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ABSTRACT

A long-held conventional wisdom states that larger models train more slowly when
using gradient descent. This work challenges this widely-held belief, showing
that larger models can potentially train faster despite the increasing computational
requirements of each training step. In particular, we study the effect of network
structure (depth and width) on halting time and show that larger models—wider
models in particular—take fewer training steps to converge.
We design simple experiments to quantitatively characterize the effect of over-
parametrization on weight space traversal. Results show that halting time im-
proves when growing model’s width for three different applications, and the im-
provement comes from each factor: The distance from initialized weights to
converged weights shrinks with a power-law-like relationship, the average step
size grows with a power-law-like relationship, and gradient vectors become more
aligned with each other during traversal.

1 INTRODUCTION

How does overparametrization affect the convergence? Arora et al. (2018) have shown that for
a simple LNN increasing depth can accelerate optimization, but increasing width does not affect
convergence. However, the conclusion of ”width does not matter” is a consequence of an implicit
assumption that minimum width is larger than input dimensionality. If hidden dimension is wide
enough to absorb all the information within the input data, increasing width obviously would not
affect convergence. For many real problems, however we are operating in a regime where hidden
dimension is generally smaller than input dimension. In particular, RNN operate in this regime.

Using the machinery introduced in the work of Yin et al. (2017), we will show that convergence
rate is a function of direct distance from initialization point to final point, average step size and the
average angle between gradient vectors and the path that connects current weights to final wights.

In this paper, we present a variety of experiments designed to characterize the effect of width on
error surface. These experiments are designed to qualitatively answer simple questions. How does
width affect the convergence? Why does wider network converge faster? Which factors contribute
more to the convergence, increase in the step size, better alignment of gradient vectors towards the
final weights or the reduction in direct distance? Is the improvement the result of increasing model
capacity or there is a true acceleration phenomenon? Why does the convergence improvement slows
down beyond a certain model size?

We study the characteristics of convergence curve and show that it can be characterized into a power-
law region within which the number of gradient updates to convergence has a reciprocal relationship
to model size and linear relationship to dataset size, and a flat region within which increasing model
size does not affect convergence.

We analyze the error surface characteristics of overparametrized models. Our qualitative results
suggest that as models get wider (1) direct distance from initial weight to final weights shrinks.
(2) Total path length traveled gets shrinks. (3) path length shrinks faster than direct distance. (4)
step size gets larger. These results collectively suggests that number of local minimas in higher
dimensional space grows asymmetrically wrt. origin and there exists a shorter path within the extra
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Figure 1: #Steps vs. Model Size Across Different Application Domains:X-axis represents model
size in terms of the number of parameters in log-scale. Y-axis is the number of steps to minimum
validation loss. Different lines represent different dataset sizes (percentage of full dataset). For
character LM, we vary the dataset size from 0.01% to 0.4% of the 1B dataset. For word LM, we
vary dataset size from 0.1% to 10% of 1B dataset. For speech, we vary the dataset size from 1% to
10% of an internal 20000 hour dataset.

dimension to the newly-found local minimas. We also provide a simple theoretical analysis for a
simplified problem of LNN and show that direct distance is expected to shrink as models get wider.

2 RELATED WORK

Error Surface Characterization Researchers have extensively studied the properties of error sur-
face in linear neural network (Choromanska et al. (2015); Goodfellow et al. (2014)) and saddle
points impact on optimization (Dauphin et al. (2014); Keskar et al. (2016); Ge et al. (2015)).

Halting time Researchers have studied the relationship between the learning time and the second
order properties of the error surface (LeCun et al. (1991)). A large body of work has studied the
halting time (number of iterations to reach to a given accuracy) for multi-layer NN from statistical
physics perspective (Saad & Solla (1995); Saxe et al. (2013); Sagun et al. (2015; 2014)).

Effect of Network Structure on Convergence Arora et al. (2018) studies the effect of depth on
convergence. Chen et al. (2018) has studied the effect of network width on the performance of large
batch training and have shown that increasing width allows larger batch training.

