stebbins, G.; and Tran, D. 2000. Aspen - automated planning
and scheduling for space mission operations. In in Space Ops.
Coles, A. I.; Fox, M.; Halsey, K.; Long, D.; and Smith, A. J.
2009. Managing concurrency in temporal planning using
planner-scheduler interaction. Artificial Intelligence 173.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010. Forward-
chaining partial-order planning. In Twentieth International
Conference on Automated Planning and Scheduling.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2012. Colin:
Planning with continuous linear numeric change. Journal of
Artificial Intelligence Research 44:1–96.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Artificial Intelligence 49.
Do, M. B., and Kambhampati, S. 2001. Sapa: a domain-
independent heuristic metric temporal planner. In Proc.
European Conf. on Planning (ECP’01).
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using the
context-enhanced additive heuristic for temporal and numeric
planning. In Proceedings of the 19th International Conference
on Automated Planning and Scheduling (ICAPS 2009).
Fernández-González, E.; Karpas, E.; and Williams, B. C. 2017.
Mixed discrete-continuous planning with convex optimization.
In AAAI, 4574–4580.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. Journal of artificial
intelligence research 20:61–124.
Fox, M.; Long, D.; and Magazzeni, D. 2011. Automatic
construction of efficient multiple battery usage policies.
In Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence - Volume Volume Three,
IJCAI’11, 2620–2625. AAAI Press.
Obes, J. L.; Sarraute, C.; and Richarte, G. 2013. Attack planning
in the real world. CoRR abs/1306.4044.
Piotrowski, W.; Fox, M.; Long, D.; Magazzeni, D.; and
Mercorio, F. 2016. Heuristic planning for PDDL+ domains,
volume 2016-January. International Joint Conferences on
Artificial Intelligence. 3213–3219.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramirez, M. 2016.
Interval-based relaxation for general numeric planning. In ECAI,
655–663.

