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Abstract
Conventional methods to predict 3D structure of
molecule are based on iterative stochastic opti-
mization techniques based on energy calculation
using physics-based electronic structure modeling
such as DFT or MD. Therefore, computing cost of
physics-based modeling is significantly depended
by the number of iterations to calculate energy
until the total energy of structure is converged. As
the cost-efficient alternatives, we propose a novel
RL-based algorithm to optimize 3D structure of
single H2O molecule based on DDPG (Deep De-
terministic Policy Gradient) method. To demon-
strate the efficiency of our model, we predicted 3D
structure of H2O molecule and compared with
results from the conventional DFT calculation.
Our experiments show that our model succeed to
predict 3D structure of H2O molecule which is
identical with the results from DFT calculation.

1. Introduction
In computational chemistry, a common theoretical tool used
to determine molecular structure is the geometry optimiza-
tion procedure. The main idea is optimizing geometry of a
given molecular system by minimizing the strain between
atoms. Any perturbation from the geometry will induce the
system to change, so as to reduce this perturbation unless
preventing by external forces. Starting from the experimen-
tal geometry of molecule, we calculate total energy of the
molecule by slightly perturbing the coordinates of each
atom. The calculation of total energy can be done by using
simulation methods to calculate electronic structure such
as DFT (Density Functional Theory) or MD (Molecular
Dynamics). From the variation of total energy, δE(r), by
chaining location of each atom, δr, we can estimate the
derivative of the energy with respect to the position of the
atom, δE/δr. Then, the geometry optimization algorithm
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use E(r), δE/δr and δδE/δriδrj to try to minimize the
force. There are many geometry optimization techniques
which is built on minimizing the strain and the forces on
a given system between atoms such as gradient descent,
conjugate gradient, or based on Newton’s method (BFGS).

There are two main challenges to use this conventional ge-
ometry optimization schemes to predict molecular structure.

1. The geometry optimization process seeks to find the
geometry of a particular arrangement of the atom per-
turbed from the initial geometry. Therefore, we can
find the local energy minimum nearby initial geometry,
but difficult to find a global energy minimum. Also, the
choice of the initial coordinate system can be crucial
for performing a successful optimization.

2. The process to calculate total energy is repeated until
the structure is converged. Therefore, the computing
cost of geometry optimization is significantly depended
by the number of iterations to calculate energy until
the structure is converged. For most large systems of
practical interest, it can be prohibitively expensive due
to the cost to compute the second derivative of energy.

Here, we propose to use policy gradient reinforcement learn-
ing technique as the optimization scheme to predict 3D
geometry of molecule. Firstly, as reinforcement learning
learns policy by repeating exploration and exploitation, we
can potentially explore new structural energy surface which
can be dramatically different with initial starting geometry.
Therefore, even if we still cannot guarantee whether the
output geometry from RL algorithm is the global minimum
or not, but the problem that output structure can be stuck on
local energy minimum nearby initial geometry [problem - 1
above] can be relieved. Secondly, as reinforcement learning
seeks to find the best policy to achieve goal rather than find
best geometry itself, we can potentially reduce the number
of iteration of energy calculation assuming that the agent
successfully learn the policy to find the minimum energy in
potential energy surface. [problem - 2 above] Specifically,
to change molecular geometry with continuous movement,
we used deterministic policy gradient algorithm (DDPG).
To demonstrate the practical use of our model, we show
optimization of 3D structure of H2O molecule.
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Figure 1. Our reinforcement learning setting to optimize structure of H2O molecule

2. Related Work
Recently, with the popularity and development of deep learn-
ing, there has been many works in applying deep learning
models to predicting molecular attributes and molecular gen-
eration (Segler et al., 2017; D Segall, 2012; You et al., 2018;
Kusner et al., 2017; Gómez-Bombarelli et al., 2018; Ertl
et al., 2017). The most challenging problem in material AI
is to find a particularly effective variant of the general deep
learning approach and formulate it to chemical or physical
domain. Most of advances in material AI built upon graph
network representing 2D molecular structure as graph which
represent node as atom and edge as the bond between atom.
Gilmer et al. (Gilmer et al., 2017) presents Message Pass-
ing Neural Network which is adapting gated convolutional
neural network to represent molecular structure, and trained
model to learn a message passing algorithm and aggregation
procedure to predict chemical attribute of molecular graph
based on DFT data. However, the idea to apply graphical
structure to represent molecular graphs and directly optimize
various desired physical property objectives using graphical
network can be very challenging. The main difficulty for pre-
dicting molecular structure having specific target properties
arises because these property objectives are difficult to be
featurized (D Segall, 2012) and non-differentiable. Further-
more, the labeled molecular database is significantly limited.
As the distribution of the molecules is vast, it is challenging
that the supervised neural net based model learns the entire
distribution of chemical space to predict meaningful desired
properties of specific target material in limited dataset.

