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ABSTRACT

MobileNets family of computer vision neural networks have fueled tremendous
progress in the design and organization of resource-efficient architectures in re-
cent years. New applications with stringent real-time requirements in highly con-
strained devices require further compression of MobileNets-like already compute-
efficient networks. Model quantization is a widely used technique to compress and
accelerate neural network inference and prior works have quantized MobileNets
to 4 − 6 bits albeit with a modest to significant drop in accuracy. While quanti-
zation to sub-byte values (i.e. precision ≤ 8 bits) has been valuable, even further
quantization of MobileNets to binary or ternary values is necessary to realize sig-
nificant energy savings and possibly runtime speedups on specialized hardware,
such as ASICs and FPGAs. Under the key observation that convolutional filters at
each layer of a deep neural network may respond differently to ternary quantiza-
tion, we propose a novel quantization method that generates per-layer hybrid filter
banks consisting of full-precision and ternary weight filters for MobileNets. The
layer-wise hybrid filter banks essentially combine the strengths of full-precision
and ternary weight filters to derive a compact, energy-efficient architecture for
MobileNets. Using this proposed quantization method, we quantized a substan-
tial portion of weight filters of MobileNets to ternary values resulting in 27.98%
savings in energy, and a 51.07% reduction in the model size, while achieving
comparable accuracy and no degradation in throughput on specialized hardware
in comparison to the baseline full-precision MobileNets.

1 INTRODUCTION

Deeper and wider convolutional neural networks (CNNs) has led to outstanding predictive perfor-
mance in many machine learning tasks, such as image classification (He et al. (2016); Krizhevsky
et al. (2012)), object detection (Redmon et al. (2016); Ren et al. (2015)), and semantic segmen-
tation (Chen et al. (2018); Long et al. (2015)). However, the large model size and corresponding
computational inefficiency of these networks often make it infeasible to run many real-time ma-
chine learning applications on resource-constrained mobile and embedded hardware, such as smart-
phones, AR/VR devices etc. To enable this computation and size compression of CNN models,
one particularly effective approach has been the use of resource-efficient MobileNets architecture.
MobileNets introduces depthwise-separable (DS) convolution as an efficient alternative to the stan-
dard 3-D convolution operation.While MobileNets architecture has been transformative, even further
compression of MobileNets is valuable in order to make a wider range of applications available on
constrained platforms (Gope et al. (2019)).

Model quantization has been a popular technique to facilitate that. Quantizing the weights of Mo-
bileNets to binary (-1,1) or ternary (-1,0,1) values in particular has the potential to achieve significant
improvement in energy savings and possibly overall throughput especially on custom hardware, such
as ASICs and FPGAs while reducing the resultant model size considerably. This is attributed to the
replacement of multiplications by additions in binary- and ternary-weight networks. Multipliers oc-
cupy considerably more area on chip than adders (Li & Liu (2016)), and consume significantly more
energy than addition operations (Horowitz (2014); Andri et al. (2018)). A specialized hardware can
therefore trade off multiplications against additions and potentially accommodate considerably more
adders than multipliers to achieve a high throughput and significant savings in energy for binary- and
ternary-weight networks.
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However, prior approaches to binary and ternary quantization (Rastegari et al. (2016); Alemdar et al.
(2016); Li & Liu (2016); Tschannen et al. (2018)) incur significant drop in prediction accuracy for
MobileNets. Recent work on StrassenNets (Tschannen et al. (2018)) presents a more mathemati-
cally profound way to approximate matrix multiplication computation (and, in turn, convolutions)
using mostly ternary weights and a few full-precision weights. It essentially exploits Strassen’s al-
gorithm to approximate a matrix multiplication of a weight matrix with feature maps, where the
elements of the product matrix are generated by different combination of few intermediate terms
through additions. Computation of each of the intermediate terms requires a multiplication along
with combination of different elements of weights and feature maps through additions. The num-
ber of intermediate terms (also called hidden layer width) in StrassenNets therefore determines the
addition and multiplication budget of a convolutional layer and in turn decides the approximation
error of the corresponding convolution operation. While the results in (Tschannen et al. (2018))
using StrassenNets demonstrates no loss in predictive performance when compared to full-precision
models for few networks, the effectiveness of StrassenNets is quite variable, however, depending on
the neural network architecture. We observe, for example, that while strassenifying is effective in
reducing the model size of DS convolutional layers, this might come with a prohibitive increase in
the number of addition operations, reducing the energy efficiency of neural network inference.

