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ABSTRACT

The goal of unpaired cross-domain translation is to learn useful mappings between
two domains, given only unpaired sets of datapoints from these domains. While this
formulation is highly underconstrained, recent work has shown that it is possible
to learn mappings useful for downstream tasks by encouraging approximate cycle
consistency in the mappings between the two domains (Zhu et al., 2017a). In this
work, we propose AlignFlow, a framework for unpaired cross-domain translation
that ensures exact cycle consistency in the learned mappings. Our framework uses
a normalizing flow model to specify a single invertible mapping between the two
domains. In contrast to prior works in cycle-consistent translations, we can learn
AlignFlow via adversarial training, maximum likelihood estimation, or a hybrid of
the two methods. Theoretically, we derive consistency results for AlignFlow which
guarantee recovery of desirable mappings under suitable assumptions. Empirically,
AlignFlow demonstrates significant improvements over relevant baselines on image-
to-image translation and unsupervised domain adaptation tasks on benchmark
datasets.

1 INTRODUCTION

Given data from two domains, cross-domain translation refers to the task of learning a mapping
from one domain to another, such as translating text across two languages or image colorization.
This ability to learn a meaningful alignment between two domains has a broad range of applica-
tions across machine learning, including relational learning (Kim et al., 2017), domain adaptation
(Taigman et al., 2016; Hoffman et al., 2017; Bousmalis et al., 2017), image and video translation for
computer vision (Isola et al., 2017; Wang et al., 2018), and machine translation for natural language
processing (Lample et al., 2017).

Broadly, there are two learning paradigms for cross-domain translation: paired and unpaired. In
paired cross-domain translation, we assume access to pairs of datapoints across the two domains, e.g.,
black and white images and their respective colorizations. However, paired data can be expensive
to obtain or may not even exist, as in neural style transfer (Gatys et al., 2015) where the goal is to
translate across the works of two artists that typically do not exhibit a direct correspondence.

Unpaired cross-domain translation tackles this regime where paired data is not available and learns an
alignment between two domains given only unpaired sets of datapoints from the domains. Formally,
we seek to learn a joint distribution over two domains, say A and B, given samples only from the
marginal distributions over A and B. CycleGAN (Zhu et al., 2017a), a highly successful approach
to this problem, learns a pair of conditional generative models, say GA→B and GB→A, to match the
marginal distributions over A and B via an adversarial objective (Goodfellow et al., 2014). The
marginal matching constraints alone are insufficient to learn the desired joint distribution, both in
theory and practice. To further constrain the problem, an additional desideratum is imposed in
the form of cycle-consistency. That is, given any datapoint A = a, the cycle-consistency term
in the learning objective prefers mappings GA→B and GB→A such that GB→A(GA→B(a)) ≈ a.
Symmetrically, cycle-consistency in the reverse direction implies GA→B(GB→A(b)) ≈ b for all
datapoints B = b. Intuitively, this encourages the learning of approximately bijective mappings.
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While empirically effective, the CycleGAN objective only imposes a soft cycle-consistency penalty
and provides no guarantee that GA→B and GB→A are true inverses of each other. A natural question,
then, is whether the cycle-consistency objective can be replaced with a single, invertible modelGA→B.
Drawing inspiration from the literature on invertible generative models (Rezende and Mohamed,
2015; Dinh et al., 2014; 2017; Kingma and Dhariwal, 2018), we propose AlignFlow, a learning
framework for cross-domain translations which uses normalizing flow models to represent the
mappings. In AlignFlow, we compose a pair of invertible flow models GZ→A and GZ→B, to represent
the mapping GA→B = GZ→B ◦ G−1Z→A. Here, Z is a shared latent space between the two domains.
Since composition of invertible mappings preserves invertibility, the mapping GA→B is invertible and
the reverse mapping from B→ A is simply given as GB→A = G−1A→B. Hence, AlignFlow guarantees
exact cycle-consistency by design and simplifies the standard CycleGAN learning objective by
learning a single, invertible mapping.

Furthermore, AlignFlow provides flexibility in specifying the training objective. In addition to
adversarial training, we can also specify a prior distribution over the latent variables Z and train
the two component models GZ→B and GZ→A via maximum likelihood estimation (MLE). MLE is
statistically efficient, exhibits stable training dynamics, and can have a regularizing effect when used
in conjunction with adversarial training of invertible generative models (Grover et al., 2018).

2 PRELIMINARIES

In this section, we discuss the necessary background and notation on generative adversarial net-
works, normalizing flows, and cross-domain translations using CycleGANs. Unless explicitly stated
otherwise, we assume probability distributions admit absolutely continuous densities on a suitable
reference measure. We use uppercase notation X,Y,Z to denote random variables, and lowercase
notation x, y, z to denote specific values in the italicized corresponding sample spaces X ,Y,Z .

2.1 GENERATIVE ADVERSARIAL NETWORKS

A generative adversarial network (GAN) is a latent variable model which specifies a deterministic
mapping h : Z → X between a set of latent variables Z and a set of observed variables X (Goodfellow
et al., 2014). In order to sample from GANs, we need a prior density over Z that permits efficient
sampling. A GAN generator can also be conditional, where the conditioning is on another set of
observed variables (and optionally the latent variables Z as before) (Mirza and Osindero, 2014).