As the alternative method to resolve limited labeled data
problem of material AI, there have been several advances
in applying reinforcement learning to learn chemical or
physical properties of molecules. Reinforcement learning
based approaches specifically has unique advantages to be
applied to molecular prediction or generation task.

1. Desired molecular properties such as drug-likeness
(Bickerton et al., 2012; You et al., 2018; Lipinski
et al., 1997) and structural attributes such as space
group or density (Spek, 2009) are complex and non-
differentiable. Therefore, It is difficult to be featurized
and directly formulated into the objective function of
graph generative models. In contrast, reinforcement
learning is capable of directly representing hard con-
straints and desired properties through the design of
state, action and reward function.

2. Second, reinforcement learning allows active explo-
ration of the molecule space beyond samples in a
dataset. Therefore, reinforcement learning based ap-
proach can be the alternative of supervised deep learn-
ing (Hester & Stone, 2013). Specifically, reinforcement
learning approach can be the alternative of generative
model approaches (Gómez-Bombarelli et al., 2018;
Dai et al., 2018; Kusner et al., 2017; Jin et al., 2018).
Generative model approaches show promising results
on reconstructing molecules which is trained based on
given dataset, but their exploration ability is restricted
by the limited amount of training dataset.

With above strengths, several goal-directed molecule design
models based on reinforcement learning have been proposed
recently.

You et al. (You et al., 2018) proposed GCPN (Graph Con-
volutaional Policy Network) for goal-directed graph gener-
ation through reinforcement learning. They trained GCPN
model to optimize domain-specific rewards and adversarial
loss through policy gradient, and let the trained model acts
in an environment that incorporates domain-specific rules.
They applied GCPN for designing drug molecule and their
results show that GCPN can achieve 61% improvement on
chemical property optimization over state-of-the-art base-
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lines while resembling known molecules, and achieve 184
% improvement on the constrained property optimization
task.

Gabriel et al. (Guimaraes et al., 2017) proposed ORGAN
model (Objective Reinforced Generative Adversarial Net-
works) for generating drug-like SMILES strings. The idea
is, in reinforcement learning setting to generate SMILE se-
quence, they used a sequence based Generative Adversarial
Network (GAN) framework (Yu et al., 2017) modeling the
data generator as a stochastic policy. Also, they include
domain-specifics objective on the top of the discriminator
reward. By this combined approach with GAN and rein-
forcement learning, they showed generation of molecules
encoded as text sequences and musical melodies.

Mariya et al. (Popova et al., 2018) proposed reinforcement
learning based SMILE generator also using the combined
approach with GAN. They first trained generative mod-
els with a stack-augmented memory network to produce
chemically feasible SMILES strings, and predictive mod-
els are derived to forecast the desired properties of the de
novo–generated compounds. The generative and predictive
models are pre-trained separately with a supervised learning
algorithm. Then, both models are trained jointly with the RL
approach to bias the generation of new chemical structures
toward those with the desired physical properties. By giving
reward to have desired properties, their proposed model can
be used to design molecule with specific properties. They
used their framework to generate SMILE strings of target
de novo drug molecule which has a single desired property
or multiple desired properties.

