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Abstract
We build a theoretical framework for understand-
ing practical meta-learning methods that enables
the integration of sophisticated formalizations of
task-similarity with the extensive literature on on-
line convex optimization and sequential predic-
tion algorithms in order to provide within-task
performance guarantees. Our approach improves
upon recent analyses of parameter-transfer by en-
abling the task-similarity to be learned adaptively
and by improving transfer-risk bounds in the set-
ting of statistical learning-to-learn. It also leads to
straightforward derivations of average-case regret
bounds for efficient algorithms in settings where
the task-environment changes dynamically or the
tasks share a certain geometric structure.

1. Introduction
Meta-learning, or learning-to-learn (LTL) (Thrun & Pratt,
1998), has recently re-emerged as an important direction for
developing algorithms capable of performing well in multi-
task learning, changing environments, and federated settings.
By using the data of numerous training tasks, meta-learning
algorithms seek to perform well on new, potentially related
test tasks without using many samples from them. Suc-
cessful modern approaches have also focused on exploiting
the capacity of deep neural networks, whether by learning
multi-task data representations passed to simple classifiers
(Snell et al., 2017) or by neural control of the optimization
algorithms themselves (Ravi & Larochelle, 2017).

Because of its simplicity and flexibility, a common approach
is that of parameter-transfer, in which all tasks use the same
class of Θ-parameterized functions fθ : X 7→ Y; usually
a shared global model φ ∈ Θ is learned that can then be
used to train task-specific parameters. In gradient-based
meta-learning (GBML) (Finn et al., 2017), φ is a meta-
initialization such that a few stochastic gradient steps on a
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few samples from a new task suffice to learn a good task-
specific model. GBML is now used in a variety of LTL
domains such as vision (Li et al., 2017; Nichol et al., 2018;
Kim et al., 2018), federated learning (Chen et al., 2018),
and robotics (Al-Shedivat et al., 2018). However, its sim-
plicity also raises many practical and theoretical questions
concerning what task-relationships it is able to exploit and
in which settings it may be expected to succeed.

While theoretical LTL has a long history (Baxter, 2000;
Maurer, 2005; Pentina & Lampert, 2014), there has recently
been an effort to understand GBML in particular. This
has naturally lead to online convex optimization (OCO)
(Zinkevich, 2003), either directly (Finn et al., 2019; Khodak
et al., 2019) or via online-to-batch conversion to statistical
LTL (Khodak et al., 2019; Denevi et al., 2019). These efforts
all consider learning a shared initialization of a descent
method; Finn et al. (2019) then prove learnability of a meta-
learning algorithm while Khodak et al. (2019) and Denevi
et al. (2019) give meta-test-time performance guarantees.

However, this line of work has so far considered at most a
very restricted, if natural, notion of task-similarity – close-
ness to a single fixed point in the parameter space. We
introduce a new theoretical framework, Averaged-Regret
Upper-Bound Analysis (ARUBA), that enables the deriva-
tion of meta-learning algorithms that can provably take ad-
vantage of much more sophisticated task-structure. Expand-
ing significantly upon the work of Khodak et al. (2019),
ARUBA treats meta-learning as the online learning of a
sequence of losses that each upper bound the regret on a
single task. These bounds frequently have convenient func-
tional forms that are (a) nice enough for us to easily draw
on the existing OCO literature and (b) strongly dependent
on both the task-data and the meta-initialization, thus en-
coding task-similarity in a mathematically accessible way.
Using ARUBA we provide new or dramatically improved
meta-learning algorithms in the following settings:

• Adaptive Meta-Learning: A major drawback of previ-
ous work is the reliance on knowing the task-similarity
beforehand to set the learning rate (Finn et al., 2019) or
regularization (Denevi et al., 2019), or the use of a sub-
optimal guess-and-tune approach based on the doubling
trick (Khodak et al., 2019). ARUBA yields a simple
and efficient gradient-based algorithm that eliminates the
need to guess the task-similarity by learning it on-the-fly.
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• Statistical LTL: ARUBA allows us to leverage power-
ful results in online-to-batch conversion (Zhang, 2005;
Kakade & Tewari, 2008) to derive new upper-bounds
on the transfer risk when using GBML for statistical
LTL (Baxter, 2000), including fast rates in the number of
tasks when the task-similarity is known and fully high-
probability guarantees for a class of losses that includes
linear regression. These results improve directly upon
the guarantees of Khodak et al. (2019) and Denevi et al.
(2019) for similar or identical GBML algorithms.
• LTL in Dynamic Environments: Many practical appli-