A GAN is trained via adversarial training, wherein the generator h plays a minimax game with
an auxiliary critic C. The goal of the critic C : X → R is to distinguish real samples from the
observed dataset with samples generated via h. The generator, on the other hand, tries to generate
samples that can maximally confuse the critic. Many learning objectives have been proposed for
adversarial training, including those based on f-divergences (Nowozin et al., 2016), Wasserstein
Distance (Arjovsky et al., 2017), and maximum mean discrepancy (Li et al., 2017). The generator and
the critic are both parameterized by deep neural networks and learned via alternating gradient-based
optimization. Because adversarial training only requires samples from the generative model, it
can be used to train generative models with intractable or ill-defined likelihoods (Mohamed and
Lakshminarayanan, 2016). In practice, such likelihood-free methods give excellent performance on
sampling-based tasks unlike the alternative maximum likelihood estimation-based training criteria for
learning generative models. However, these models are harder to train due to the alternating minimax
optimization and suffer from issues such as mode collapse (Goodfellow, 2016).

2.2 NORMALIZING FLOWS

Normalizing flows represent a latent variable generative model that specifies an invertible mapping
h : Z → X between a set of latent variables Z and a set of observed variables X. Let pX and pZ denote
the marginal densities defined by the model over X and Z respectively. Using the change-of-variables
formula, the marginal densities can be related as:

pX(x) = pZ(z)

∣∣∣∣det∂h−1∂X

∣∣∣∣
X=x

(1)
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where z = h−1(x) due to the invertibility constraints. Here, the second term on the RHS corresponds
to the absolute value of the determinant of the Jacobian of the inverse transformation and signifies the
shrinkage/expansion in volume when translating across the two sample spaces.

For evaluating likelihoods via the change-of-variables formula, we require efficient and tractable
evaluation of the prior density, the inverse transformation h−1, and the determinant of its Jacobian
of h−1. To draw a sample from this model, we perform ancestral sampling, i.e., we first sample
a latent vector z ∼ pZ(z) and obtain the sampled vector as given by x = h(z). This requires the
ability to efficiently: (1) sample from the prior density and (2) evaluate the forward transformation
h. Many transformations parameterized by deep neural networks that satisfy one or more of these
criteria have been proposed in the recent literature on normalizing flows, e.g., NICE (Dinh et al.,
2014) and Autoregressive Flows (Kingma et al., 2016; Papamakarios et al., 2017). By suitable
design of transformations, both likelihood evaluation and sampling can be performed efficiently, as in
Real-NVP (Dinh et al., 2017). Consequently, a flow model can be trained efficiently via maximum
likelihood estimation as well as likelihood-free adversarial training (Grover et al., 2018).

2.3 DOMAIN TRANSLATIONS VIA CYCLEGAN

Consider two multi-variate random variables A and B with domains specified as A ⊆ Rn and
B ⊆ Rn respectively. Let p∗A,B denote the joint distribution over these two variables. In the
unpaired cross-domain translation setting, we are given access to a finite datasets DA and and DB,
sampled independently from the two unknown corresponding (marginal) data distributions p∗A and
p∗B respectively. Using these datasets, the goal is to learn the conditional distributions p∗A|B and
p∗B|A. Without any paired data, the problem is underconstrained (even in the limit of infinite paired
data) since the conditionals can only be derived from p∗A,B, but we only have data sampled from the
marginal densities. To address this issue, CycleGAN introduced additional constraints that have
proven to be empirically effective in learning mappings that are useful for downstream tasks. We now
proceed by describing the CycleGAN framework.

If we assume the conditional distributions for A|B and B|A are deterministic, the conditionals can
alternatively be represented as cross-domain mappings GA→B : A → B and GB→A : B → A. A
CycleGAN uses a pair of conditional GANs to translate data from two domains (Zhu et al., 2017a). It
consists of the following components:

1. A conditional GAN GA→B : A → B that takes as input data from domain A and maps it to
domain B. The mappingGA→B is learned adversarially with the help of a critic CB : B → R
trained to distinguish between real and synthetic data (generated via GA→B) from domain B.

2. Symmetrically, a conditional GAN GB→A : B → A and a critic CA : A → R for adversarial
learning of the reverse mapping from B to A.

Any suitable GAN loss can be substituted in the above objective, e.g., Wasserstein GAN (Arjovsky
et al., 2017). For the standard cross-entropy based GAN loss, the critic outputs a probability of a
datapoint being real and optimizes the following objective:

LGAN(CA, GB→A)

:= Ea∼p∗A [logCA(a)] + Eb∼p∗B [log(1− CA(GB→A(b)))]. (2)

Additionally, semantically meaningful mappings can be learned via a pair of conditional GANs
GA→B and GB→A that are encouraged to be cycle consistent. Cycle consistency encourages the
data translated from domain A to B via GA→B to be mapped back to the original datapoints in A
via GB→A. That is, GB→A(GA→B(a)) ≈ a for all a ∈ A. Formally, the cycle-consistency loss for
translation from A to B and back is defined as:

LCycle(GB→A, GA→B)

:= Ea∼p∗A [‖GB→A(GA→B(a))− a‖1] (3)

Symmetrically, an additional cycle consistency term LCycle(GA→B, GB→A) in the reverse direction
encourages GA→B(GB→A(b)) ≈ b for all b ∈ B.
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Figure 1: Bayesian network for AlignFlow.