3 EXPERIMENTS

3.1 SETUP

When training a learner with an iterative method, such as gradient descent, we often observe that
training error decreases steadily while validation/test set error decreases but to rise again or flattens
when the model overfits or runs out of capacity. We define time-to-convergence as the number of
iterations to reach to 1% of the minimum validation loss. For some application, validation curves are
very noisy and so we need a margin of error. When validation curves flatten out, we measure the time
before it gets to 1% of the minimum value. We increase the model size by increasing the model’s
width, while keeping all the other architecture parameters fixed (same learning rate, same batch size,
etc.). We loot at three established RNN models: character-level language model (LM), word-level
LM and speech recognition. The details of their configurations can be found in Appendix A.

3.2 CONVERGENCE CURVES

Convergence curve shows the number of iterations (steps) to minimum validation loss for different
model sizes.

Baseline Large learning rate are known to speedup the training process, while small learning rate
slow down the training process. So to begin with, we use vanilla SGD, with fixed learning rate (0.8
for character model and 0.3 for word model) to train language models. Figure 1a and 1b show the
convergence curve for character model and world model. X-axis and Y-axis are in logarithmic-scale.

2



Under review as a conference paper at ICLR 2019

106

Model Size (#Params)

105

#
S
te

p
s 

to
 M

in
. 

V
a
lid

a
ti

o
n
 L

o
ss

LR:0.03%

LR:0.08%

(a) SGD

105 106 107

Model Size (#Params)

104

#
S
te

p
s 

to
 M

in
. 

V
a
lid

a
ti

o
n
 L

o
ss

0.4%

0.2%

0.1%

0.04%

0.02%

0.01%

(b) Adam

Figure 2: Learning Rate Impact on #Steps.
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Figure 3: Depth/Dataset Size Impact on #Steps

Different lines presents different dataset sizes. We can make the following observations from these
figures:

• The number of steps to convergence drops and the drop-down pattern is well approximated
with power law relationship (a ∗Model Size−k + b).

• Increasing training size increases the number of steps to convergence.

• Power law slope is a function of application and its dataset.

Effect of Learning Rate on Convergence Pattern As mentioned previously, increasing the learning
rate is expected to reduce the number of steps to minimum validation loss. We study how changing
learning rate affects the power law trend. We train models once with learning rate 0.8 and once
with learning rate 0.3. As depicted in Figure 2(a) increasing the learning rate simply shifts down the
curve (scaling down the a) without changing the slop (k). We also study how changing learning rate
during the training process affect the power law trend. For this study, we use Adam optimizer which
adaptively changes the learning rate during the training process. As shown in Figure 2 (b), using
adaptive learning rate changes both the slope and intercept (changing both a and k).

Effect of Depth on Convergence Pattern So far we studied how the number of steps to minimum
validation loss drops as models grows wider. Here, we will show same pattern holds for deeper
model too. As shown in Figure 10a as models get deeper, the number of steps to minimum validation
loss drops. These results are for character LM with vanilla SGD.

Effect of Training Set Size on Convergence Pattern As shown before, increasing dataset size
increases the number of steps. As shown in Figure 10b the relationship between number of steps
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Figure 4: When growing model size (parameter count), the number of training epochs to converge
declines until reaching a minimum number of passes through the training data.

and dataset size is almost linear. We can approximate the number of training step to minimum
validation loss with D/Mk, where D is the size of training set, M is the model size in terms of the
number of parameters, and k is a constant specific to the application and optimization techniques.
Therefore, if we scale the dataset size by S, model size can be scaled by SK to keep the number of
training steps the same.

4 ANALYSIS

4.1 CONVERGENCE CURVE PROFILE

Figure 4 shows a sketch of a model’s convergence curve—the reduction in number of steps to con-
vergence as model size grows in number of parameters. Our empirical results indicate the curve
begins in a seemingly “power-law” region where each new weight absorbs extra information from
each sample, reducing the total number of samples observed before convergence. However, curves
are likely to end in a “minimum data region” where number of steps cannot further decline—the
data can offer no more information per sample. One can imagine this is one epoch if there is no
redundancy in data, but can be potentially less than one if there is redundancy in data. Further study
is required to understand the behavior of the convergence curve for small models.