The exorbitant increase in additions primarily stems from the use of wide hidden layers for closely
approximating each convolutional filter in a network layer. While this might be required for some
of the convolutional filters in a layer, our observations indicate that all filters may not require wide
strassenified hidden layers. As different filters in a network layer tend to capture different features,
they may respond differently to ternary quantization, and, in turn, to strassenified convolution with a
specific hidden layer units. Some filters can be harder to approximate using ternary bits than others,
and have larger impact on the model accuracy loss. Furthermore, given a constrained hidden layer
budget for StrassenNets, a group of filters extracting fairly similar features at a layer may respond
favorably to ternary quantization, while other filters of the layer extracting significantly different
features from those may not.

Guided by these insights, we propose a layer-wise hybrid filter banks for the MobileNets architecture
capable of giving start-of-the-art accuracy levels, while requiring a fraction of the model size and
considerably fewer MAC and multiplication operations per inference. The end-to-end learning of
hybrid filter banks makes this possible by keeping precision critical convolutional filters in full-
precision values and strassenifying quantization tolerant filters only to ternary values. The filters that
are most sensitive to quantization errors perform traditional convolutions with input feature maps,
whereas ternary quantization tolerant filters can perform strassenified convolutions using narrow
hidden layers. We apply this proposed quantization scheme to the state-of-the-art MobileNets-V1
architecture. The hybrid filter banks for MobileNets achieves a 46.4% reduction in multiplications,
and a 51.07% reduction in model size while incurring modest increase in additions. This translates
into a 27.98% savings in energy required per inference while ensuring no degradation in throughput
on a DNN hardware accelerator consisting of both MAC and adders when compared to the execution
of baseline MobileNets on a MAC-only hardware accelerator. The hybrid filter banks accomplishes
this with a very minimal loss in accuracy of 0.51%. To the best of our knowledge, the hybrid
filter banks proposed in this work is a first step towards quantizing the already compute-efficient
MobileNets architecture to ternary values with a negligible loss in accuracy on a large-scale dataset,
such as ImageNet.

The remainder of the paper is organized as follows. Section 2 elaborates on the incentives behind
the use of per-layer hybrid filter banks for the MobileNets architecture and provides a brief overview
of current quantization algorithms along with our observations of applying them to the MobileNets
architecture. Failing to find a good balance between accuracy and computation costs shifts our focus
towards designing layer-wise hybrid filter banks for MobileNets. Section 3 describes our hybrid
filter banks. Section 4 presents results. Section 5 compares hybrid filter banks against prior works
and Section 6 concludes the paper.

2 MODEL QUANTIZATION LIMITATIONS FOR MOBILENETS

Quantization is an extremely popular approach to make DNNs, in particular convolutional neural
networks (CNNs), less resource demanding. This section briefly reviews the important existing
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works on ternary quantization, which we focus on in this paper, and illustrates their limitations
to motivate the development of per-layer hybrid filter banks for quantizing MobileNets to ternary
values.

2.1 TERNARY QUANTIZATION OF WEIGHTS

In order to observe the impact of ternary quantization (Courbariaux et al. (2015); Rastegari et al.
(2016); Lin et al. (2017); Cai et al. (2017); Li & Liu (2016); Zhu et al. (2016); Zhou et al. (2016)), we
apply the ternary weight quantization method from (Li & Liu (2016)) over the baseline MobileNets-
V1 architecture. It approximates a full-precision weight W fp by a ternary-valued W t and a scaling
factor such that W fp ≈ scaling factor ∗ W t. Ternary quantization of the weights of MobileNets
achieves substantial reduction in model size but at the cost of significant drop (by 9.66%, see Ta-
ble 1) in predictive performance when compared to the full-precision model. Any increase in the
size of the MobileNets architecture to recover the accuracy loss while using ternary quantization
will lead to a significant increase in the number of addition operations. Recent work on Strassen-
Nets (Tschannen et al. (2018)), which we describe next, has shown the potential to achieve near
state-of-the-art accuracy for a number of deep CNNs while maintaining acceptable increase in addi-
tion operations.

2.2 STRASSENNETS

Given two 2 × 2 matrices, Strassen’s matrix multiplication algorithm computes their product using
7 multiplications instead of the 8 required with a naı̈ve implementation of matrix multiplication.
It essentially converts the matrix multiplication operation to a 2-layer sum-product network (SPN)
computation as shown below:

vec(C) =Wc[(Wbvec(B))� (Wavec(A))] (1)