The full objective optimized by a CycleGAN is given as:

LCycleGAN(GB→A, CA, GA→B, CB;λA→B, λB→A)

:= LGAN(CA, GB→A) + LGAN(CB, GA→B)

+ λA→BLCycle(GB→A, GA→B)

+ λB→ALCycle(GA→B, GB→A) (4)

where λA→B and λB→A are hyperparameters controlling the relative strength of the cycle consistent
terms. The objective is minimized w.r.t. GB→A, GA→B and maximized w.r.t. CA, CB. In practice, the
expectations w.r.t. p∗A and p∗B in the individual loss terms are approximated via the datasets DA and
DB respectively.

The use of cycle consistency has indeed been shown empirically to be a good inductive bias for
learning cross-domain translations. However, it necessitates a careful design of the loss function that
could involve a trade-off between the adversarial training and cycle consistency terms in the objective
in Eq. 4. To stabilize training and achieve good empirical performance, Zhu et al. (2017a) proposes a
range of techniques such as the use of an identity loss in the above objective.

3 THE ALIGNFLOW FRAMEWORK

In this section, we present the AlignFlow framework for learning cross-domain translations between
two domains A and B. We will first discuss the model representation, followed by the learning
and inference procedures for AlignFlow. Finally, we will present a theoretical result analyzing the
proposed framework.

3.1 REPRESENTATION

We will use a graphical model to represent the relationships between the domains to be translated.
Consider a Bayesian network between two sets of observed random variables A and B with domains
A and B respectively along with a parent set of unobserved random variable Z with domain Z . The
network is illustrated in Figure 1.

The latent variables Z indicate a shared feature space between the observed variables A and B, which
will be exploited later for efficient learning and inference. While Z is unobserved, we assume a prior
density pZ over these variables, such as an isotropic Gaussian. The marginal densities over A and B
are not known, and will be learned using the unpaired data from the two domains.

Finally, to specify the joint distribution between these sets of variables, we constrain the relationship
between A and Z, and B and Z to be invertible. That is, we specify mappings GZ→A and GZ→B such
that the respective inverses GA→Z = G−1Z→A and GB→Z = G−1Z→B exist. In the proposed AlignFlow
framework, we specify the cross-domain mappings as the composition of two invertible mappings:

GA→B = GZ→B ◦GA→Z (5)
GB→A = GZ→A ◦GB→Z. (6)

Since composition of invertible mappings is invertible, both GA→B and GB→A are invertible. In fact,
it is straightforward to observe that GA→B and GB→A are inverses of each other:

G−1A→B = (GZ→B ◦GA→Z)
−1 = G−1A→Z ◦G

−1
Z→B

= GZ→A ◦GB→Z = GB→A. (7)

Hence, AlignFlow only needs to specify the forward mapping from one domain to another. The
corresponding mapping in the reverse direction is simply given by the inverse of the forward mapping.
Such a choice permits increased flexibility in specifying learning objectives and performing efficient
inference, which we discuss next.

4



Published as a workshop paper at ICLR 2019

A B

YA YB

GA→B

GB→ACA CB

(a) CycleGAN

A B
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GA→Z = G−1Z→A GB→Z = G−1Z→B

CA CB

(b) AlignFlow

Figure 2: CycleGAN v.s. AlignFlow. Unlike CycleGAN, AlignFlow specifies a single, invertible
mapping GA→Z ◦G−1B→Z that is exactly cycle-consistent, represents a shared latent space Z between
the two domains, and can be trained via both adversarial training and exact maximum likelihood
estimation. Double-headed arrows in AlignFlow denote invertible mapping. YA and YB are random
variables denoting the output of the critics used for adversarial training.

3.2 LEARNING ALGORITHMS & OBJECTIVES

From a probabilistic standpoint, the cross-domain translation problem requires us to learn a conditional
distribution p∗A|B over A and B given data sampled from the corresponding marginals p∗A and p∗B.

We now discuss two methods to learn a mapping from B → A such that the resulting marginal
distribution over A, denoted as pA is close to p∗A. Unless mentioned otherwise, all our results that
hold for a particular domain A will have a natural counterpart for the domain B, by the symmetrical
nature of the problem setup and the AlignFlow framework.

Adversarial Training. A flow model representation permits efficient ancestral sampling. Hence, a
likelihood-free framework to learn the conditional mapping from B to A is to perform adversarial
training similar to a GAN. That is, we introduce a critic CA that plays a minimax game with the
generator mapping GB→A. The critic CA distinguishes real samples a ∼ p∗A with the generated
samples GB→A(b) for b ∼ p∗B. An example GAN loss is illustrated in Eq. 2.

Alternatively if our goal is to only learn a generative model with the marginal density close to p∗A, then
we can choose to simply learn the mapping GZ→A. As shown in Grover et al. (2018), the mapping
GZ→A along with an easy-to-sample prior density pZ itself specifies a latent variable model that can
learned via an adversarial training objective, similar to the one illustrated in Eq. 2 or any other GAN
loss.

Maximum Likelihood Estimation. Flow models can also be trained via maximum likelihood esti-
mation (MLE). Hence, an MLE objective for learning the mapping GZ→A maximizes the likelihood
of the dataset DA:

LMLE(GZ→A) := Ea∼p∗A [log pA(a)] (8)

where pA(a) = pZ(G
−1
A→Z(a))

∣∣∣∣det∂G−1A→Z

∂A

∣∣∣∣
A=a

.