4.2 THEORETICAL MACHINERY

We use the machinery introduced by Yin et al. (2017) to characterize convergence as follows. Con-
sider fi(W (t)) to be the model’s loss on sample i at time step t of gradient descent. Therefore, total
loss and gradient at time step t can be presented as follows:

F (W ) :=
1

n

n−1∑
i=0

fi(W )

∇F (W ) :=
1

n

n−1∑
i=0

∇fi(W )

(1)

From the gradient descent formula, we have:
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W (t) = W (t−1) − α∇F (W (t−1))(
W (t) −W ∗

)
=
(
W (t−1) −W ∗

)
− α∇F (W (t−1))

||W (t) −W ∗||2 = ||W (t−1) −W ∗||2 + α2||∇F (W (t−1))||2

− 2α〈W (t−1) −W ∗,∇F (W (t−1))〉

(2)

Where W ∗ ∈ argminW F (W ) presents the parameters of the best model. By applying these
equation recursively, we find that:

||W (T ) −W ∗||2 = ||W (0) −W ∗||2 + α2
T−1∑
t=0

||∇F (W (t))||2

− 2α

T−1∑
t=0

〈W (t) −W ∗,∇F (W (t))〉

(3)

Therefore, to find the minimum number of gradient updates required to reach within ε-proximity of
the best answer, we can evaluate the following expectation:

E
[
||W (T ) −W ∗||2

]
≤ ε

E
[
||W (0) −W ∗||2

]
+ α2

T−1∑
t=0

E
[
||∇F (W (t))||2

]
− 2α

T−1∑
t=0

E
[
〈W (t) −W ∗,∇F (W (t))〉

]
≤ ε

E
[
||W (0) −W ∗||2

]
+ α2T E

[
||∇F (W (t))||2

]
− 2αT E

[
〈W (t) −W ∗,∇F (W (t))〉

]
≤ ε

(4)

Note here that in the above inequality, the first term presents the average distance from initialization
point to the best answer (squared). Second term, presents the average step length (squared), and
the third term captures the average degree of misalignment of gradient vectors from the direct path
towards to the best answer, average distance from the best answer and average step size.

4.3 ERROR SURFACE CHARACTERIZATION

To characterize the effect of overparametrization on convergence, we study how the network struc-
ture affects each of the following components: direct distance from initial point to final point, the
average step length and average angle between weight vector and the path towards the best answer.

The results in this section are for character language model with SGD optimizer, described in sub-
section 3.1. We study the effect of overparametrization across different components of the model,
i.e. embedding layer, hidden layers, softmax layer and all layers together. Y-axis in all the graphs are
in log domain, unless otherwise specified. For every model size, we have repeated the experiment
10 times, starting from different random initialization point within the proximity of origin, therefore
we use violin plot to show the distribution for each data point.

Figure 5(a) shows how model accuracy varies as model size grows. On the X-axis we have model
size (in million parameters) and on the Y-axis we have the best accuracy at convergence point. As
depicted, increasing model size beyond 1.2 million parameters pushes the model into an over-fitting
regime. Figure 5(b) shows that number of steps to convergence drops with a power law relationship
within the interval of study. Training char LM with SGD optimizer is very slow and we did not run
these experiments beyond 13 billion parameter models. Further study is required to see where this
pattern starts to slow down. We know from Figure 2 that this pattern does not continue forever and
indeed slows down and eventually stops. This implies there is a minimum number of epochs, or
number of times to go through the data. Further study required to figure out if this number can go
below one.

Direct Distance from Initial Point to Final Point As shown in Figure 6, the direct distance from
initial weights to final weights shrinks with model size (specifically model’s width) across all layers.
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Figure 5: #Steps to Convergence and Accuracy at Convergence vs. Model Size (Distribution
Across 10 Runs.)

This behavior is expected and can be explained theoretically (see Section B). One interpretation of
this is that in higher dimensional space the number of locals minimas that are as good as global
minimas exponentially increases ( Sagun et al. (2014)) and if they are not symmetrically distibuted
wrt. origin where the initial point lives around, there exists a potential for the direct distance to get
shorter.

A closer look at Figure 6 also reveals that

1. For narrow models, weights within softmax layer travel farther than weights within hidden
layers. However, for wider models the pattern is reverse. This transition happens at 2.3
million parameters. We know from Figure 5 that models greater than 1.2 million parameters
are already overfitted, therefore the fact that hidden weights travel less than softmax layer
for narrow models and reverse for larger models cannot be fully contributed to the lack of
capacity in hidden layers for narrow models.

