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ABSTRACT

In real-world machine learning applications, large outliers and pervasive noise are
commonplace, and access to clean training data as required by standard deep au-
toencoders is unlikely. Reliably detecting anomalies in a given set of images is
a task of high practical relevance for visual quality inspection, surveillance, or
medical image analysis. Autoencoder neural networks learn to reconstruct normal
images, and hence can classify those images as anomalous if the reconstruction
error exceeds some threshold. In this paper, we proposed an unsupervised method
based on subset scanning over autoencoder activations. The contributions of our
work are threefold. First, we propose a novel method combining detection with
reconstruction error and subset scanning scores to improve the anomaly score of
current autoencoders without requiring any retraining. Second, we provide the
ability to inspect and visualize the set of anomalous nodes in the reconstruction
error space that make a sample noised. Third, we show that subset scanning can
be used for anomaly detection in the inner layers of the autoencoder. We pro-
vide detection power results for several untargeted adversarial noise models under
standard datasets.

1 INTRODUCTION

Neural networks generate a large amount of activation data when processing an input. This work
applies anomalous pattern detection techniques on this activation data in order to determine if the in-
put is anomalous. Examples of an anomalous input can be noised samples by an adversary (Szegedy
et al., 2013; Goodfellow et al., 2014; Kurakin et al., 2016a; Dalvi et al., 2004a), human annotation
errors (Klebanov et al., 2008), etc. The goal of anomalous pattern detection is to quantify, detect, and
characterize the data that are generated by an alternative process. Since anomalies are rare and come
from diverse sources, it is not feasible to obtain labeled datasets of all possible anomalies/attacks. If
an observation deviates from the learned model, it is classified as an anomaly (Chandola et al., 2009).
In real-world problems, large outliers and pervasive perturbations are commonplace, and one may
not have access to clean training data as required by standard deep denoising autoencoders (Beggel
et al., 2019) due to reasons such as human annotation errors (Klebanov et al., 2008) and poisoning
techniques (Dalvi et al., 2004b).

Autoencoders differ from classical classifier networks such as Convolutional Neural Networks
(CNNs) (LeCun & Bengio, 1998). Autoencoders do not require labels because the expected output
is the input data. The autoencoder is trained to minimize the reconstruction error L(x, x′). During
the prediction step, anomaly detection can be performed by looking at the distribution of mean re-
construction error L(w, d(e(w))) when w ∈ Xclean and L(w′, d(e(w′))) when w′ ∈ Xadv (Frosst
et al., 2018). An example of both, clean and noise reconstruction error distribution can be seen in
Figure 4(b). Using this type of anomaly detection with autoencoders assumes that the autoencoder
is properly trained with clean data. Otherwise, this manifold can be used advantageously by training
the autoencoder with corrupted samples that are mapped to clean samples. As a result, the autoen-
coder will learn an underlying vector field that points in the direction of the manifold in which the
clean samples lie. Thus, upon the introduction of a perturbation, the magnitude of each arrow in
the vector field will indicate the direction in which the data must be moved to map the sample to its
clean representation (Sahay et al., 2019). Further detail on the autoencoder architecture and training
setup for the experiments can be found in the Section A.4.
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Subset scanning frames the detection problem as a search over subsets of data in order to find a
subset that maximizes a scoring function F (S), typically a likelihood ratio. Subset scanning exploits
a property of these scoring functions that allow for efficient maximization over the exponentially
large search space (Neill, 2012).

In this paper, we show how subset scanning methods can enhance the anomaly detection power
of autoencoders in an unsupervised manner and without a retraining step. We treat this anomaly
detection approach as a search for a subset of node activations that are higher than expected. This is
formally quantified as the subset with the highest score according to a non-parametric scan statistic.

The contributions of our work are threefold. First, we propose a novel approach combining detection
with reconstruction error and subset scanning scores to improve the anomaly score of current au-
toencoders without requiring any retraining. Second, we provide the ability to identify and visualize
the set of anomalous nodes in the reconstruction error space that make noised samples. Third, we
show that subset scanning can be used for anomaly detection in the inner layers of the autoencoder.

Figure 1: Example of subset scanning score distributions across layers of an autoencoder for
adversarial BIM noise ε = 0.01. In the top of the graph we can see subset score distributions per
nodes in a layer. The distributions of subset scanning scores are shown in blue for clean images
(C) (expected distribution), and in orange for noised samples At. Higher AUCs are expected when
distributions are separated from each other and lower AUCs when they overlap. The purple struc-
ture corresponds to convolutional layers at the Encoder, while the red structure corresponds to the
convolution layers for the Decoder. The computed AUC for the subset score distributions can be
found in Table 1. The highest mutual information exchange with the adversarial input happens on
the first layers (convolutional and maxpooling). This is why the greatest divergence in both C and
At subset scores distributions is seen. In the latent space, due to properties described in Section 4,
the autoencoder abstracts basic representations of the images, losing subset scanning power due to
the autoencoder mapping the new sample to the expected distribution. This can be seen as an almost
perfect overlap of distribution in conv 2d 7.