As in the previous cases, the expectation w.r.t. p∗A is approximated via Monte Carlo averaging over
the dataset DA. Besides efficient evaluation of the inverse transformations and its Jacobian, this
objective additionally requires a prior with a tractable density, e.g. an isotropic Gaussian.

Cycle-consistency. So far, we have only discussed objectives for modeling the marginal density
over A (and symmetrical learning objectives exist for B). However, as discussed previously, the
marginal densities alone do not guarantee learning a mapping that is useful for downstream tasks.
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Cycle consistency, as proposed in CycleGAN (Zhu et al., 2017a), is a highly effective learning
objective that encourages learning of meaningful cross-domain mappings. For AlignFlow, we
observe that cycle consistency is exactly satisfied. Formally, we have the following result:

Proposition 1. Let G denote the class of invertible mappings represented by an arbitrary AlignFlow
architecture. For any GB→A ∈ G, we have:

LCycle(GB→A, GA→B) = 0 (9)
LCycle(GA→B, GB→A) = 0 (10)

where GA→B = G−1B→A by design.

The proposition follows directly from the invertible design of the AlignFlow framework (Eq. 7).

Overall objective. In AlignFlow, we optimize a combination of the adversarial learning objective
and the maximum likelihood objective.

LAlignFlow(GB→A, CA, CB;λA, λB)

:= LGAN(CA, GB→A) + LGAN(CB, GA→B)

− λALMLE(GZ→A)− λBLMLE(GZ→B) (11)

where λA ≥ 0 and λB ≥ 0 are hyperparameters that reflect the strength of the MLE terms for domains
A and B respectively. The AlignFlow objective is minimized w.r.t. the parameters of the generator
GA→B and maximized w.r.t. parameters of the critics CA and CB. Notice that we have expressed
LAlignFlow as a function of the critics CA, CB and only GB→A since the latter also encompasses the
other parametric functions appearing in the objective (GA→B, GZ→A, GZ→B) via the invertibility
constraints in Eqs. 5-7. For different choices of λA and λB, we cover the following three cases:

1. Adversarial training only: For λA = λB = 0, we recover the CycleGAN objective in
Eq. 4, with the additional benefits of exact cycle consistency and a single invertible generator.
In this case, the prior over Z plays no role in learning.

2. MLE only: On the other extreme for large values of λA, λB such that λA = λB →∞, we
can perform pure maximum likelihood training to learn the invertible generator. Here, the
critics CA, CB play no role since the adversarial training terms are ignored in Eq. 11.

3. Hybrid: For any finite, non-zero value of λA, λB, we obtain a hybrid objective where both
the adversarial and MLE terms are accounted for during learning.

3.3 INFERENCE

AlignFlow can be used for both conditional and unconditional sampling at test time. For conditional
sampling, we are given a datapoint b ∈ B and we can draw the corresponding cross-domain translation
in domain A via the mapping GB→A.

For unconditional sampling, we require λA 6= 0 since doing so will activate the use of the prior pZ via
the MLE terms in the learning objective. Thereafter, we can obtain samples by first drawing z ∼ pZ
and then applying the mapping GZ→A to z. Furthermore, the same z can be mapped to domain B via
GZ→B. Hence, we can sample paired data (GZ→A(z), GZ→B(z) given z ∼ pZ.

3.4 COMPARISON WITH CYCLEGAN

AlignFlow differs from CycleGAN with respect to the model family as well as the learning algorithm
and inference capabilities. We illustrate and compare both models in Figure 2. CycleGAN param-
eterizes two independent mappings GA→B and GB→A, whereas AlignFlow only specifies a single,
invertible mapping. Learning in a CycleGAN is restricted to an adversarial training objective along
with a cycle-consistent loss term, whereas AlignFlow is exactly consistent and can be trained via
adversarial learning, MLE, or a hybrid. Finally, inference in CycleGAN is restricted to conditional
sampling since it does not involve any latent variables Z with easy-to-sample prior densities. As
described previously, AlignFlow permits both conditional and unconditional sampling.
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4 THEORETICAL ANALYSIS

For finite non-zero values of λA and λB, the AlignFlow objective consists of three parametric models:
one generator GB→A ∈ G, and two critics CA ∈ CA, CB ∈ CB. Here, G, CA, CB denote model families
specified e.g., via deep neural network based architectures. In this section, we analyze the optimal
solutions to these parameterized models within well-specified model families.

4.1 MARGINAL-CONSISTENCY

Our first result characterizes the conditions under which the optimal generators exhibit marginal-
consistency for the data distributions defined over the domains A and B.
Definition 1. Let pX,Y denote the joint distribution between two domains X and Y . An invertible
mapping GY→X : Y → X is marginally-consistent w.r.t. two arbitrary distributions (pX, pY) iff for
all x ∈ X , y ∈ Y:

pX(x) =

{
pY(y)

∣∣∣det∂GY→X
−1

∂Y

∣∣∣
Y=y

, if x = GY→X(y)

0, otherwise.
(12)

Next, we show that AlignFlow is marginally-consistent for well-specified model families.
Lemma 1. Let GA and GB denote the class of invertible mappings represented by the AlignFlow
architecture for mapping Z → A and Z → B. For a given choice of prior distribution pZ, if there
exist mappings G∗Z→A ∈ GA, G

∗
Z→B ∈ GB that are marginally consistent w.r.t. (p∗A, pZ) and (p∗B, pZ)

respectively, then the mapping G∗B→A = G∗Z→A ◦G∗
−1

Z→B is marginally-consistent w.r.t. (p∗A, p
∗
B).