cations of GBML include settings where the optimal ini-
tialization may change over time due to a changing task-
environment (Al-Shedivat et al., 2018). However, current
theoretical work on GBML has only considered learn-
ing a fixed initialization (Finn et al., 2019; Denevi et al.,
2019). ARUBA reduces the problem of meta-learning in
changing environments to a dynamic regret-minimization
problem, for which there exists a vast array of online
algorithms with provable guarantees.

• Meta-Learning the Task Geometry: A recurring theme
in parameter-transfer LTL is the idea that certain model
weights, such as those encoding a shared representation,
are common to all tasks, whereas others, such as those
performing a task-specific classification, need to be up-
dated on each one. However, by simply using a fixed
initialization we are forced to re-learn this structure on
every task. Using ARUBA we provide an algorithm that
can learn and take advantage of such structure by adap-
tively determining which directions in parameter-space
need to be updated. We further provide a fully adaptive,
per-coordinate variant that may be viewed as an analog
for Reptile (Nichol et al., 2018) of the Meta-SGD mod-
ification of MAML (Finn et al., 2017; Li et al., 2017),
which learns a per-coordinate learning rate; in addition to
its provable guarantees, our version is more efficient and
can be applied to a variety of GBML methods.

In the current paper we provide in Section 2 an introduction
to ARUBA and use it to show guarantees for adaptive and
statistical LTL. We defer our theory for meta-learning in
dynamic environments and of different task-geometries, as
well as our empirical results, to the full version of the paper.

1.1. Related Work

Theoretical Learning-to-Learn: The statistical analysis
of LTL as learning over a task-distribution was formalized
by Baxter (2000) and expanded upon by Maurer (2005).
Recently, several works have built upon this theory to under-
stand modern LTL, either from a PAC-Bayesian perspective
(Amit & Meir, 2018) or in the ridge regression setting with
a learned kernel (Denevi et al., 2018). However, due to the
nature of the data, tasks, and algorithms involved, much ef-
fort has been devoted to the online setting, often through the

framework of lifelong learning (Pentina & Lampert, 2014;
Balcan et al., 2015; Alquier et al., 2017). The latter work
considers a many-task notion of regret similar to our own
in order to learn a shared data representations, although our
algorithms are significantly more practical. Very recently,
Bullins et al. (2019) also developed a more efficient online
approach to learning a linear embedding of the data. How-
ever, such work is related to popular shared-representation
methods such as ProtoNets (Snell et al., 2017), whereas we
consider the parameter-transfer setting of GBML.

Gradient-Based Meta-Learning: GBML developed from
the model-agnostic meta-learning (MAML) algorithm of
Finn et al. (2017) and has been widely used in practice (Li
et al., 2017; Al-Shedivat et al., 2018; Nichol et al., 2018;
Jerfel et al., 2018). An expressivity result was shown for
MAML by Finn & Levine (2018), proving that the meta-
learner could approximate any permutation-invariant learn-
ing algorithm given enough data and a specific neural net-
work architecture. Under strong-convexity and smooth-
ness assumptions and using a fixed learning rate, Finn et al.
(2019) show that the MAML meta-initialization is learnable,
albeit via a somewhat impractical Follow-the-Leader (FTL)
method. In contrast to these efforts, Khodak et al. (2019)
and Denevi et al. (2019) focus on providing finite-sample
meta-test-time performance guarantees in the convex setting,
the former for the SGD-based Reptile algorithm of Nichol
et al. (2018) and the latter for a more strongly-regularized
variant. Our work improves upon these analyses by con-
sidering the case when the learning rate, a proxy for the
task-similarity, is not known beforehand as in Finn et al.
(2019) and Denevi et al. (2019) but must be learned online;
Khodak et al. (2019) do consider an unknown task-similarity
but use a rough doubling-trick-based approach that consid-
ers the absolute deviation of the task-parameters from the
meta-initialization and is thus average-case suboptimal and
sensitive to outliers. Furthermore, ARUBA can handle more
sophisticated and dynamic notions of task-similarity and in
certain settings can provide better statistical guarantees than
those of Khodak et al. (2019) and Denevi et al. (2019).