2 RELATED WORK AND BACKGROUND INFORMATION

Machine learning models are susceptible to adversarial perturbations of their input data that can
cause the input to be misclassified (Szegedy et al., 2013; Goodfellow et al., 2014; Kurakin et al.,
2016a; Dalvi et al., 2004a). There are a variety of methods to make neural networks more robust to
adversarial noise. Some require retraining with altered loss functions so that adversarial images must
have a higher perturbation in order to be successful (Papernot et al., 2015; Papernot & McDaniel,
2016).

Our work treats the problem as anomalous pattern detection and operates in an unsupervised manner
without a priori knowledge of the attack or labeled examples. We also do not rely on training data
augmentation or specialized training techniques. These constraints make it a more difficult problem,
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but more realistic in the adversarial noise domain as new attacks are constantly being created. Before
introducing our approach in the next section, we explain related work in two parts. First, we provide
a quick overview of Autoencoders as anomaly detectors and second, we discuss different adversarial
attacks models used in this paper.

2.1 AUTOENCODERS AS ANOMALY DETECTORS

Several approaches have been used for anomaly detection with autoencoders. Since autoencoders
can model training data distribution, these neural networks are an interesting option for anomaly
detection. Most of the methods found in the literature require that the training data only consist of
normal examples such as denoising autoencoders (Meng & Chen, 2017; Xie et al., 2012), but this
alone is no guarantee for anomalies to have a large reconstruction error.

Beggel et al. (2019) present a robust Anomaly Detection with ITSR (Iterative Training Set Refine-
ment) and Adversarial Autoencoders. Their work uses the capabilities of adversarial autoencoders to
address the shortcoming of conventional autoencoders in the presence of anomalies samples during
training. They also propose a combined criterion of reconstruction error and likelihood in the latent
space, as well as a retraining method to increase the separation in both latent and image space.

Zhai et al. (2016) use deep structured energy-based models, showing that a criterion based on an
energy score leads to better results than the reconstruction error criterion. Zhou & Paffenroth
(2017) present an extension of denoising autoencoders that can work with corrupted data. During
training, the network uses an anomaly regularizing penalty based on Lp-norms.

Most of the approaches for anomaly detection with autoencoders require the training data to consist
of clean examples or use complex autoencoder architectures and special training. In this work, we
propose subset scanning applied to autoencoders. This is an unsupervised anomaly detector that can
be applied to any pre-trained, off-the-shelf autoencoder network. We use, as a baseline, the detection
capabilities based on mean autoencoder reconstruction error distributions (Sakurada & Yairi, 2014)
and One-SVM (Schölkopf et al., 2001) for the autoencoder reconstruction error space analysis.

2.2 ADVERSARIAL ATTACKS

Several attack models have been used to target classifiers in this study, we focus on untargeted
attacks with Basic Iterative Method (BIM) (Kurakin et al., 2016b), Fast Gradient Signal Method
(FGSM) (Goodfellow et al., 2014), and DeepFool (DF) (Moosavi-Dezfooli et al., 2016). The idea
behind these attacks is to find a perturbation to be included in the original sample X , generating an
adversarial sample Xadv .

Fast Gradient Sign Method (FGSM)
FGSM (Goodfellow et al., 2014) was designed to be extremely fast rather than optimal. It simply
uses the sign of the gradient at every pixel to determine the direction with which to change the
corresponding pixel value. Given an image x and its corresponding true label y, the FGSM attack
sets the perturbation δ to:

Xadv = X + ε sign (∇XJ (X, ytrue)) (1)

Basic Iterative Method (BIM)
BIM (Kurakin et al., 2016b) is a straightforward extension of FGSM where adversarial noise is
applied multiple times iteratively with small step size:

Xadv
0 = X, Xadv

N+1 = ClipX,k
{
Xadv
N + α sign

(
∇XJ

(
Xadv
N , ytrue

))}
(2)

DeepFool (DF)
The DF algorithm presented by Moosavi-Dezfooli et al. (2016) computes the optimal adversarial
perturbation to perform a misclassification. In a binary classifier, the robustness of the model f for
an input X0 is equal to the distance the input to the hyper-plane that separates both classes. So the
minimal perturbation to change the classifier decision is the orthogonal projection defined as:

− f (X0)

‖w‖22
∗ w (3)
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3 SUBSET SCANNING FOR ANOMALOUS PATTERN DETECTION

Subset scanning treats the pattern detection problem as a search for the “most anomalous” sub-
set of observations in the data. Herein, anomalousness is quantified by a scoring function, F (S)
which is typically a log-likelihood ratio statistic. Therefore, the goal is to efficiently identify
S∗ = argmaxS F (S) over all relevant subsets of node activations within an autoencoder that is
processing an image at runtime. The particular scoring functions F (S) used in this work are cov-
ered in the next sub-section.