3. DDPG
Continuous Action Space :

Deep-Q-learning (Osband et al., 2016; Mnih et al., 2013;
Van Hasselt et al., 2016) shows great success to learn poli-
cies in diverse setting, such as Atari game. In DQN, we
train function approximator of Q function based on neu-
ral nets. If we have function approximator of the optimal
action-value function Q∗(s, a), then, in any given state, the
optimal action a∗(s) can be found by solving,

a∗(s) = argmax
a

Q∗(s, a)

When there are a finite number of discrete actions, we can
easily compute a∗(s) above, as we can just compute the
Q-value for each action separately and directly compare
them. However when the action space is continuous, DQN
cannot exhaustively evaluate the space, and solving the op-
timization problem above is difficult. Because the action
space is continuous, the function Q∗(s, a) is differentiable
with respect to the action and we need to solve difficult
differential equation.

Instead, DDPG (Lillicrap et al., 2015) algorithm uses an
actor-critic approach based on the DPG algorithm to solve
above optimization problem.

Actor-Critic and DPG:

The Deep-Policy Gradient (DPG) (Silver et al., 2014)
scheme contains a parameterized actor function, µ(s|θµ).
This actor function specifies the current policy by mapping
states to action. This actor function is fully deterministic.
The another critic function Q(s, a), then, is learned using
the Bellman equation as in Q-learning using sampled state
and action pairs from actor function. The actor is updated by
following equations in a way to maximize expected sum of
return from the start distribution J with respect to the actor
parameters. DPG proved that this optimization problem is
solvable using the policy gradient (Sutton et al., 2000), the
gradient of the policy’s performance.

5θµJ ≈ Est∼ρß [5θµQ(s, a|θQ)|s = st, a = µ(st|θµ)]

DDPG:

DDPG (Deep Deterministic Policy Gradient) is the modifi-
cation of DPG which allow it to use neural network function
approximators to learn in large state and action space online.
There are three main features that DDPG algorithm main-
tain to improve the performance: (1) Replay Buffer, (2) Soft
target update, (3) Manual feature scaling.

First, as in DQN, DDPG used a replay buffer to make the
samples are independently and identically distributed. The
replay buffer is a finite sized cache R. Transitions were
sampled from the environment according to the exploration
policy ads the tuple (st, at, rt, st+1) was stored in the replay
buffer. At each timestep the actor and critic are updated by
sampling a minibatch uniformly from the buffer

Second, Q-learning algorithm make use of target as below,

r + γ(1− d) max
a′

Qφ(s′, a′)

We try to make the Q-function to be more like this target.
Problematically, the target depends on the same parame-
ters we are trying to train: φ. Since φ being updated by
Q(s, a|θQ) is also used in calculating the target value, the
Q update is prone to diverge. To resolve this issue, DDPG
modify the actor-critic by using ”soft” target update, rather
than directly copying the weight. DDPG uses target network
which make target parameter φtarg which comes close to φ
but with a time delay. This means that the target values are
constrained to change slowly, greatly improving the stability
of learning.

Third, when learning from low dimensional feature vector
observation, the different components of the observation



Optimizing 3D structure of H2O molecule using DDPG

may have different physical units. This can make it difficult
for the network to learn effectively which generalise across
environment with different scales of state values. To resolve
this issue, DDPQ manually scale the features so they are in
similar ranges across environment and units.

4. Methods
We constructed simulated physical environment of H2O
relaxation based on OpenAI gym (Brockman et al., 2016)
setting. In this section, we explain details of reinforcement
learning setting, and construction of our environment.

4.1. Problem setting of Reinforcement Learning

Single water (H2O) molecule has three atoms (two Hs
and one O) with two O −H bonds. When optimizing the
geometry of H2O molecule, one aims to obtain the O −H
bond lengths and the H −OH bond angle which minimize
the total energy. To simplify the problem, we fix the length
of O −H bond as theoretical value of 0.96 Å and change
theH−OH bond angle. We number twoH atoms asH−1
and H − 2 and only move H − 2 atom while H − 1 atom
is fixed.

Figure 1 shows the overview of reinforcement learning set-
ting of our proposed H2O relaxation model. First, the agent
takes action to change the H −OH bond angle, ∆θ, from
current state of H2O molecular geometry. Then, according
to change of the angle, the molecular geometry is updated
and environment evaluate total energy, E, from updated
molecular geometry. Based on the change of energy, the
agent obtain reward. Based on the change of angle, the state
is updated. We used DFT calculation as the environment to
update molecular geometry and calculate total energy from
the given geometry.