2. Averaged-Regret Upper-Bound Analysis
Following the setup of Alquier et al. (2017), we consider
a sequence of tasks t = 1, . . . , T ; each task has rounds
i = 1, . . . ,m, on each of which we see a loss function
`t,i : Θ 7→ R for Θ ⊂ Rd. In the online setting, our goal
will be to design algorithms taking actions θt,i ∈ Θ that
result in small task-averaged regret (TAR) (Khodak et al.,
2019), which averages the within-task regret over t ∈ [T ]:

R̄ =
1

T

T∑
t=1

m∑
i=1

`t,i(θt,i)− min
θt∈Θ

m∑
i=1

`t,i(θt)

This quantity measures within-task performance by dynami-
cally comparing to the best action on individual tasks.
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A common approach in this setting is to run an online algo-
rithm, such as online gradient descent (OGD) with learning
rate ηt > 0 and initialization φt ∈ Θ, on each task t:

θt,i+1 = arg min
θ∈Θ

1

2
‖θ − φt‖22 + ηt

T∑
t=1

〈∇`t,i(θt,i), θ〉

The meta-learning problem is then reduced to determining
which learning rate and initialization to use on each task
t. Specific cases of this setup include the Reptile method
of Nichol et al. (2018) and the algorithms in several recent
theoretical analyses (Alquier et al., 2017; Khodak et al.,
2019; Denevi et al., 2019). The observation that enables
the results in the current paper is the fact that the online
algorithms of interest in few-shot learning and meta-learning
often have existing regret guarantees that depend strongly
on both the parameters and the data; for example, the within-
task regret of OGD for G-Lipschitz convex losses is

Rt =

m∑
i=1

`t,i − `t,i(θ∗t ) ≤ 1

2ηt
‖θ∗t − φt‖22 + ηtGm

for θ∗t the optimal parameter in hindsight. Whereas more
sophisticated adaptive methods for online learning attempt
to reduce this dependence on initialization, in our setting
each task does not have enough data to do so. Instead we
can observe that if the upper bound R̂t(φt, ηt) ≥ Rt on the
task-t regret is low on average over t ∈ [T ] then the TAR
of the actions θt,i due to running OGD initialized at φt with
learning rate ηt at each task t will also be low, i.e.

ˆ̄R =
1

T

T∑
t=1

R̂t(φt, ηt) ≥
T∑
t=1

m∑
i=1

`t,i(θt,i)− `t,i(θ∗t ) = R̄

Often this upper-bound R̂t will have a nice functional form;
for example, the OGD bound above is jointly convex in
the learning rate ηt and the initialization φt. Then standard
OCO results can be applied directly.

While this approach was taken implicitly by Khodak et al.
(2019), and indeed is related to earlier work on adap-
tive bound optimization for online learning (McMahan
& Streeter, 2010), in this work we make explicit this
framework, which we call Averaged-Regret Upper-Bound
Analysis (ARUBA), and showcase its usefulness in deriving
a variety of new results in both online and batch LTL. Specif-
ically, our approach will reduce LTL to the online learning
of a sequence of regret upper-bounds R̂1(x), . . . , R̂T (x),
where x parameterizes the within-task algorithms. The re-
sulting guarantees will then have the generic form

R̄ ≤ ˆ̄R ≤ oT (1) + min
x

1

T

T∑
t=1

R̂t(x)

Thus as T → ∞ the algorithm competes with the best
parameterization x, which encodes the task-relatedness
through the task-data-dependence of R̂t.