Heuristic alternatives to subset scanning include “top-down” and “bottom-up” methods. Top-
down approaches detect globally interesting patterns and then identify sub-partitions to find smaller
anomalous groups of records. These may fail to detect small-scale patterns that are not evident from
global aggregate statistics. Similarly, bottom-up approaches that identify individually anomalous
data points and aggregates them into clusters may fail when the pattern is only evident by evaluating
a group of data points collectively (Neill, 2012).

Treating the detection problem as a subset scan has desirable statistical properties. However, the
exhaustive search over groups quickly becomes computationally infeasible due to the exponential
number of subsets of records. Fortunately, a large class of scoring functions used in subset scanning
satisfy the “Linear Time Subset Scanning” (LTSS) property that allows for exact, efficient maxi-
mization over all subsets of data without requiring an exhaustive search (Neill, 2012). The LTSS
property essentially reduces the search space from 2N to N for a dataset with N records, while
guaranteeing that the highest-scoring subset of records is identified.

3.1 NON-PARAMETRIC SCAN STATISTICS

This work uses non-parametric scan statistics (NPSS) that have been used in other pattern detec-
tion methods (Neill & Lingwall, 2007; McFowland III et al., 2013; McFowland et al., 2018; Chen
& Neill, 2014). Although subset scanning can use parametric scoring functions (i.e. Gaussian,
Poisson), the distribution of activations within particular layers are highly skewed and in some cases
bi-modal. See Figure 9. Therefore, this work uses non-parametric scan statistics that makes minimal
assumptions on the underlying distribution of node activations.

The intuition behind the role of non-parametric scan statistics is best explained in a simple example.
Consider 100 p-values that are supposed to be uniformly distributed between 0 and 1 under the null
hypothesis of no anomaly present in the data. A larger-than-expected activation at a node results in a
lower p-value for that node. What if we observe 30 (out of 100) p-values all under a threshold value
of 0.10? Is that more or less anomalous than finding 20 (out of 100) p-values all under a threshold of
0.075? Non-parametric scan statistics quantify these situations. This same example can be used to
highlight why subset scanning is appropriately paired with non-parametric scan statistics. A single
p−value of 0.1 is not interesting when viewed by itself. However, if there are 29 other p−values in
the same data set that are also 0.1 (or lower), then the observations are now more interesting when
considered together, as a group. Subset scanning efficiently identifies the combination of p-values
and thresholds in order to maximize the non-parametric scan statistic.

There are three steps to appropriately use non-parametric scan statistics on neural network activation
data. The first is to form a distribution of “expected” activations at each node. This is done by letting
the autoencoder process images that are known to be clean from anomalies (sometimes referred to
as “background” images) and recording the activations at each node. The second step involves a test
image that may be clean or noised and needs to be scored. We record the activations induced by the
test image and compare it to the baseline activations created in the first step. This comparison results
in a p-value at each node. The third step is to quantify the anomalousness of the resulting p-values
by finding the subset of nodes that maximize the non-parametric scan statistic.

We now formalize these three steps. Let there be M background images Xz included in DH0 .
These images generate activations AH0

zj at each node Oj . Let Xi (not in DH0
) be a test image under

evaluation. This image creates activations Aij at each node Oj . The p-value, pij , is the proportion
of background activations AH0

zj greater than the activation induced by the test image Aij at node
Oj . (We note that McFowland III et al. (2013) extend this notion to p-value ranges such that pij is
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uniformly distributed between pminij and pmaxij ). This current work makes a simplifying assumption
to only consider a range by its upper bound,

pij =

∑
Xz∈DH0

I(Azj>=Aij)+1

M+1 .

A test image Xi is now converted to a vector of p-values pij of length J = |O|, the number of nodes
in the network under consideration. Intuitively, if a test image is “natural” (its activations are drawn
from the same distribution as the baseline images) then few of the p-values will be extreme. The key
assumption is that under the alternative hypothesis of an anomaly present in the activation data, then
at least some subset of the activations SO ⊆ O will systematically appear extreme. We now turn to
non-parametric scan statistics to identify and quantify this set of p-values.