Wa, Wb ∈Kr×n2

and Wc ∈Kn2×r are ternary matrices with K ∈ {−1, 0, 1}, vec(A) and vec(B)
are the vectorization of the two input square matrices A, B ∈ Rn×n; and vec(C) represents the
vectorized form of the product A × B. � denotes the element-wise product. The (Wbvec(B)) and
(Wavec(A)) of the SPN compute r intermediate factors each from additions, and/or subtractions
of elements of A and B realized by the two associated ternary matrices Wa and Wb respectively.
The two generated r-length intermediate factors are then element-wise multiplied to produce the r-
length (Wbvec(B)) � (Wavec(A)). The outmost ternary matrix Wc later combines the r elements
of the product (Wbvec(B)) � (Wavec(A)) in different ways to generate the vectorized form of
product matrix C. Therefore, the width of the hidden layer of the SPN, r, decides the number
of multiplications required for the Strassen’s matrix multiplication algorithm. For example, given
two 2 × 2 matrices, ternary matrices Wa and Wb with sizes of 7 × 4 can multiply them using
7 multiplications and 36 additions. It is important to note that Strasssen’s algorithm requires a
hidden layer with 7 units here to compute the exact product matrix that a naı̈ve matrix multiplication
algorithm can obtain using 8 multiplications.

Building on top of Strassen’s matrix multiplication algorithm, the StrassenNets work (Tschannen
et al. (2018)) instead realizes approximate matrix multiplications in DNN layers1 using fewer hid-
den layer units compared to the standard Strassen’s algorithm required to achieve the exact product
matrix. StrassenNets makes this possible by training a SPN-based DNN framework end-to-end to
learn the ternary weight matrices from the training data. The learned ternary weight matrices can
then approximate the otherwise exact matrix multiplications of the DNN layers with significantly
fewer multiplications than Strassen’s algorithm. The approximate transforms realized by the SPNs,
adapted to the DNN architecture and application data under consideration, can enable precise con-
trol over the number of multiplications and additions required per inference, creating an opportunity
to tune DNN models to strike an optimal balance between accuracy and computational complexity.

1A convolutional operation in DNN layers can be reduced to a general matrix multiplication (GEMM). In
the context of strassenified matrix multiplications of a network layer, A is associated with the weights or filters
of the layer and B is associated with the corresponding activations or feature maps. As a result, after training,
Wa and vec(A) can be collapsed into a vector â = Wavec(A), as they are both fixed during inference.
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Table 1: Test accuracy along with the number of multiplications, additions, operations and model
size for MobileNets-V1 and strassenified MobileNets-V1 (ST-MobileNets) with the width multiplier
0.5 on ImageNet dataset. r is the hidden layer width of a strassenified convolution layer, cout is the
number of output channels of the corresponding convolution layer. A multiply-accumulate operation
is abbreviated as MAC.

Network Accuracy Muls Adds MACs Model Energy/inference Throughput
(%) size (normalized) (normalized)

MobileNets 65.2 - - 149.49M 2590.07KB 1 1
(float16)
MobileNets 55.54 - 149.49 - 323.75KB 0.2 2
(TWN (Li & Liu (2016)))
ST-MobileNets 48.92 0.77M 158.54M 8.69M 522.33KB 0.27 1.69
(r = 0.5cout)
ST-MobileNets 56.95 1.16M 236.16M 8.69M 631.76KB 0.37 1.17
(r = 0.75cout)
ST-MobileNets 61.8 1.55M 313.78M 8.69M 741.19KB 0.48 0.9
(r = cout)
ST-MobileNets 65.14 3.11M 624.27M 8.69M 1178.92KB 0.9 0.46
(r = 2cout)

The success of StrassenNets in achieving significant compression for 3 × 3 convolutions (Tschan-
nen et al. (2018)) and increasing visibility of DS convolutions in resource-constrained networks
inspired us to apply StrassenNets over the already compute-efficient MobileNets architecture to re-
duce its computational costs and model size even further. Further compression of DS layers will not
only enable more energy-efficient networks leading to longer lasting batteries, but also will open
up the opportunities for more complex use-cases to fit in the limited memory budget of emergent
DNN hardware accelerators. Among the various MobileNets architectures (Howard et al. (2017);
Sandler et al. (2018); Howard et al. (2019)), in this work we extensively study the quantization of
MobileNets-V1 (Howard et al. (2017)). MobileNets-V1 stacks one 3x3 and 13 DS convolutional
layers. A DS convolution first convolves each channel in the input feature map with a separate 2-D
filter (depthwise convolution) and then uses 1x1 pointwise convolutions to combine the outputs in
the depth dimension.

2.2.1 STRASSENNETS FOR MOBILENETS

We observe that although strassenifying MobileNets reduces multiplications significantly as ex-
pected, it increases additions considerably in order to achieve an accuracy comparable to that of
the state-of-the-art MobileNets with 16-bit floating-point weights. Table 1 captures our observation.
The strassenified network with the r = 2cout configuration achieves a comparable accuracy to that
of the full-precision MobileNets while reducing multiplications by 97.91% but increasing additions
by 317.59% (149.49M MACs of MobileNets vs. 3.11M multiplications and 624.27M additions of
ST-MobileNets with r = 2cout). This in turn offers modest savings in energy required per inference
but causes significant degradation in throughput (see Section 4 for details). As shown in Table 1, a
number of potential values for the hidden layer width (r) were explored. Using fewer hidden units
e.g. r = cout than this incurs a siginificant accuracy loss of 3.4%.