The result follows directly from Definition 1 and change-of-variables applied to the mappingG∗B→A =

G∗Z→A ◦G∗
−1

Z→B.
Theorem 1. Assume that the model families for the critics CA : A → [0, 1] and CB : B → [0, 1] are
the set of all measurable functions for the cross-entropy GAN objective. Then, G∗B→A (as defined in
Lemma 1) globally minimizes the AlignFlow objective in Eq. 11 for any value of λA ≥ 0, λB ≥ 0.

Proof. See Appendix A.1.

Note that marginally-consistent mappings w.r.t. a target data distribution and a prior density need not
be unique. While an invertible model family mitigates the underconstrained nature of the problem, it
does not provably eliminate it. We provide some non-identifiable constructions in Appendix A.3 and
leave the exploration of additional constraints that guarantee identifiability to future work.

4.2 OPTIMAL CRITICS

Unlike standard adversarial training of an unconditional normalizing flow model (Grover et al.,
2018; Danihelka et al., 2017), the AlignFlow model involves two critics. Here, we are interested in
characterizing the dependence of the optimal critics for a given invertible mapping GA→B. Consider
the AlignFlow framework where the GAN loss terms in Eq. 11 are specified via the cross-entropy
objective in Eq. 2. For this model, we can relate the optimal critics using the following result.
Theorem 2. Let p∗A and p∗B denote the true data densities for domains A and B respectively. Let C∗A
and C∗B denote the optimal critics for the AlignFlow objective with the cross-entropy GAN loss for
any fixed choice of the invertible mapping GA→B. Then, we have for any a ∈ A:

C∗A(a) =
C∗B(b)p

∗
A(a)

p∗A(a) + p∗B(b)(1− C∗B(b))
∣∣∣det∂G−1

A→B
∂A

∣∣∣
A=a

(13)

where b = GA→B(a).

Proof. See Appendix A.2.

In essence, the above result shows that the optimal critic for one domain, w.l.o.g. say A, can be
directly obtained via the optimal critic of another domain B for any choice of the invertible mapping
GA→B, assuming one were given access to the data marginals p∗A and p∗B.
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Table 1: Mean Squared Error (MSE) comparing CycleGAN and varaints of AlignFlow on paired test
sets. MSE is computed pixelwise after normalizing images to (−1, 1).

Dataset Model MSE (A→ B) MSE (B→ A)

Facades CycleGAN 0.7129 0.3286
AlignFlow (Adversarial only) 0.6727 0.2679
AlignFlow (Hybrid) 0.5801 0.2512
AlignFlow (MLE only) 0.9014 0.5960

Maps CycleGAN 0.0245 0.0953
AlignFlow (Adversarial only) 0.0385 0.1123
AlignFlow (Hybrid) 0.0209 0.0897
AlignFlow (MLE only) 0.0452 0.1746

CityScapes CycleGAN 0.1252 0.1200
AlignFlow (Adversarial only) 0.2569 0.2196
AlignFlow (Hybrid) 0.1130 0.1462
AlignFlow (MLE only) 0.2526 0.2272

Table 2: Test classification accuracies for domain adaptation from source→target. The source only
and target only models directly use classifiers trained on the source and target datasets respectively.

Model MNIST→USPS USPS→MNIST SVHN→MNIST

source only 82.2 ± 0.8 69.6 ± 3.8 67.1 ± 0.6
ADDA (Tzeng et al., 2017) 89.4 ± 0.2 90.1 ± 0.8 76.0 ± 1.8
CyCADA + CycleGAN 95.6 ± 0.2 96.5 ± 0.1 90.4 ± 0.4
CyCADA + AlignFlow 96.2 ± 0.2 96.7 ± 0.1 91.0 ± 0.3
target only 96.3 ± 0.1 99.2 ± 0.1 99.2 ± 0.1

5 EXPERIMENTS

In this section, we empirically evaluate AlignFlow for image-to-image translation and unsupervised
domain adaptation. For both these tasks, the most relevant baseline is CycleGAN. Extensions to
CycleGAN that are complementary to our work are excluded for comparison to ensure a controlled
evaluation. We discuss these extensions in detail in Section 6. In all our experiments, we specify the
AlignFlow architecture based on the invertible transformations introduced in Real-NVP (Dinh et al.,
2017). For experimental details beyond those stated below, we refer the reader to Appendix B.

5.1 IMAGE-TO-IMAGE TRANSLATION

We evaluate AlignFlow on three image-to-image translation datasets used by Zhu et al. (2017a):
Facades, Maps, and CityScapes (Cordts et al., 2016). These datasets are chosen because they
provide aligned image pairs, so one can quantitatively evaluate unpaired image-to-image translation
models via a distance metric such as mean squared error (MSE) between generated examples and the
corresponding ground truth. Note that we restrict ourselves to unpaired translation, so the pairing
information is omitted during training and only used for evaluation.