Algorithm 1: General form of meta-learning algorithm
we study. TASKη,φ corresponds to online mirror de-
scent (OMD) or follow-the-regularized-leader (FTRL)
with initialization φ ∈ Θ, learning rate η > 0, and reg-
ularization R : Θ 7→ R. META(1) is follow-the-leader
(FTL). META(2) is some OCO algorithm.
Set meta-initialization φ1 ∈ Θ and learning rate η1 > 0.
for task t ∈ [T ] do

for round i ∈ [mt] do
θt,i ← TASKηt,φt

(`t,1, . . . , `t,i−1)
Suffer loss `t,i(θt,i)

φt+1 ← META(1)(BR(θ∗1 ||·), . . . ,BR(θ∗t ||·))
Dt+1 ← META(2)(f1, . . . , ft)

for ft(x) =
BR(θ∗t ||φt)

x + x

ηt+1 = Dt+1

G
√
m

2.1. Adaptive Task-Similarity Learning

Our first result is an adaptive algorithm for a simple notion
of task-similarity that serves also to demonstrate how our
framework may be applied. We consider tasks t = 1, . . . , T
whose optimal actions θ∗t are close to some unknown global
φ∗ ∈ Θ according to some metric. For `2-distance this
assumption was made, explicitly or implicitly, by Finn et al.
(2019) and Denevi et al. (2019); Khodak et al. (2019) also
consider the case of a Bregman divergenceBR(θ∗t ||φ∗) for 1-
strongly-convex R : Θ 7→ R (Bregman, 1967), with R(·) =
1
2‖ · ‖

2
2 recovering BR(θ||φ) = 1

2‖θ − φ‖
2
2. However, their

methods were not adaptive to the strength of the task similar-

ity, i.e. the average deviation V =
√

1
T

∑T
t=1 BR(θ∗t ||φ∗)

of the task-parameters; for OCO methods V is proportional
to the learning rate or the inverse of the regularization coeffi-
cient, which were fixed by Finn et al. (2019) and Denevi et al.
(2019). Khodak et al. (2019) instead used the doubling trick
to learn the maximum deviation maxt

√
BR(θ∗t ||φ∗) ≥ V ,

which is suboptimal and extremely sensitive to outliers.

We first formalize the setting we consider, extensions of
which will also be used for later results:

Setting 2.1. Each task t ∈ [T ] has m convex loss func-
tions `t,iΘ 7→ R that are G-Lipschitz on average. Let
θ∗t ∈ arg minθ∈Θ

∑mt

i=1 `t,i(θ) be the minimum-norm opti-
mal fixed action for task t.

We will consider variants of Algorithm 1, in which a pa-
rameterized OCO method TASKη,φ is run within-task and
two OCO methods, META(1) and META(2), are run in
the outer loop to determine the learning rate η > 0 and
initialization φ ∈ Θ. We provide the following guarantee:
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Theorem 2.1. In Setting 2.1 Algorithm 1 achieves TAR

R̄ ≤ RT

T

+ min
0<V≤D
φ∈Θ

G
√
m

V T

(
O(log T ) +

T∑
t=1

BR(θ∗t ||φ) + V 2

)

where D2 = maxt BR(θ∗t ||φt) and RT is the regret of
META(2) on a sequence f1, . . . , fT of functions of form
ft(x) =

B2
t

x + x for Bt ≤ D ∀ t.

Proof Sketch. The proof follows from the well-known re-
gret R̂t = 1

ηt
BR(θ∗t ||φt) + ηtG

2m of FTRL and OMD
(Shalev-Shwartz, 2011). Summing this upper-bound over
tasks t ∈ [T ], apply the regret of META(2) to replace ηt
by V

G
√
m

at the cost of the RT

T term. Conclude by applying

the regret of META(1), i.e. FTL, over BR(θ∗t ||·); this is
well-known to be logarithmic for the case R(·) = 1

2‖ · ‖
2
2

(Shalev-Shwartz, 2011) and can be shown to be so in general
by a novel strongly-convex coupling argument.