Formally, we define the notations as following,

O −H1 bond length 0.96 Å

H2−OH1 bond angle θ

Energy E

Molecular structure generator m
Energy calculator (DFT) g
Reward function f

4.1.1. ENERGY CALCULATOR

We initially fixed x, y, z−coordinates ofO andH−1 atoms
with fixed length of O −H bond. As the θ varies by agent
taking the action, the x, y, z−coordinates of H − 2 atom is
updated. The molecular structure generator sub-module, m,
interactively update the geometry of H2−OH1 molecule.

From the updated geometry by m, we calculate total energy
using g, density functional theory (DFT) calculation. (The
description of DFT calculation is followed.) Formally,

updated− geometry = m(θ)

E = g(m (θ))

Density Functional Theory:

Density functional theory (Parr, 1980) is the computa-
tional method of obtaining an approximate solution to the
Shrödinger equation of a many-body system. The quantum
mechanical wave-function contains all the information about
a given system. For the case of a simple system, we can nu-
merically solve the Schrödinger equation exactly in order to
get the wave-function of the system. We can then determine
the allowed energy states of the system. Unfortunately due
to the multiple variables and difficulties to solve PDE, it is
impossible to solve the Schrödinger equation for the system
which contains many atoms. Evidently, we involve approx-
imations to render the problem soluble albeit tricky. DFT
reduce as far as possible the number of degrees of freedom
of the system by the Born-Oppenheimer approximation. In
DFT, we approximate Schrödinger equation as the function
of the electron density which is a function of space and time.
Therefore, we can calculate Schrödinger equation using
electronic density approximation. DFT computational codes
are used in practise to investigate the structural, magnetic
and electronic properties of molecules, materials and de-
fects. Here, we use FHI-aims DFT software-package (Blum
et al., 2009) to compute total energy ofH2O molecule given
geometry of molecule and pseudo potential with the local-
density approximation (LDA) (Stampfl et al., 2001).

4.1.2. STATE

The agent should be able to observe the current geometry
of H2O molecule and its energy surface. Therefore, we
designed the state as 2 dimensional array with current H −
OH bond angle, θ, and current energy, E, obtained from
the current geometry of H2O molecule.

We started with the initial H2− OH1 bond angle, θ0, be-
tween 90◦ to 135◦, and let the change of angle, ∆θ, bounded
between -45◦ to +45◦. FHI-aims DFT code terminates the
energy calculation when two atoms are located too close
each other. We found that the energy calculation using FHI-
aims fails for the θ below 45.0◦. To prevent this case, we
regularized θ should be in range between 45◦ to 180◦. If
θ become to below 45◦ or above 180◦, we enforce the θ
should be 45◦ or 180◦.

Before the training, we computed total energy by increasing
θ from 45◦ to 180◦ and computed maximum value of energy
and minimum value of total energy of H2O molecule. Fig-
ure 2 shows the potential energy surface of H2O molecule
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Figure 2. Potential Energy Surface of H2O molecule by changing
H2-OH1 angle (θ).

by changing H2-OH1 angle(θ). As shown, the total energy is
minimum when θ is between 104◦ to 106◦ . The theoretical
H2O structure has optimal structure at 104.5◦. As shown,
the minimum energy is -2080.36 Ha and the maximum en-
ergy is -2077.08 Ha. From the computed value of maximum
and minimum value of total energy, we normalized the en-
ergy, E, between 0 and 1.

4.1.3. ACTION

In our model, we set the action as one dimensional array
representing the change of H2 − OH1 bond angle, ∆θ,
from the previous angle, θ. Action is sampled by learned
policy in a range between -45◦ to +45◦ and the total angle
,θ, is regularized in a way that it is always bounded between
45◦ to 180◦.

4.1.4. REWARD

The goal of our model is fining molecular structure with
minimum energy. Therefore, we designed reward function,
f , as the weighted sum of decrease of total energy compared
with previous step and decrease of total energy compared
with the lowest energy founded so far. Formally,

Lowest-energy = Elow

Current-energy = Ei

Previous-energy = Ei−1

f(Elow, Ei, Ei−1) = α(Ei−1 − Ei) + β(Elow − Ei)

As the summary, state, action and reward of our reinforce-
ment learning setting can be represented in table 1.