While MSE can have limitations, we follow prior evaluation protocols and report the MSE for
translations on the test sets after cross-validation of hyperparameters in Table 1. For hybrid models,
we set λA = λB. We observe that while learning AlignFlow via adversarial training or MLE
alone is not as competitive as CycleGAN, hybrid training of AlignFlow significantly outperforms
CycleGAN in almost all cases. Specifically, we observe that MLE alone typically performs worse
than adversarial training, but together both these objectives seem to have a regularizing effect on each
other. Qualitative evaluation of the reconstructions for all datasets is deferred to Appendix B.
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5.2 UNSUPERVISED DOMAIN ADAPTATION

The setup for unsupervised domain adaptation (Saenko et al., 2010) is as follows. We are given data
from two related domains: a source and a target domain. For the source, we have access to both the
input datapoints and their labels. For the target, we are only provided with input datapoints without
any labels. Using the available data, the goal is to learn a classifier for the target domain.

A variety of algorithms have been proposed for the above task which seek to match pixel-level or
feature-level distributions across the two domains. One such model relevant to this experiment is
Cycle-Consistent Domain Adaptation (CyCADA) (Hoffman et al., 2017). CyCADA first learns a
cross-domain translation mapping from source to target domain via CycleGAN. This mapping is used
to stylize the source dataset into the target domain, which is then subject to additional feature-level
and semantic consistency losses for learning the target domain classifier (Ganin and Lempitsky, 2014;
Tzeng et al., 2017). A full description of CyCADA is beyond the scope of discussion of this work;
we direct the reader to Hoffman et al. (2017) for further details.

In this experiment, we seek to assess the usefulness of AlignFlow for domain adaptation in the
CyCADA framework. We evaluate the same pairs of source and target datasets as in Hoffman et al.
(2017): MNIST (LeCun et al., 1998), USPS (Hull, 1994), SVHN (Netzer et al., 2011), which are
all image datasets of handwritten digits with 10 classes. Instead of training a source-to-target and
a target-to-source generator with a cycle-consistency loss term, we train AlignFlow with only the
GAN-based loss in the target direction. In Table 2, we see that CyCADA based models perform
better in two out of three adaptation settings when used in conjunction with AlignFlow.

6 RELATED WORK

A key assumption in unsupervised domain alignment is the existence of a deterministic or stochastic
mapping GA→B such that the distribution of B matches that of GA→B(A), and vice versa. This
assumption can be incorporated as a marginal distribution-matching constraint into the objective
using an adversarially-trained GAN critic (Goodfellow et al., 2014). However, this objective is
under-constrained. To partially mitigate this issue, CycleGAN (Zhu et al., 2017a), DiscoGAN (Kim
et al., 2017), and DualGAN (Yi et al., 2017) added an approximate cycle-consistency constraint,
by encouraging GB→A ◦ GA→B and GA→B ◦ GB→A to behave like identity functions on domains
A and B respectively. While cycle-consistency is empirically very effective, alternatives based on
variational autoencoders that do not require either cycles or adversarial training have also been
proposed recently (Hoshen, 2018; Hoshen and Wolf, 2018).

In a parallel line of work, CoGAN (Liu and Tuzel, 2016) and UNIT (Liu et al., 2017) demonstrated
the efficacy of adding a shared-space constraint, where two decoders (decoding into domains A and
B respectively) share the same latent space. These works have since been extended to enable one-to-
many mappings (Huang et al., 2018a; Zhu et al., 2017b) as well as multi-domain alignment (Choi et al.,
2018). Our work focuses on the one-to-one unsupervised domain alignment setting. In contrast to
previous models, AlignFlow leverages both a shared latent space and exact cycle-consistency. To our
knowledge, AlignFlow provides the first demonstration that invertible models can be used successfully
in lieu of the cycle-consistency objective. Furthermore, AlignFlow allows the incorporation of exact
maximum likelihood training, which we demonstrated to induce a meaningful shared latent space
that is amenable to interpolation.

To enforce exact cycle-consistency, we leverage the growing literature on invertible generative models.
Dinh et al. (2014) proposed a class of volume-preserving invertible neural networks (NICE) that uses
the change of variables formulation to enable exact maximum likelihood training. Real-NVP (Dinh
et al., 2017) and Flow++ (Ho et al., 2019) extend this line of work by allowing volume transformations
and additional architectural considerations. Glow (Kingma and Dhariwal, 2018) further builds upon
this by incorporating invertible 1× 1 convolutions. We note that additional lines of work based on
autoregressive flows (Kingma et al., 2016; Papamakarios et al., 2017; Huang et al., 2018b), ordinary
differential equations-based flows (Chen et al., 2018; Grathwohl et al., 2018), and planar flows (Berg
et al., 2018) have shown improvements in specific scenarios. For fast inversion, our work makes use
of the Real-NVP model, and we leave extensions of this model in the unsupervised domain alignment
setting as future work.
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7 CONCLUSION & FUTURE WORK

In this work, we presented AlignFlow, a learning framework for cross-domain translations based
on normalizing flow models. The use of normalizing flow models is an attractive choice for several
reasons we highlight: it guarantees exact cycle-consistency via a single cross-domain mapping, learns
a shared latent space across two domains, and permits a flexible training objective which is a hybrid of
terms corresponding to adversarial training and exact maximum likelihood estimation. Theoretically,
we derived conditions under which the AlignFlow model learns marginals that are consistent with
the underlying data distributions. Finally, our empirical evaluation demonstrated significant gains on
the tasks of image-to-image translation and unsupervised domain adaptation, along with an increase
in inference capabilities due to the use of invertible models, e.g., paired interpolations in the latent
space for two domains.