It remains to show a low-regret algorithm META(2) for
the sequence ft(x) =

B2
t

x + x. This is nontrivial, as
while the functions are convex they are non-Lipschitz near
0. However, using strongly-convex coupling once more
one can show that using the actions of FTL on the mod-
ified loss functions f̃t(x) =

B2
t +ε2

x + x will achieve re-
gret Õ(min{T 3

5 /V, T
4
5 }) for ε = T−

1
5 for the original

sequence. This can be improved to Õ(min{
√
T/V, T

3
4 })

for ε = T−
1
4 by proving the exp-concavity of f̃t and using

the Exponentially-Weighted Online Optimization (EWOO)
algorithm of Hazan et al. (2007), which can be implemented
efficiently in this single-dimensional case, instead of FTL.
We thus have the following corollary:

Corollary 2.1. Algorithm 1 with META(2) = FTL
achieves TAR

R̄ ≤ min
0<V≤D
φ∈Θ

G
√
m

V T

(
o(T ) +

T∑
t=1

BR(θ∗t ||φ) + V 2

)

For φ = 1
T

∑T
t=1 θ

∗
t and V 2 = 1

T

∑T
t=1 BR(θ∗t ||φ), i.e. the

mean and squared average deviation of the optimal task pa-
rameters, we have an asymptotic per-task regret of V G

√
m,

which is much better than the minimax-optimal single-task
guarantee DG

√
m when V � D, i.e. when the tasks are

on-average close in parameter space. As in Khodak et al.
(2019) and assuming a quadratic growth condition on each
task, in the full version we extend this result to the case when
θ∗t is not known and either the last or average within-task
iterate is used to perform the meta-updates.

2.2. Improved Rates for Statistical Learning-to-Learn

An important motivation for studying LTL via online learn-
ing has been to provide batch-setting bounds on the transfer
risk (Alquier et al., 2017; Denevi et al., 2019). While Kho-
dak et al. (2019) provide an in-expectation bound on the
expected transfer risk of any low-TAR algorithm, their result
cannot exploit the many stronger results in the online-to-
batch conversion literature. Following the classical distribu-
tion over task-distributions setup of Baxter (2000), ARUBA
yields strong bounds on the expected transfer risk in the gen-
eral case of convex R̂, as well as fast rates in the strongly-
convex case using Kakade & Tewari (2008) and high proba-
bility bounds for linear regression using Zhang (2005).
Theorem 2.2. Let convex losses `t,i : Θ 7→ [0, 1] be sam-
pled i.i.d. Pt ∼ Q, {`t,i}i ∼ Pmt for some distribution
Q over task distributions Pt. If the losses are given to an
algorithm with averaged regret upper-bound ˆ̄RT that on
each task runs an algorithm with regret upper-bound R̂t(st)
a convex, nonnegative, and B

√
m-bounded function of the

state st of the algorithm at the beginning of time t then we
have the following bound on the expected transfer risk:

E
P∼Q

E
Pm

E
`∼P

`(θ̄) ≤ E
P∼Q

E
`∼P

`(θ∗) + LT

w.p. 1− δ, where θ̄ = 1
m

∑m
i=1 θi is generated by running

the task-algorithm with state s̄ = 1
T

∑T
t=1 s1:T and aver-

aging the task-actions {θt}i∈[m] and where for the general

case we have LT =
ˆ̄R
m +B

√
8
mT log 1

δ . If the regret upper-
bounds are α-strongly-convex then this term is instead

LT =
ˆ̄R + mins EP∼Q R̂(s)

m
+

4G

T

√
ˆ̄R

αm
log

8 log T

δ

+
max{16G2, 6αB

√
m}

αmT
log

8 log T

δ

If the losses ` satisfy a certain self-bounding property then
we have a high probability bound on the transfer risk itself:

E
P∼Q

E
`∼P

`(θ̄) ≤ E
P∼Q

E
`∼P

`(θ∗) + LT

+

√
2ρLT
m

log
2

δ
+

3ρ+ 2

m
log

2

δ

w.p. 1− δ for some ρ > 0.

In the case of a known task-similarity, when we know the
expected task-parameter deviation V and can fix the learning
rate in Algorithm 1 accordingly, the above result yields

E
P∼Q

E
Pm

E
`∼P

`(θ̄) ≤ E
P∼Q

E
`∼P

`(θ∗)+O

(
V√
m

+
log T

δ

T
√
m

)
This can be compared to results of Denevi et al. (2019),
where the last term only decreases as T−

1
2 . Note that their

results are fully in-expectation only and the V corresponds
to the expected deviation of true-risk minimizers.
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