4.2. Algorithm

Algorithm 4.1.2 explains details of DDPG algorithm in our
problem setting to optimize 3D structure of H2O Molecule.

Algorithm 1 Deep Deterministic Policy Gradient Algorithm
to optimize 3D structure of H2O Molecule

1: Input: initial policy parameters θ, Q-function parame-
ters φ, empty replay buffer D

2: Set target parameters equal to main parameters θtarg ←
θ, φtarg ← φ

3: θ0 = rand(90, 135)
4: repeat
5: Observe state (angle θ, energy E) s and select action

(∆θ) a = clip(µ0(s) + ε, aLow, aHigh), where ε ∼
N , aLow = −45◦, aHigh = +45◦

6: Execute a in the environment: angle (θ) = θ0 + a
7: Observe next state s′, reward r, and done signal d to

indicate whether s′ is terminal
8: Store (s, a, r, s′, d) in replay buffer D
9: If s′ is terminal, reset, environment state.

10: if it’s time to update then
11: for however many updates do
12: Randomly sample a batch of transitions, B =

{(s, a, r, s′, d)} from D
13: Compute targets

y(r, s′, d) = r + γ(1− d)Qφtarg(s
′, µθtarg(s

′))

14: Update Q-function by one step of gradient de-
scent using

∇φ
1

|B|
∑

(s,a,r,s′,d)∈B

(Qφ(s, a)− y(r, s′, d))2

15: Update policy by one step of gradient ascent
using

∇θ
1

|B|
∑
s∈B

Qφ(s, µθ(s))

16: Update target networks with

φtarg ← ρφtarg + (1− ρ)φ

θtarg ← ρθtarg + (1− ρ)θ

17: end for
18: end if
19: until convergence
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State (st) {θt, E}, where θt = θt−1 + ∆θ, θt = θt−1 + ∆θ, θ ∈ {45◦, 180◦}, E ∈ {0, 1}
Action (at) {∆θ}, where ∆θ ∈ {−45◦, 45◦}
Reward (rt) f(Elow, Ei, Ei−1) = α ∗ (Ei−1 − Ei) + β ∗ (Elow − Ei)

Table 1. Problem setting of Reinforcement Learning algorithm optimizing 3D structure of H2O molecule

As the stopping criteria, we stop the searching optimal angle
when the change of energy between the energy of the current
state with the energy of the previous state is lower than 10e-
2 for 10 episodes, and the change of energy between the
energy of the current state with the lowest energy found so
far is lower than 10e-3.

5. Preliminary Experiment
5.1. Experimental Settings

We implemented the proposed approach based on the Ope-
nAI Gym (Brockman et al., 2016). We set the learning rate
for actor to 0.0001, and the learning rate for critic to 0.001.
The batch size is 64, and we used clip normalization.

5.2. Experimental Results

Figure 3. Cumulative reward of proposed DDPG molecular struc-
ture optimizer

Figure 4. Change of angles through episodes

After repeating about 2300 episodes, the proposed algorithm
succeed to find the lowest energy configuration which is θ
= 105.95◦. The lowest energy we found is slightly different
with the theoretical value as 104.5◦, but is the lowest energy
in our setting with DFT calculation. Figure 3 shows the
sum of rewards by episodes until the structure converged,
and Figure 4 shows the variation of total angle (θ) through
episodes. We see that in the beginning it explores relatively
wide area, but gradually converges to the range of true en-
ergy (104.5◦) around after 700 episodes. Comparing Fig-
ure 3 and 4, we see that the method rewards more when the
estimation is closer to the truth.

One issue to discuss is, because we forbid the algorithm
to change H2 − OH1 angle beyond 180◦ or below 45◦,
the actor often stuck on that boundary angles. We consider
that the algorithm find the lowest energy fast with removing
angle boundary criteria. For this, the change of DFT code
itself is required.

6. Future Work
Based on this promising results on H2O experiments, we
plan to extend this work in several ways:

• Starting from random points: we currently start from
a fixed point to prove the concept. In reality, however,
the performance of algorithm is highly affected by the
initial state, but we do not have an initial point that
is scientifically justified. We may need to try starting
from random initial points but still converge to the
minimum energy point robustly.