The general form of the NPSS score function is

F (S) = max
α

Fα(S) = max
α

φ(α,Nα(S), N(S)) (4)

where N(S) represents the number of empirical p-values contained in subset S and Nα(S) is the
number of p-values less than (significance level) α contained in subset S.

Moreover, it has been shown that for a subset S consisting ofN(S) empirical p-values,E [Nα(S)] =
N(S)α (McFowland III et al., 2013). We assume an anomalous process will create some S where
the observed significance is higher than the expected, Nα(S) > N(S)α, for some α.

There are well-known goodness-of-fit statistics that can be utilized in NPSS (McFowland et al.,
2018), the most popular is the Kolmogorov-Smirnov test (Kolmogorov, 1933). Another option is
Higher-Criticism (Donoho & Jin, 2004). In this work we use the Berk-Jones test statistic(Berk &
Jones, 1979): φBJ(α,Nα, N) = N ∗KL

(
Nα
N , α

)
, where KL is the Kullback-Liebler divergence

KL(x, y) = x log x
y +(1−x) log 1−x

1−y between the observed and expected proportions of significant
p-values. Berk-Jones can be interpreted as the log-likelihood ratio for testing whether the p-values
are uniformly distributed on [0, 1] as compared to following a piece-wise constant alternative distri-
bution, and has been shown to fulfill several optimality properties and has greater power than any
weighted Kolmogorov statistic.

3.2 EFFICIENT MAXIMIZATION OF NPSS

Although NPSS provides a means to evaluate the anomalousness of a subset of node activations SO
discovering which of the 2J possible subsets provides the most evidence of an anomalous pattern
is computationally infeasible for moderately sized data sets. However, NPSS has been shown to
satisfy the linear-time subset scanning (LTSS) property (Neill, 2012), which allows for an efficient
and exact maximization over subsets of data.

The LTSS property uses a priority function G(Oj) to rank nodes and then proves that the highest-
scoring subset consists of the “top-k” priority nodes for some k in 1 . . . J . The priority of a node for
NPSS is the proportion of p-values that are less than α. However, because we are scoring a single
image and there is only one p-value at each node, the priority of a node is either 1 (when the p-value
is less than α) or 0 (otherwise). Therefore, for a fixed, given α threshold, the most anomalous subset
is all and only nodes with p-values less than alpha.

In order to maximize the scoring function over α we first sort the Oj nodes by their p-values. Let
S(k) be the subset containing the k nodes with with the smallest p-values. Let αk be the largest p-
value among these k nodes. The LTSS property guarantees that the highest-scoring subset (over all α
thresholds) will be one of these J subsets S(1), S(2), . . . S(J) with their corresponding αk threshold.
Any subset of nodes that does not take this form (or uses an alternate αk) is provably sub-optimal
and not considered. Critically, this drastically reduced search space still guarantees identifying the
highest-scoring subset of nodes for a test image under evaluation.

Figure 2 shows how the optimal α threshold (and subset size) can vary for different test images under
consideration. The leftmost panel shows the distributions of the size of the most anomalous subset of
nodes in both clean and noised images. We note that noised images tend to return a larger subset of
nodes than clean images. The middle panel shows the optimal α threshold value that maximized the
non-parametric scan statistic for clean and noised images. We note that noised images tend to have
lower thresholds than clean images. When an image induces a larger number of smaller p-values,
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the resulting score of the image is higher. This is demonstrated in the right-most panel where noised
test images have higher scores than clean test images.

4 DETECTING ADVERSARIAL ATTACKS ON AUTOENCODERS

A conventional autoencoder (Bengio et al., 2007) learns the underlying manifold of the training
data, which is used to reconstruct the input (x) as the output (x′). The general architecture of any
autoencoder involves an encoder and a decoder. The encoder (e : X → Z) is composed of one or
more layers that perform nonlinear dimensionality reduction from the high dimensional input space
into a low-dimensional latent representation (z = e(x)), while the decoder (d : Z → X) reconstructs
the original sample from the latent representation. Both functions compute x′ = d(e(x)). The
autoencoder is optimized by minimizing the reconstruction error L(x, x′).

Anomalous pattern detection can be performed on a trained autoencoder, by looking at the distri-
butions of mean reconstruction error L(w, d(e(w))) when w ∈ Xclean and L(w′, d(e(w′))) when
w′ ∈ Xadv . Due to the inherent properties of the autoencoder for anomaly detection, we propose
two experiments or applications of subset scanning. First, we are interested in subset scanning scores
distributions along the layers of the encoder. During the untangling phase (z = e(x)) of informa-
tion reduction from the input space to the latent representation (z), we want to observe until which
layer we’re able to discriminate the input (clean and noised) to the distribution learnt by the autoen-
coder. Second, we apply subset scanning methods on the reconstruction error space, to understand if
reconstruction error criterion suffices for detection in training autoencoder based anomaly detectors.