2.2.2 COMPUTE INEFFICIENCY OF STRASSENNETS FOR MOBILENETS

It is important to note here that although the number of additions does increase marginally with
strassenifying standard 3×3 or 5×5 convolutional layers (Tschannen et al. (2018)), that trend does
not hold true with strassenifying MobileNets dominated with DS layers. This stems from the fact
that 1 × 1 pointwise convolutions dominate the compute bandwidth of a neural network with DS
layers (Howard et al. (2017)) and strassenifying a 1 × 1 pointwise convolution requires executing
two equal-sized (for r = cout) 1× 1 convolution operations (with ternary weight filters) in place of
the standard 1× 1 convolution, as shown in Figure 2(a). This results in a significant increase (2 : 1
or 100%) in additions in comparison to the execution of the standard 1× 1 convolution. In contrast
to that, as Figure 2(a) illustrates, a 3 × 3 strassenified convolution with r = cout instead requires
executing a 3×3 convolution and a 1×1 convolution with ternary weight filters, causing a marginal
increase (10 : 9 or 11.1%) in additions compared to the execution of the standard 3× 3 convolution.
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Figure 1: Understanding the sensitivity of individual and group of filters to ternary quantization.

This overhead of addition operations with strassenified DS convolutions increases in proportion to
the width of the strassenified hidden layers, i.e. to the size of the ternary convolution operations, as
observed in Table 1. As a result, a strassenified DS convolution layer may incur enough overhead to
offset the benefit of strassenifying a DS convolution layer.

While Tschannen et al. (2018) demonstrates better trade-offs requiring a modest (29.63%) increase
in additions when strassenifying ResNet-18 architecture dominated with 3 × 3 convolutions, this
does not continue once StrassenNets is applied over MobileNets. This also indicates that the DS
convolutions, owing to efficiency in number of parameters than 3× 3 convolutions, are more prone
to quantization error and this manifests when StrassenNets is applied. Considering the fact that
MAC operations typically consume about five times more energy than addition operations for 16-bit
floating-point values (Horowitz (2014); Andri et al. (2018)) (see Section 4 for details), an about
317.59% increase in additions in place of about 98% saving on multiplications will result in dimin-
ishing or no returns in terms of energy savings and runtime speedups even on specialized hardware
dominated with adders. This increase in computational costs associated with strassenified DS con-
volutions in conjunction with the high accuracy and low latency requirements of mobile applications
call for a model architecture exploration that can leverage the compute efficiency of DS layers and
model size reduction of strassenified convolutions while maintaining acceptable or no increase in
additions.

The accuracy drop using a strassenified MobileNets with the r = cout configuration essentially
indicates that each layer perhaps introduces a certain amount of quantization error owing to lower
hidden width and that error accrues over multiple quantized layers. On the other hand, although a
strassenified MobileNets with r = 2cout recovers the accuracy loss of the r = cout configuration,
it makes a strong assumption that all filters require wider strassenified hidden layers to quantize to
ternary bits to preserve the representational power of the baseline full-precision network. While
this might be true for some of the convolutional filters, not all filters need to be quantized using the
r = 2cout configuration. This observation stems from the following two reasons:

(a) Different sensitivity of individual filters to StrassenNets. Different convolutional filters tend
to extract different type of features, ranging from simple features (e.g. edge detection) to more
complicated higher-level (e.g. facial shapes) or object specific features. As a result, different filters
may respond differently to ternary quantization. That basically means there are filters that are easy
to quantize to ternary values using narrower hidden layers while still ensuring low L2 reconstruction
error in output feature maps.On the other hand, there are weight filters that require wider strassenified
hidden layers to ensure a low or modest L2 loss.