In the future, we would like to consider extensions of AlignFlow to learning stochastic, multimodal
mappings (Zhu et al., 2017b) and translations across more than two domains (Choi et al., 2018). In
spite of strong empirical results in domain alignments in the last few years, a well-established theory
explaining such results is lacking. With a handle on model likelihoods and exact invertibility for
inference, we are optimistic that AlignFlow can potentially aid the development of such a theory and
characterize structure that leads to provably identifiable recovery of cross-domain mappings. Explor-
ing the latent space of AlignFlow from a manifold learning perspective to domain alignment (Cui
et al., 2014) is also an interesting direction for future research.
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APPENDICES

A PROOFS OF THEORETICAL RESULTS

A.1 PROOF OF THEOREM 1

Proof. Since the maximum likelihood estimate minimizes the KL divergence between the data
and model distributions, the optimal value for LMLE(GZ→A) is attained at a marginally-consistent
mapping, say G∗Z→A. Symmetrically, there exists a marginally-consistent mapping G∗Z→B that
optimizes LMLE(GZ→B).

From Theorem 1 of Goodfellow et al. (2014), we know that the cross-entropy GAN objective
LGAN(CA, GB→A) is globally minimized when pA = p∗A and critic is Bayes optimal. Further, from
Lemma 1, we know that G∗B→A is marginally-consistent w.r.t. (p∗A, p

∗
B). Hence, G∗B→A globally mini-

mizes LGAN(CA, GB→A). Symmetrically, G∗A→B = G∗
−1

B→A globally minimizes LGAN(CB, GA→B).

Since G∗B→A = G∗Z→A ◦ G∗
−1

Z→B globally optimizes all the individual loss terms in the AlignFlow
objective in Eq. 11, it globally optimizes the overall objective for any value of λA ≥ 0, λB ≥ 0.

A.2 PROOF OF THEOREM 2

Proof. First, we note that only the GAN loss terms depend on CA and CB. Hence, the MLE terms
are constants for a fixed GB→A and hence, can be ignored for deriving the optimal critics. Next, for
any GAN trained with the cross-entropy loss as specified in Eq 2, we know that the Bayes optimal
critic C∗A prediction for any a ∈ A is given as:

C∗A(a) =
p∗A(a)

p∗A(a) + pA(a)
(14)

See Proposition 1 in Goodfellow et al. (2014) for a proof.

We can relate the densities pA(a) and pB(b) via the change of variables as:

pA(a) = pB(b)

∣∣∣∣det∂G−1A→B

∂A

∣∣∣∣
A=a

(15)

where b = GA→B(a).

Substituting the expression for density of pA(a) from Eq. 15 in Eq. 14, we get:

C∗A(a) =
p∗A(a)

p∗A(a) + pB(b)
∣∣∣det∂G−1

A→B
∂A

∣∣∣
A=a

(16)

where b = GA→B(a).

Symmetrically, using Proposition 1 in Goodfellow et al. (2014) we have the Bayes optimal critic C∗B
for any b ∈ B given as:

C∗B(b) =
p∗B(b)

p∗B(b) + pB(b)
. (17)

Rearranging terms in Eq. 17, we have:

pB(b) = p∗B(b)

(
1

C∗B(b)
− 1

)
(18)

for any b ∈ B.

Substituting the expression for density of pB(b) from Eq. 18 in Eq. 16, we get:

C∗A(a) =
C∗B(b)p

∗
A(a)

p∗A(a) + p∗B(b)(1− C∗B(b))
∣∣∣det∂G−1

A→B
∂A

∣∣∣
A=a

(19)

where b = GA→B(a).
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A.3 NON-IDENTIFIABILITY

As discussed, marginal consistency along with invertibility can only reduce the underconstrained
nature of the unpaired cross-domain translation problem, but not completely eliminate it. In the
following result, we identify one such class of non-identifiable model families for the MLE-only
objective of AlignFlow (λA =∞, λB =∞). We will need the following definitions.

Definition 2. Let Sn denotes the symmetric group on n dimensional permutation matrices. A function
class for the cross-domain mappings G is closed under permutations iff for all GB→A ∈ G, S ∈ Sn,
we have GB→A ◦ S ∈ G.

Definition 3. A density pX is symmetric iff for all x ∈ X ⊆ Rn, S ∈ Sn, we have pX(x) = pX(Sx).

Examples of distributions with symmetric densities include the isotropic Gaussian and Laplacian
distributions.

Proposition 2. Consider the case where G∗B→A ∈ G, and G is closed under permutations. For a
symmetric prior pZ (e.g., isotropic Gaussian), there exists an optimal solution G†B→A ∈ G to the
AlignFlow objective (Eq. 11) for λA = λB =∞ such that G†B→A 6= G∗B→A.

Proof. We will prove the proposition via contradiction. That is, let’s assume that G∗B→A is a unique
solution for the AlignFlow objective for λA = λB =∞ (Eq. 11). Now, consider an alternate mapping
G†B→A = G∗B→AS for an arbitrary non-identity permutation matrix S 6= I in the symmetric group.

As before, we note that G∗B→A = G∗Z→A ◦G∗
−1

Z→B and G†B→A = G†Z→A ◦G
†−1

Z→B due to the invertibility
constraints in Eqs. 5-7. Since permutation matrices are invertible and so is G∗B→A, their composition
given by G†B→A is also invertible. Further, since G is closed under permutation and G∗B→A ∈ G, we
also have G†B→A ∈ G.