Figure 2: The connection between the number of nodes in a subset, α value that maximizes
the non-parametric scan statistic, and the resulting subset score. These results are for Fashion-
MNIST examples with activations coming from the first layer of the autoencoder. Under the pres-
ence of BIM adversarial noise, we observe a larger number of nodes that have smaller p-values. This
combination results in a higher subset score than the clean images. Critically, the LTSS property al-
lows α to be efficiently chosen to maximize the score for each individual image. The subset size is
all nodes with p-values less than the α threshold. We enforce a αmax = 0.5 constraint on the search.

5 EXPERIMENTAL SETUP

In this section, we describe the baselines methods used as comparison, as well as the datasets,
evaluation metric, adversarial noise generation and autoencoder architecture we used. For generating
the attacks a standard CNN model LeCun et al. (1998) was trained for both datasets. The test
accuracies for these models are 0.992 for MNIST and 0.921 for Fashion-MNIST.

We trained an autoencoder network (Bengio et al., 2007) on MNIST (LeCun et al., 1998) and
Fashion-MNIST (Xiao et al., 2017) (detailed in Section 5.1). The architecture of the autoencoder
is depicted in Figure 8, and further details on the training setup can be found in Appendix A.4.
The test reconstruction error of the model was 0.284 for Fashion-MNIST and 0.095 for MNIST. In
real-world applications, clean training datasets cannot always be guaranteed due to factors such as
human annotation errors (Klebanov et al., 2008), and poisoning techniques (Dalvi et al., 2004b).
Consequently, we trained the autoencoder with different levels of data poisoning. We trained au-
toencoders with 100% of clean samples, 1% of adversarial samples, and 9% of adversarial samples.
For this experiment, we used BIM as the attack and Fashion-MNIST as the dataset. We evaluated
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subset scanning over two experiments. First, we applied our subset scanning method on the recon-
struction error calculated over the input data and the last layer of the autoencoder (conv2d 7). This
layer has 1 filter containing 784 nodes. For more information, refer to Section 4. Second, we stud-
ied subset scanning patterns across adversarial attacks and datasets, to see if we have some common
subset scanning behaviors. For this, we applied subset scanning across all layers of the autoencoder
(convolutional, max pooling and up-sampling) and analyzed the detection power in each case.

5.1 DATASETS

For our adversarial experiments, we took M = |DH0
| = 7000 of the 10000 validation images

and used them to generate the background activation distribution (DH0
) at each of the 784 nodes

(28×28) for the reconstruction error space and the activations nodes per each inner layer. These 7000
images were not used again. These images form our expectation of “normal” activation behavior for
the network. The remaining 3000 images were used to form a “Clean” (C = 1500) sample and an
“Adversarial” (At = 1500) noised sample. For the experiments we only kept the successful attacks
for DF, FGSM and BIM, so we only preserve noised samples that were incorrectly classified by the
model.

We evaluated anomaly detection with subset scanning on the classical MNIST (LeCun et al., 1998)
dataset and more complex dataset Fashion-MNIST (Xiao et al., 2017). We present a quick overview
of both datasets:

• MNIST (LeCun et al., 1998): The training set has 60000 images and the test set has 10000
images of handwritten digits. Each digit has been normalized and centered to 28× 28.

• Fashion-MNIST (Xiao et al., 2017): a relatively new dataset comprising 28× 28 grayscale
images of 70.000 fashion products from 10 categories, with 7000 images per category.
The training set has 60000 images and the test set has 10000 images. As an alternative to
MNIST, it has the same image size, data format and validation splits, with the digits from
MNIST replaced with 10 products of clothes and accessories.

5.2 ADVERSARIAL NOISE SAMPLE GENERATION

Several adversarial attacks for the subset scanning experiments were implemented, briefly intro-
duced in Section 2.2. Specifically, we describe in this section the hyperparameter selection for Basic
Iterative Method (BIM) adversarial attack (Kurakin et al., 2016b), Fast Gradient Signal Method
(FGSM) (Goodfellow et al., 2014) and DeepFool (DF) (Moosavi-Dezfooli et al., 2016).