Given a feature map, Figure 1(a) presents a scenario where a strassenified vertical lines detector with
fewer hidden layer units can closely approximate the output map (with low L2 reconstruction loss)
produced otherwise using its full-precision counterpart. However a convolutional filter that sharpen
images requires a wider hidden layer to ensure a low L2 loss (see Appendix C.1 for more details).
Note that we only consider 2D filters for illustration purpose, whereas this difference in complexity
should exist in 3D filters common to CNNs.
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(b) Different sensitivity of group of filters to StrassenNets. Furthermore, there exists groups
of convolutional filters at each layer that either tend to extract fairly similar features with slightly
different orientations (e.g. two filters attempting to detect edges rotated by few degrees) or have
other numerical-structural similarities. As a result, when these groups of convolutional filters are
quantized to ternary values using StrassenNets, they may share many hidden layer elements. These
groups of convolutional filters with similar value structure in turn are more amenable to quantization
using fewer hidden layer units than filters with no common value structure. Given a constrained
hidden layer budget for StrassenNets (e.g. r = cout), these groups of convolutional filters may
together respond well to ternary quantization while other dissimilar filters struggle to be strassenified
alongside them with low quantization error, due to the restricted hidden layer bandwidth.

Figure 1(b) illustrates a case when two filters fj and fk, having some common value structure, can
learn to perform exact convolution with a 2 × 2 feature map using only 6 multiplications instead
of the 7 required otherwise for unique filters lacking common value structure. A set of ternary
weight matrices with fewer hidden units implementing an exact convolution in this case is shown in
Figure 1(b) (see Appendix A for more details).

Motivated by these observations, we propose a novel quantization method – one that will only quan-
tize easy-to-quantize weight filters of a network layer to ternary values (to restrict the increase in
additions) while also preserving the representational ability of the overall network by relying on few
full-precision difficult-to-quantize weight filters. This layer-wise hybrid filter bank strategy exploits
a full-precision network’s strength as a highly-accurate classifier and couples that with Strassen-
Nets to achieve significant reduction in model size and number of multiplications. This quantization
technique essentially maintains a good balance between overall computational costs and predictive
performance of the overall network.

3 PER-LAYER HYBRID FILTER BANKS

We propose a quantization method that can quantize a substantial fraction of convolutional filters to
ternary values at each layer while relying on few remaining full-precision filters to preserve the rep-
resentational power of the original full-precision network. As easy-to-quantize filters are quantized
only using StrassenNets leaving the difficult-to-quantize filters in full-precision values, this should
in turn require narrow hidden layers for quantizing them resulting in an overall reduction in com-
putations (additions along with MAC operations) and memory footprint while ensuring no loss in
accuracy. This is in sharp contrast to quantizing all the filters of each layer using wide hidden layers
to preserve the representational power of MobileNets which led to significant increase in additions
as we have seen in Section 2.2.1.

Architecture. The proposed quantization method convolves the same input feature map with full
precision weight filters and ternary weight filters in parallel, concatenating the feature maps from
each convolutions into an unified feature map. This concatenated feature map is fed as input to the
next network layer. At each layer, the combination of the two convolutions from full-precision and
ternary filters ensures that they combine to form a output feature map of identical shape as in the
baseline full-precision network. For instance, given an input feature map with cin channels, the
quantization technique applies traditional convolution with k full-precision weight filters Wfp of
shape cin × wk × hk and strassen convolution with cout − k ternary weight filters Wt to produce
a feature map of total cout channels for a layer. Here cout is the number of channels in the output
volume of the corresponding convolution layer in the baseline full-precision network, and wk, hk
are the kernel size. For the sake of simplicity, bias term is not included in this discussion. The
fraction of channels generated in an output feature map from the full-precision weight filters, α (or
in others words the channels generated from the ternary weight filters, 1 − α) is a hyperparameter
in our quantization technique and it decides the representational power and computational costs of
MobileNets with hybrid filter banks.

Figure 2(b) shows the organization of the hybrid filter bank for a MobileNets layer. Each of the
convolutional layers of MobileNets, including the 3× 3 layer and the 1× 1 pointwise convolutions
of the following 13 depthwise-separable layers, are quantized using hybrid filter banks, where α%
of output channels at each layer is generated using full-precision weight filters and the remaining
output channels using ternary weight filters. The depthwise convolutions of the depthwise-separable
layers are not quantized using either StrassenNets or our hybrid filter banks. This is primarily due
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Figure 2: MobileNets with hybrid filter banks.
to the following reasons: (a) they do not dominate the compute bandwidth of MobileNets (Howard
et al. (2017)), (b) as per our observations, quantizing those to ternary values hurt the accuracy sig-
nificantly without offering any significant savings in either model size or computational costs. The
strassenified convolutions portion of hybrid filter banks at each layer are quantized using a number
of r values, where r is the hidden layer width of a strassenified convolution layer. The r << 2cout
configuration in conjunction with an optimal non-zero α should offer substantial savings in model
size and addition operations without compromising accuracy in comparison to a fully strassenified
MobileNets architecture with r = 2cout configuration. The presented quantization technique can
also be applied to the fully-connected layer parameters, however, we only focus on convolution
layers in this work. We compress the last fully-connected layer of MobileNets uniformly using
StrassenNets. The per-layer hybrid filter banks proposed here is inspired by the Inception module
from the GoogLeNet architecture (Szegedy et al. (2015)) (see Appendix B for more details).