2. Softmax layer benefits the most from the width increase (25% reduction for softmax vs.
15% and 13% reduction for hidden and embedding layer, respectively).

3. A curve fitting reveals a logarithmic relationship between the direct distance and model’s
width. These results match with results presented in Yin et al. ’s work where they showed
that number of steps to convergence has a logarithmic relationship to direct distance, if the
function is γ-strongly-convex, or β-smooth and µ-Polyak-Lojasiewicz (Theorem 4 and 7).

Step Size As shown in Figure 7, average step size grows with model size. Step size is basically the
norm of the gradient vector and the norm of a vector has a square root relationship with the vector
length, under the assumption that data distribution per element stays unchanged. This can happens
if the new weight is independent of the previous weights. If the weights are correlated, one might
expect the range of the values presented within each weight gets smaller as models gets wider since
the error will be amortized across more weights. Therefore the growth in norm would be lower than
square root relationship in the number of weights. Another extreme case is where the extra weights
do not carry any signals and the norm does not change with hidden dimension.

A closer look at Figure 7 reveals that:

1. Step size for softmax layer grows with almost square root relationship with model’s width.
This indicates that weights within softmax layer are absorbing new information as model’s
width grows.

2. Step size for hidden layer grows with Hidden Dimension0.21. This indicates either some of
the new weights are zero or correlated with previous weights.
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Figure 6: Distribution of Direct Distance from Initial to Final Weights In the Weight Space
(Across 10 Runs.)

3. Weights within hidden layers take larger steps than weights within softmax layer and em-
bedding layer. This can be partially contributed to larger number of weights in hidden
dimension.

4. Weights within embedding layer do not show much improvement with model’s width
growth (10% increase for 16.5× larger model). This implies embedding does not extract
much new information from extra weights.

Misalignment Figure 8 shows how misaligned are the gradient vectors with respect to the line
connecting their position in the weight space to the starting point. Precisely, it is the average of
the angle specified above measured along the path traveled from the starting point to the end point.
In precise term, we measure As = arccos 〈W (t)−W (0),∇F (W (t)〉

||W (t)−W (0)||.||∇F (W (t)|| . We use this as a proxy to the
measure of misalignment of the gradeint vectors with respect to the line connecting their positions in
the weight space to the final point, i.e. Ae = arccos 〈W (t)−W ∗,∇F (W (t)〉

||W ∗−W (0)||.||∇F (W (t)|| . In the extreme case,
where all gradient vectors are along the path connecting starting point to the end point, we expect to
have Ae = π − As. Therefore increase in As implies reduction in Ae. As depicted, angles towards
the origin are in average roughly π

2 and very slowly opens up as models get larger. This implies
width does not affect angle alignment much and therefore, the reduction effect should come from
increased step size and/or reduced distance.

A long-held conventional wisdom states that larger models train more slowly when using gradient
descent. We challenge this widely-held belief, showing that larger models can potentially train
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Figure 7: Step size across multiple layers(Distribution Across 10 Runs.)

faster despite the increasing computational requirements of each training step. We study the effect
of network structure on halting time and show that larger models—wider models in particular—take
fewer training steps to converge. Results show that halting time improves when growing model’s
width for three different applications, and the improvement comes from each factor: The distance
from initialized weights to converged weights shrinks with a power-law-like relationship, the average
step size grows with a power-law-like relationship, and gradient vectors become more aligned with
each other during traversal.
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Figure 8: Average Angle Between Gradient Vector and the path connecting the Current Weight
to Initialization Point (Distribution Across 10 Runs.)
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A BENCHMARKS

We evaluate our finding on three established deep learning models: character-level LM, word-level
LM and speech recognition. Language models (LMs) aim to predict probability distributions for the
next character, word, or other textual grams conditioned on previous sequence of input text. LMs
are very important model features for domains such as speech recognition and machine translation,
helping to identify most probable sequences of grams. Relative to other machine learning domains,
LMs have low-dimensional input and output spaces, and can be trained with very large labeled sets.
Speech recognition technologies convert acoustic speech signals into text or commands. Speech
recognition is used in diverse applications such as voice-powered machine controls and conversa-
tional user interfaces. Researchers have spent decades developing hand-engineered speech recog-
nition pipelines, and recently, have shifted to end-to-end deep learning based methods that show
promising results (Hannun et al. (2014); Chorowski et al. (2015); Amodei et al. (2016)). Speech
recognition provides an interesting contrast to LMs as speech input data is medium-dimensionality
time-series data.