BIM and FGSM have an ε parameter which controls how far a pixel is allowed to change from
its original value when noise is added to the image. We used a value of ε = 0.01 in the scaled
[0, 1] pixel space. We also allowed the method to reach its final noised state over 100 steps with
each of size 0.002. Smaller values of ε make the pattern subtler and harder to detect, but also less
likely for the attacks to succeed in changing the class label to the target. For DeepFool, we used
standard ε = 1e−06 and 100 iterations. Example of generated adversarial samples for both datasets
are depicted in Figure 7. All untargeted attacks were generated with the Adversarial Robustness
Toolbox (Nicolae et al., 2018)1. The set At only contains images that were successfully noised by
each type of adversarial attack. This means that those samples were misclassified from an original
predicted label. The 1500 images in groupC are natural and have all class labels represented equally.

6 RESULTS

We adopted the following metric to measure the effectiveness of subset scanning over an autoencoder
to distinguishing different types of adversarial attacks images under the activation and reconstruction
error space. The Detection Power is measured by AUROC, the Area Under the Receiver Operating
Characteristic curve, which is also a threshold independent metric (Davis & Goadrich, 2006). The
ROC curve depicts the relationship between true positive rate (TPR) and false positive rate (FPR).
Results shown in Figure 6 for reconstruction error and activations space in the first convolutional
layer for Figure 3.

1https://github.com/IBM/adversarial-robustness-toolbox
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(a) (b)

Figure 3: (a) ROC curves for each of the noised cases as compared to the scores from test sets
containing all natural images for layer Conv2d 1. (b) Distribution of subset scores for test sets of
images over Conv2d 1. Test sets containing all natural images had lower than scores than test sets
containing noised images. Higher proportion of noised images resulted in higher scores.

Layers Clean Training Noised (1%) Noised (9%)
F-MNIST MNIST F-MNIST F-MNIST

BIM FGSM DF BIM FGSM DF BIM BIM

conv2d 1 0.964 0.974 0.965 1.0 1.0 0.999 0.909 0.823
max pool 1 0.972 0.979 0.965 1.0 1.0 0.999 0.928 0.850
conv2d 2 0.519 0.530 0.686 0.975 0.941 0.953 0.441 0.700

max pool 2 0.500 0.513 0.634 0.855 0.809 0.837 0.424 0.693
conv2d 3 0.500 0.507 0.481 0.382 0.384 0.443 0.470 0.469

max pool 3 0.473 0.478 0.479 0.374 0.373 0.423 0.451 0.450
conv2d 4 0.403 0.406 0.483 0.270 0.271 0.261 0.472 0.410

up sampl 1 0.403 0.406 0.483 0.270 0.271 0.261 0.472 0.410
conv2d 5 0.413 0.419 0.474 0.228 0.228 0.193 0.356 0.388

up sampl 2 0.413 0.419 0.474 0.228 0.228 0.193 0.346 0.388
conv2d 6 0.342 0.350 0.483 0.259 0.261 0.285 0.306 0.323

up sampl 3 0.342 0.350 0.483 0.259 0.261 0.285 0.306 0.323
conv2d 7 0.594 0.597 0.506 0.693 0.688 0.848 0.613 0.603

Table 1: Detection power for individual subset scanning over all layers (convolutional, max
pooling and up-sampling) for both datasets under three different adversarial attacks. The
noised columns refer to the autoencoder being trained with 1% and 9% BIM noised samples. Under
different datasets and attacks, the same initial layers hold the highest detection power.

In Table 1, we can observe that across different datasets, noise attacks models, and two proportion of
noised samples during training, the first layers (conv 2d 1 and max pooling 2d 1) maintain a high
performance regarding detection power (between 0.96 to 1.0 depending on dataset and noise attack).
The ROC curves and subset scores distribution for the BIM and FGSM attacks under Fashion-
MNIST for the layer conv 2d 1 are shown in Figure 3. Furthermore, Table 1 shows that in the cases
where 1% and 9% of the samples are noised during training stage of the autoencoder, the detection
power of subset scanning still performs correctly, above 0.82.

Table 2 shows the behavior of subset scanning over the reconstruction error space and the detection
power in detail for both datasets and different adversarial attacks. We can observe a difference of
performance of our method over the Fashion-MNIST dataset. One hypothesis would be that this
is due to the autoencoder performance (Loss for Fashion-MNIST 0.284 and MNIST 0.095). To
test this idea, we performed preliminary experiments that show a relationship between the decrease
in the loss of the trained autoencoder and the increase in the detection power of subset scanning
methods under the reconstruction error space. A poorly-trained autoencoder will have a higher loss,
while a well-trained autoencoder will have a lower loss. If an autoencoder’s loss is high, it is more
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(a) (b)

Figure 4: Reconstruction error baseline visualization. (a) Baseline mean reconstruction error
samples for clean images and BIM noised samples processed by the autoencoder. We can observe
that in clean samples reconstruction error only appears on the contours of the number, while noise
samples have lower reconstruction error values distributed throughout the image. (b) Mean recon-
struction error distribution for clean (blue distribution) and noise samples (orange samples).

difficult to separate between clean and noised samples in the reconstruction space. Nonetheless,
subset scanning has higher detection power than Mean Reconstruction Error distributions under
clean and noise samples (see Figure 4) and Unsupervised outlier detection methods such as One-
SVM (Schölkopf et al., 2001). Furthermore, subset scanning under the reconstruction error space
is an interesting technique to explore and introspect what nodes or portions of the input image look
anomalous. With this information we can not only point out which image looks anomalous, but also
indicate which nodes make the input a noised sample, an example of this is depicted in Figure 5.