End-to-end training. The full-precision filters along with the strassenified weight filters for each
layer are trained jointly so as to maximize accuracy. A gradient-descent (GD) based training algo-
rithm is used to train the network with hybrid filter banks end-to-end. Before the training begins,
depending on the value of α, the top α ∗ cout channels of a feature map are configured to generate
from full-precision traditional convolutions, and the remaining 1 − α ∗ cout channels are forced to
generate from ternary strassenified convolutions. Note that the order of the channels generated in
the output feature volume by either full-precision filters or ternary filters is not important, as the
output feature map comprising all the channels generated forms the input of the subsequent layer
and the weights in the subsequent layer can adjust to accommodate that. During the end-to-end
training process, the organization of hybrid filter banks tend to influence the difficult-to-quantize
filters (that require full-precision filters to extract features) to be trained using full-precision values,
and the filters that are less susceptible to ternary quantizationto be trained using ternary values from
strassenified convolutions. Furthermore, in order to recover any accuracy loss of the hybrid network
compressed with strassenified matrix computations, knowledge distillation (KD) is exploited during
training, as described in( Tschannen et al. (2018)). Using KD, an uncompressed teacher network
can transfer its prediction ability to a compressed student network by navigating its training. We use
the uncompressed hybrid network as the teacher network and the compressed strassenified network
as the student network here.

4 EXPERIMENTS AND RESULTS

Datasets and experimental setup. We evaluate the MobileNets-V1 architecture compris-
ing proposed per-layer hybrid filter banks (Hybrid MobileNets) on the ImageNet (ILSVRC2012)
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dataset (Deng et al. (2009)) and compare it against the state-of-the-art MobileNets (Howard et al.
(2017)) with 16-bit floating-point weights. The baseline and other network architectures presented
here use a width multiplier of 0.52 to reduce training costs with limited GPU resources. We use
the MXNet framework (Chen et al. (2015)) based GluonCV toolkit3 to train the networks. This
is primarily attributed to the better top-1 accuracy (65.2%) of MobileNets-V1 (width multipler of
0.5) achieved by the GluonCV toolkit4 when compared to the top-1 accuracy of 63.3% observed by
the corresponding publicly available model in the Tensorflow framework (Abadi et al. (2016)). In
this work, the baseline MobileNets and the full-precision filters of the hybrid filter banks use 16-bit
floating-point weights. We quantize the activations of the baseline and proposed architectures to
16-bit floating-point values. A 8-bit representation of weights and activations should not alter the
conclusions made in this work. At the time of writing this paper, GluonCV toolkit does not support
training with 8-bit weights and activations.

Hybrid MobileNets architecture training. We use the Nesterov accelerated gradient (NAG)
optimization algorithm and follow the other training hyperparameters described in the GluonCV
framework for training the baseline full-precision MobileNets, strassenified MobileNets and our
proposed Hybrid MobileNets. We begin by training the Hybrid MobileNets with full-precision
strassen matrices (Wa, Wb, and Wc) for 200 epochs. With a mini-batch size per GPU of 128 on a 4
GPU system, the learning rate is initially chosen as 0.2, and later gradually reduced to zero following
a cosine decay function as used in the GluonCV framework for training the baseline full-precision
MobileNets (see Appendix C.2 for more details).

We then activate quantization for these strassen matrices and the training continues for another
75 epochs with initial learning rate of 0.02 and progressively smaller learning rates. Quantization
converts a full-precision strassen matrix to a ternary-valued matrix along with a scaling factor (e.g.,
Wb = scaling factor * W t

b ). To evaluate our hypothesis that some full-precision filters are changing
significantly to recover features lost due to quantization, we measured the L2 distance between their
pre- and post-quantization weight vectors. We found the L2 distances fit a normal distribution: most
filters experience low-to-moderate changes to their weight vectors while a few exceptional filters
saw very significant movement. This supports our claim that the full-precision filters are preserving
the overall representational power of the network.

Finally, we fix the strassen matrices of the hybrid filter banks to their learned ternary values and con-
tinue training for another 25 epochs to ensure that the scaling factors associated with these matrices
can be absorbed by full-precision vec(A) portion of strassenified matrix multiplication.