• Relaxation on state restriction: we have limited the
space between 45◦−180◦. However, this was arbitrary
limitation that we applied as we already know the min-
imum energy is achieved around 105◦ theoretically. To
apply this proposed method for an unknown material,
we need to remove these kinds of limitations on the
search space.

• Bond-length parametrization: in this paper, we set the
bond length to be a constant (0.96Å), but this should be
also a parameter to learn. We may add actions to adjust
bond length as well as θ to search best combination of
them achieveing lowest energy.
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7. Conclusion
We propose a DDPG-based algorithm to optimize 3D struc-
ture of singleH2Omolecule. We performed feasibility study
to demonstrate the efficiency of our model by predicting 3D
structure of H2O molecule and compared with results from
the conventional DFT calculation. Our experiments shows
success example to predict 3D structure of H2O molecule
which is identical with the results from DFT calculation. But
convergence is slow and algorithm often stuck on boundary
region in action space. To resolve this issue, modification of
reward function by changing the DFT code itself is required.
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Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Hernández-Lobato, J. M., Sánchez-Lengeling, B., She-
berla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P., and Aspuru-Guzik, A. Automatic chemical de-
sign using a data-driven continuous representation of
molecules. ACS central science, 4(2):268–276, 2018.

Guimaraes, G. L., Sanchez-Lengeling, B., Outeiral, C.,
Farias, P. L. C., and Aspuru-Guzik, A. Objective-
reinforced generative adversarial networks (organ)
for sequence generation models. arXiv preprint
arXiv:1705.10843, 2017.

Hester, T. and Stone, P. Texplore: real-time sample-efficient
reinforcement learning for robots. Machine learning, 90
(3):385–429, 2013.

Jin, W., Barzilay, R., and Jaakkola, T. Junction tree varia-
tional autoencoder for molecular graph generation. arXiv
preprint arXiv:1802.04364, 2018.

Kusner, M. J., Paige, B., and Hernández-Lobato, J. M. Gram-
mar variational autoencoder. In Proceedings of the 34th
International Conference on Machine Learning-Volume
70, pp. 1945–1954. JMLR. org, 2017.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney,
P. J. Experimental and computational approaches to es-
timate solubility and permeability in drug discovery and
development settings. Advanced drug delivery reviews,
23(1-3):3–25, 1997.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. Deep
exploration via bootstrapped dqn. In Advances in neural
information processing systems, pp. 4026–4034, 2016.



Optimizing 3D structure of H2O molecule using DDPG

Parr, R. G. Density functional theory of atoms and
molecules. In Horizons of Quantum Chemistry, pp. 5–15.
Springer, 1980.

Popova, M., Isayev, O., and Tropsha, A. Deep reinforcement
learning for de novo drug design. Science advances, 4(7):
eaap7885, 2018.

Segler, M. H., Kogej, T., Tyrchan, C., and Waller, M. P.
Generating focused molecule libraries for drug discovery
with recurrent neural networks. ACS central science, 4
(1):120–131, 2017.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. Deterministic policy gradient algorithms.
In ICML, 2014.

Spek, A. L. Structure validation in chemical crystallography.
Acta Crystallographica Section D: Biological Crystallog-
raphy, 65(2):148–155, 2009.

Stampfl, C., Mannstadt, W., Asahi, R., and Freeman, A. J.
Electronic structure and physical properties of early tran-
sition metal mononitrides: Density-functional theory lda,
gga, and screened-exchange lda flapw calculations. Phys-
ical Review B, 63(15):155106, 2001.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour,
Y. Policy gradient methods for reinforcement learning
with function approximation. In Advances in neural in-
formation processing systems, pp. 1057–1063, 2000.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Thirtieth AAAI
Conference on Artificial Intelligence, 2016.

You, J., Liu, B., Ying, Z., Pande, V., and Leskovec, J. Graph
convolutional policy network for goal-directed molecular
graph generation. In Advances in Neural Information
Processing Systems, pp. 6410–6421, 2018.

Yu, L., Zhang, W., Wang, J., and Yu, Y. Seqgan: Sequence
generative adversarial nets with policy gradient. In Thirty-
First AAAI Conference on Artificial Intelligence, 2017.