Datasets Attacks Clean Training
Subset Scanning Mean AE Rec. Error One-SVM

Fashion-MNIST BIM 0.698 0.641 0.478
FGSM 0.672 0.630 0.497

DF 0.599 0.477 0.534
MNIST BIM 0.998 0.751 0.624

FGSM 0.983 0.725 0.624
DF 0.992 0.574 0.637

Table 2: Detection power for individual subset scanning over reconstruction error space for
both dataset under three different adversarial attacks, two baselines for reconstruction error over
AE (Sakurada & Yairi, 2014) and One-SVM over reconstruction error of the AE (Schölkopf et al.,
2001).

7 CONCLUSION AND FUTURE WORK

In this work, we proposed a novel unsupervised method for adversarial noise detection with off-the-
shelf autoencoders and subset scanning. We have successfully demonstrated how subset scanning
can be used to gain detection strength against multiple adversarial attacks on images across several
datasets, without requiring any retraining or complex deep autoencoder network structures.

Furthermore, we tested subset scanning over the reconstruction error space and observed significant
variations depending on the dataset, autoencoder architecture, and training setup. We performed

9
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Figure 5: Anomalous nodes visualization. Overlap of anomalous nodes (white) and reconstruction
error (darker blue) per sample. (a) Noised samples with BIM. We can observe that nodes outside the
contour will make the sample be classified as noised. (b) Whereas clean we expect the anomalous
nodes will be along the contour of the figure.

preliminary experiments that yielded a relation between a decrease in the loss of the trained au-
toencoder and an increase in the detection power of subset scanning under the reconstruction error
space. Nonetheless, applying our method under this space provides introspection capabilities that
allow us to identify the nodes or portions of the input image look anomalous. Consequently, we are
able to not only point out which image looks anomalous but also characterize the nodes that make
the input a noised sample. We also evaluated the performance of applying subset scanning over the
autoencoder’s activations. We observed a consistent and high detection power results across noise
attacks, datasets, autoencoders architectures and different noised training levels in the initial layers
(Convolutional and MaxPooling layers).

Due to versatile properties of subset scanning under neural network activation analysis it may be
used for several other studies, including unsupervised classification in the latent space of an autoen-
coder. We would expect that same class images will identify as a subset of inputs (images) that have
higher-than-expected activations (i.e. large number of low empirical p−values) at a subset of nodes.
Subset scanning applied to autoencoders activations is a novel, unsupervised anomaly detector that
can be applied to any pre-trained, off-the-shelf neural network, previously only used in classifier
neural networks such as CNNs and ResNet (Speakman et al., 2018).
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A APPENDIX

A.1 ALGORITHM FOR SUBSET SCANNING OVER AUTOENCODER ACTIVATIONS

input : Background set of images: Xz ∈ DH0 , evaluation image: Xi, αmax.
output: S∗E Score for the evaluation image

AE ← TrainNetwork (training dataset);
AEy ← Some flattened layer of AE;
for z ← 0 to M do

for j ← 0 to J do
AH0
zj ← ExtractActivation (AEy , Xz)

end
end
for j ← 0 to J do

Aij ← ExtractActivation (AEy , Xi)
end

pij =
∑
Xz∈DH0

I(Azj>=Aij)+1

M+1 ;
psij ← SortAscending (pij);
for k ← 1 to J do

S(k) = {py ⊆ psij∀y ∈ {1, . . . , k}};
αk = max(S(k));
F (S(k))← NPSS (αk, k, k);

end
k∗ ← argmaxF (S(k));
α∗ = αk∗ ;
S∗ = S(k∗);
return S∗, α∗, and F (S∗)

Algorithm 1: Pseudo-code for subset scanning over autoencoder activations.

A.2 SUBSET SCANNING UNDER RECONSTRUCTION ERROR FOR MNIST

In Figure 6, we can observe the distribution of subset scores for test sets of images over reconstruc-
tion error. Test sets containing all natural images had lower scores than test sets containing noised
images (FGSM and BIM generated samples). Higher proportion of noised images resulted in higher
scores. Figure 6 also shows the ROC curves for each of the noised cases as compared to the scores
from test sets containing all natural images.