Energy and throughput modeling for hybrid filter banks. The proposed per-layer hybrid filter
banks for MobileNets can be executed by existing DNN hardware accelerators, such as DaDian-
Nao (Chen et al. (2014)) and TPU (Jouppi et al. (2017)) consisting of only MAC units. However, in
order to achieve an energy- and runtime- efficient execution of hybrid filter banks dominated with
additions, we propose a custom hardware accelerator, where a fraction of MAC units are replaced by
low-cost adders within the same silicon area. A 16-bit floating-point MAC unit takes about twice the
area of a 16-bit floating-point adder (Lutz (2019)). Given a fixed silicon area and a model configura-
tion for Hybrid MobileNets, the ratio of MAC units to adders in the proposed hardware accelerator is
decided in such a way that the maximum possible throughput can be achieved for the configuration.
In order to estimate the energy required per inference of baseline and proposed models, we use the
energy consumption numbers of 16-bit floating-point adder and MAC unit mentioned in (Horowitz
(2014)).

Hybrid MobileNets architecture evaluation. One of the main focus of our evaluation is the study
of how α impacts on the performance of our models. This parameter, that can be independently
set for each convolutional layer in the network, is directly proportional to the number of learnable
parameters in a given layer. In this work, we use identical value of α for all the layers of Hybrid
MobileNets. We believe use of different values for different layers may result in better cost accuracy
trade-offs. We leave this exploration for future work. Ideally small values of α and r are desired to

2Using a width multiplier of 0.5 halves the number of channels used in each layer of the original MobileNets
architecture (Howard et al. (2017)).

3 GluonCV: a Deep Learning Toolkit for Computer Vision, https://gluon-cv.mxnet.io/index.html
4https://gluon-cv.mxnet.io/model zoo/classification.html#mobilenet
5As this configuration is likely to observe an accuracy of ≤63.47, we did not collect the accuracy result for

this configuration.
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Table 2: Top-1 accuracy along with the computational costs, model size, and energy per inference
for baseline MobileNets-V1, ST-MobileNets, and Hybrid MobileNets on ImageNet dataset. α is the
fraction of channels generated by the full-precision weight filters at each layer , cout is the number of
remaining channels generated by the ternary strassen filters at the corresponding convolutional layer,
r is the hidden layer width of the strassenified convolutions. The last column shows the throughput
of proposed models on an area-equivalent hardware accelerator comprising both MAC and adder
units when compared to the throughput of baseline MobileNets with 16-bit floating-point weights
on a MAC-only accelerator.

Network Alpha r Acc. Muls, Adds MACs Model Energy/inference Throughput
(α) (%) size (normalized) (normalized)

MobileNets - - 65.2 - 149.49M 2590.07KB 1 1
(float16)
ST-MobileNets 0 2cout 65.14 3.11M, 624.27M 8.69M 1178.92KB 0.9 0.46

MobileNets cout
5 - 1.16M, 204.63M 43.76M 1004.67KB 0.56 1.02

(Hybrid 0.25 1.33cout 63.47 1.55M, 270.95M 43.76M 1097.07KB 0.65 0.83
filter banks) 2cout 65.2 2.33M, 405.59M 43.76M 1284.65KB 0.84 0.6

MobileNets cout 64.13 0.97M, 157.84M 61.3M 1131.43KB 0.62 1.06
(Hybrid 0.375 1.6cout 64.17 1.55M, 250.34M 61.3M 1260.44KB 0.74 0.8
filter banks) 2cout 65.2 1.94M, 312.01M 61.3M 1346.45KB 0.83 0.68

MobileNets 0.5 cout 64.69 1.28M, 142.37M 78.83M 1267.13KB 0.72 1
(Hybrid 2cout 65.17 1.55M, 228.68M 78.83M 1327.88KB 0.83 0.77
filter banks)

achieve significant reduction in MAC along with addition operations while preserving the baseline
accuracy.

We search the model hyperparameters space systematically to develop Hybrid MobileNets. Table 2
captures the top-1 accuracy of the Hybrid MobileNets for various configurations of α and hidden
layer width r, along with their impact on computational costs, model size, energy required per
inference, and throughput and and compares that against baseline full-precision MobileNets, and
ST-MobileNets. As shown in Table 2, the ST-MobileNets and various configurations of Hybrid
MobileNets offer comparable reduction (about 50%) in model size over the baseline full-precision
Mobilenets. While the r = 2cout configurations for different values of α (0.25, 0.375, and 0.5)
can preserve the baseline top-1 accuracy of 65.2% and offer modest savings in energy required
per inference, that comes at the cost of large increase in additions. This in turn causes significant
degradation in throughput on the proposed hardware accelerator when compared to the throughput
of the baseline full-precision MobileNets on an existing DNN accelerator consisting of only MAC
units. On the other end, the cout ≤ r < 2cout configurations with the α of 0.25 and 0.375 incur
modest to significant drop in top-1 accuracy possibly owing to lack of enough full-precision weights
filters at each hybrid filter bank to preserve the representational ability of the overall network. The
r < cout configurations for different values of α leads to large drop in prediction accuracy and hence
is not shown in Table 2.