Next, we note that the inverse of a permutation matrix is also a permutation matrix. Since the prior
is assumed to be symmetric and a a transformation specified by a permutation matrix is volume-
preserving (i.e., det(S) = 1 for all S ∈ Sn), we can use the change-of-variables formula in Eq. 1 to
get:

LMLE(G
∗
Z→A) = LMLE(G

†
Z→A) (20)

LMLE(G
∗
Z→B) = LMLE(G

†
Z→B). (21)

Noting that G∗B→A = G∗Z→A ◦G∗
−1

Z→B and G†B→A = G†Z→A ◦G
†−1

Z→B due to the invertibility constraints
in Eqs. 5-7, we can substitute the above equations in Eq. 11. When λA = λB =∞, for any choice of
CA, CB we have:

LAlignFlow(G
∗
B→A, CA, CB, λA =∞, λB =∞)

= LAlignFlow(G
†
B→A, CA, CB, λA =∞, λB =∞). (22)

The above equation implies that G†B→A is also an optimal solution to the AlignFlow objective in
Eq. 11 for λA = λB =∞. Thus, we arrive at a contradiction sinceG∗B→A is not the unique maximizer.
Hence, proved.

The above construction suggests that MLE-only training can fail to identify the optimal mapping
corresponding to the joint distribution p∗A,B even if it lies within the mappings represented via the
family represented via the AlignFlow architecture. Failure modes due to non-identifiability could
also potentially arise for adversarial and hybrid training. Empirically, we find that while MLE-only
training gives poor performance for cross-domain translations, the hybrid and adversarial training
objectives are much more effective, which suggests that these objectives are less susceptible to
identifiability issues in recovering the true mapping.
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B EXPERIMENT DETAILS

B.1 IMAGE-TO-IMAGE TRANSLATION

We use the standard training, validation, and test splits for each dataset. For datasets which do not
provide a validation set (e.g., Facades and CityScapes), we randomly hold out a portion of the training
set with the same number of images as the test set. We train each model for 200 epochs with a fixed
learning rate of 2 · 10−4 for the first 100 epochs, followed by a linear decay schedule for 100 epochs
from the initial learning rate to 0. We use the Adam (Kingma and Ba, 2014) optimizer with β1 = 0.5
and β2 = 0.999, and for AlignFlow we apply weight normalization (Salimans and Kingma, 2016)
of 5 · 10−5 to the generator’s parameters. When training with an MLE objective, we apply gradient
clipping with a maximum gradient norm of 10. Scaling flow models to higher dimensionality is an
active area of research; for this work we resized the images to 64× 64 for Cityscapes and Maps, and
128× 128 for Facades. We use a batch size of 4 images per GPU and trained over 4 GPUs in parallel.
For CycleGAN results, all hyperparameters are adopted from Zhu et al. (2017a).

For MLE/Hybrid models, we used an isotropic Gaussian prior. We use the following flow architecture
to parameterize GZ→A and GZ→B:

Scale[Input: 32x32x3, Output: 16x16x6x2]
→ 3x CheckerboardCoupling[Channels: 32, Blocks: 4]
→ 3x ChannelwiseCoupling[Channels: 64, Blocks: 4]
→ Squeeze&Split[Input: 32x32x3, Output: 16x16x6x2]

Scale[Input: 16x16x6, Output: 8x8x12x2]
→ 3x CheckerboardCoupling[Channels: 64, Blocks: 4]
→ 3x ChannelwiseCoupling[Channels: 128, Blocks: 4]
→ Squeeze&Split[Input: 16x16x6, Output: 8x8x12x2]

Scale[Input: 8x8x12, Output: 4x4x24x2]
→ 3x CheckerboardCoupling[Channels: 128, Blocks: 4]
→ 3x ChannelwiseCoupling[Channels: 256, Blocks: 4]
→ Squeeze&Split[Input: 8x8x12, Output: 4x4x24x2]

Scale[Input: 4x4x24, Output: 4x4x24]
→ 4x CheckerboardCoupling[Channels: 256, Blocks: 4]

where CheckerboardCoupling and ChannelwiseCoupling are affine coupling layers with checkerboard
and channelwise masking, respectively, and where Squeeze&Split first trades spatial extent for
channels by turning each 4× 4× 1 subvolume into a 1× 1× 4 subvolume, and then splits the volume
along the last dimension and sends half of the features directly to the latent space. See Dinh et al.
(2017) for more details. Within each affine coupling layer, we parametrize the scale and translate
factors using a ResNet (He et al., 2016) architecture with the specified number of channels and
residual blocks. We additionally use activation normalization Kingma and Dhariwal (2018) before
each coupling layer.

B.2 UNSUPERVISED DOMAIN ADAPTATION

We use the same training, validation and test splits of MNIST, USPS, and SVHN digit datasets as
in CyCADA (Hoffman et al., 2017). For all datasets, images are resized to 32× 32 as in CyCADA.
We employ the pixel-level and feature-level adaptation training pipeline as in CyCADA but replace
the CycleGAN-based image translation network with the AlignFlow. The architectures for imposing
semantic consistency and feature adaptation are the same as the ones used for CyCADA. The
architecture and hyperparameter tuning protocol was consistent with the one used for image-to-image
translations using AlignFlow. For the hyperparameters of feature-level domain adaptation post the
image translations, we adopted the optimal hyperparameter settings from ADDA (Tzeng et al., 2017).
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