Figure 6: (a) Distribution of subset scores for test sets of images over reconstruction error. Test sets
containing all natural images had lower than scores than test sets containing noised images. Higher
proportion of noised images resulted in higher scores. (b) ROC curves for each of the noised cases
as compared to the scores from test sets containing all natural images.
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Figure 7: Successful noised samples from MNIST and Fashion-MNIST generated with Adver-
sarial Robustness Toolbox (Nicolae et al., 2018). (a) BIM noised samples (b) DeepFool samples
(c) FGSM. Parameters used for each attack are detailed at Section 5.2.

A.3 NOISED SAMPLES QUALITATIVE VISUALIZATION

Several examples of successful noised samples from both datasets and the three different attacks are
depicted in Figure 7.

A.4 ARCHITECTURE AND TRAINING SETUP FOR AUTOENCODER

We train the same autoencoder architecture (4385 parameters) for both Fashion-MNIST and MNIST,
A diagram of the network is shown in the Figure 8. The encoder comprises three (3) convolutional
layers with 16, 8, 8 filters respectively, a kernel size of three (3), each with relu activations, and a
maxpooling layer with a pool size of two (2) after every convolutional layer. The decoder comprises
four (4) convolutional layers with 8, 8, 16, 1 filters respectively, a kernel size of three (3), each with
relu activations except the final layer which uses a sigmoid. Each consecutive pair of convolutional
layer is interspersed with an upsampling layer with a size of two (2). We train the autoencoder by
minimizing the binary cross-entropy of the decoder output and the original input image using an
adadelta optimizer (citep) for 100 epochs taking 128 records per batch.

A.5 ACTIVATION VALUES DISTRIBUTION ACROSS ALL LAYERS

Although subset scanning can use parametric scoring functions (i.e. Gaussian, Poisson), the distri-
bution of activations within particular layers are highly skewed and in some cases bi-modal. See
Figure 9. Therefore, this work uses non-parametric scan statistics that makes minimal assumptions
on the underlying distribution of node activations.

Furthermore we only consider 1-tailed p-values (in the greater direction). This is due to nuances
of the ReLu activation function. Alternative activation functions such as tanh and signmoid would
allow an “extreme” activation to be considered as either larger or smaller than expected with a p-
value coming from a 2-tailed calculation.

A.6 NON-PARAMETRIC SCAN STATISTICS

NPSS can be viewed as a second-order test statistic that operate on (by aggregating information
across) p-values (i.e., the first order test statistics) to evaluate the the evidence for violations of
H0 in a given subset S. NPSS is operationalized with a given score (test) function; each test is
powered for different alternatives, and therefore, NPSS’s detection power is linked to preferences of
the selected score function.
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Figure 8: Autoencoder architecture diagram. Same architecture was implemented for both
datasets and for different proportions of noised samples.

This work used the Berk-Jones scoring function (Berk & Jones, 1979).

φBJ(α,Nα, N) = N ∗KL
(
Nα
N
,α

)
(5)

Where KL is the Kullback-Liebler divergence KL(x, y) = x log x
y + (1 − x) log 1−x

1−y between
the observed and expected proportions of significant p-values. Berk-Jones can be interpreted as the
log-likelihood ratio for testing whether the p-values are uniformly distributed on [0, 1] as compared
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Table 3: Examples of Nonparametric Scan Statistics that satisfy the Linear Time Subset Scanning
property.

Name φ(α,Nα, N)

Higher Criticism |Nα−Nα|√
Nα(1−α)

Berk-Jones N ∗KL
(
Nα
N , α

)
Kolmogorov Smirnov |Nα−Nα|√

N

to following a piece-wise constant alternative distribution, and has been shown to fulfill several
optimality properties.

A more commonly known scoring function that also satisfies the LTSS property is the Kolmogoorv-
Smirnov test statistic

φKS(α,Nα, N) =
|Nα −Nα|√

N
(6)

which is known to be more sensitive to deviations in the center of a distribution. https://www.
jstor.org/stable/2958837 and http://www.jstor.org/stable/2958836.

Another test is Higher-Criticism Donoho & Jin (2004):

φHC(α,Nα, N) =
|Nα −Nα|√
Nα(1− α)

(7)

which can be interpreted as the test statistic of a Wald test for the amount of significant p-values given
that Nα is binomially distributed with parameters Nα and α. Because Higher-Criticism normalizes
by the standard-deviation of Nα, it tends to be more sensitive to small subsets with very extreme
p-values.
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