Next we outline the configuration detail of each of these models.

• Word LM: We implement LSTM-based word LMs as described in Jozefowicz et al. (2016)
with some small changes. To reduce the computational requirements of the models, we
restrict the vocabulary to the top 10,000 most frequent words in the Billion Word Dataset
(Chelba et al. (2013)). The networks are 2-layer LSTMs, with sequence length of 80, the
same number of hidden nodes in each layer. We scale the number of hidden nodes to
increase the model size.

• Character LM: We use character-level LMs, which uses Recurrent Highway Networks
(RHNs) ( Zilly et al. (2017)). Specifically, we train a single-layer, depth 10 RHN, sequence
length 150, which we found to achieve SOTA accuracy on the Billion Word data set. We
scale the number of hidden nodes and depth to increase the model size.

• Speech recognition: We train a recent SOTA model Deep Speech 2 (DS2). The DS2 model
(Amodei et al. (2016)) consists of two 2D convolution layers followed by four bidirectional
LSTM recurrent layers. We use Adam to optimize CTC as the loss function (Graves et al.
(2006)). The inputs to this model is a sequence of log-spectrograms of power normalized
audio clips, calculated on 20ms windows. Outputs are the English alphabet along with the
blank symbol. These speech models do not include language models for output sequence
beam search. We train on shards of labeled data set comprising 11,940 hours of speech
containing 8 million utterances Amodei et al. (2016). To vary the number of parameters,
we vary the number of nodes in all LSTM layers, so that all layers have the same number
of nodes. For the DS2 model, model sizes range between 300K to 193M parameters.
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Figure 10: Width=2

B THEORETICAL RESULTS

We begin with a simple example to show the effect of width on D0 – the average distance from
initial weights to final weights within the weight space. For a simple linear neural network with L2
loss, we show that the increase in width results in reduction in D0.

Consider a simple case of two-layer linear neural network where the weights of second layer are
assumed to be always one. Let’s also assume that the input is scalar x. This is basically same as
linear regression. Let’s begin with hidden dimension one. The loss function can be formulated as
follows and depicted geometrically as in Figure 9:

F (w) :=
1

n

n−1∑
i=0

(wxi − yi)2

Where w are the weights of the first layer. If we increase the hidden dimension to two and keep the
weights of the second layer at 1, the loss function will be re-formulated as follows and depicted as
in Figure 10:

F (w1, w2) :=
1

n

n−1∑
i=0

((w1 + w2)xi − yi)2

For K=1, as shown in Figure 9, the best answer is a point on w-axis at distance C from origin and
the initial point lies somewhere within (−R,R) interval around the origin. Therefore the average
distance from initial point to final point can be formulated as follows:

1

2R

∫ C+R

C−R
xdx = C

For K=2, as shown in Figure 10, the best answer lies on a straight line with slope of -1 crossing
w1 axis at distance C, and the initial points lies somewhere within the the disk of radius R. Starting
from the initial point within the disk and moving along the direction of the gradient, the average
distance from initial point to final point can be formulated as follows:
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1

πR2

∫ r=R

r=0

∫ θ=2π

θ=0

(
C√
2
− r cos θ)rdrdθ = C√

2

As can be seen the average distance in n-dimensional space is always the projection of distance in
(n− 1)-dimensional space to the gradient direction in n-dimensional space. Therefore, the average
distance is always expected to be smaller than the distance in previous dimension, so reduction in
average distance from start point to final point is expected.

Note that this relationship is found under so many simplifying assumptions, including the assump-
tion that new weights do not add any additional model capacity. Therefore, best-case loss will be the
same as we add parameters. Further analysis is required to generalize this observation to non-scalar
input, arbitrary matrix sizes and considering non-linearity.
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