The Hybrid MobileNets with the α = 0.5 and r = cout configuration strikes an optimal balance
between accuracy, computational costs, energy, and throughput. It achieves comparable accuracy to
that of the baseline MobileNets, strassenified and Hybrid MobileNets with the r = 2cout configura-
tion while reducing the number of MACs, and multiplications by 47.26%, and 46.4% respectively
and requiring a modest (45.51%) increase in additions over the baseline MobileNets architecture.
Of particular note is that it reduces the number of additions to about 142.37M when compared to
624.27M additions of ST-MobileNets described in Section 2. The significant reduction in MAC
operations and modest increase in additions over the baseline full-precision MobileNets in turn
translates into 27.98% savings in energy required per inference while ensuring no degradation in
throughput in comparison to the execution of baseline MobileNets on a MAC-only hardware accel-
erator. This reduction in additions is primarily attributed to strassenifying easy-to-quantize filters
using fewer hidden units (r = cout) while relying on full-precision filters to generate 50% channels
at each layer and preserve the representational ability of the overall MobileNets architecture. Owing
to the substantial presence of ternary weights matrices, the Hybrid MobileNets with the α = 0.5 and
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r = cout configuration reduces the model size to 1267.13KB when compared to 2590.07KB of the
baseline MobileNets network thus enabling a 51.07% savings in model size. The use of knowledge
distillation in training the ST-MobileNets and Hybrid MobileNets does not result in any tangible
change in accuracy.

In summary, the Hybrid MobileNets reduces model size by 51.07% and energy required per inference
by 27.98% while incurring a negligible loss in accuracy and no degradation in throughput when
compared to the baseline full-precision MobileNets. It is important to note that because of the
large savings in model size, our Hybrid MobileNets will have significantly fewer accesses to the
energy/power-hungry DRAM. This in conjunction with skipping ineffectual computations of zero-
valued weights in our proposed hardware accelerator (as exploited by (Zhang et al. (2016))), owing
to about 40 − 50% of sparsity in the ternary weight matrices of strassenified layers as we observe,
will improve the energy savings and run-time performance even further. Our current energy and
throughput modeling does not take this into account. We leave this exploration for future work.

5 RELATED WORK

Weight pruning. Sparsifying filters and pruning channels are widely used methods to make neu-
ral networks more resource-efficient. Unstructured filter sparsity inducing techniques either ob-
serve poor hardware characteristics or incur modest to significant drop in model accuracy for Mo-
bileNets (Zhu & Gupta (2017)). Recent work on channel pruning (He et al. (2018)) demonstrates
negligible drop in accuracy for MobileNets while achieving significant reduction in computational
costs. As different channel pruning (He et al. (2018); Zhuang et al. (2018); He et al. (2017)) and
filter pruning techniques (Han et al. (2015); Narang et al. (2017); Zhu & Gupta (2017); Guo et al.
(2016); Aghasi et al. (2017); Wen et al. (2016); Luo et al. (2017); Yang et al. (2018); Gordon et al.
(2018)) are orthogonal to our compression scheme, they can be used in conjunction with Hybrid
MobileNets to further reduce model size and computational complexity.

Network quantization. Recent works on binary/ternary quantization either do not demonstrate
their potential to quantize MobileNets on ImageNet dataset (Yang et al. (2019); Zhuang et al. (2019);
Zhu et al. (2019); Sun et al. (2019); Zhang et al. (2018a); Guo et al. (2017)) or incur modest to sig-
nificant drop in accuracy while quantizing MobileNets with 4-6-bit weights (Wang et al. (2019); Liu
& Mattina (2019); Louizos et al. (2019)) (see Appendix D for more details). The hybrid filter banks
successfully quantizes a significant fraction of weight filters of MobileNets to ternary values while
achieving comparable accuracy to that of baseline full-precision model on ImageNet. Nevertheless,
the hybrid filter banks can benefit further by adopting these prior proposals.

Tensor decomposition. Besides pruning and quantization, tensor decomposition techniques
(Jaderberg et al. (2014); Tai et al. (2015); Wen et al. (2017)) exploit parameter redundancy to obtain
low-rank approximations of weight matrices without compromising model accuracy. Full-precision
weights filters and Strassen matrices of our hybrid filter banks can adopt these prior proposals to
further reduce model size and computational complexity.

Compact network architectures. While we show promising results for MobileNets-V1 here,
the benefits of hybrid filter banks should scale when extended to other popular resource-efficient
architectures dominated with either DS convolutions, such as MobileNets-V2 (Sandler et al. (2018)),
ShuffleNet (Zhang et al. (2018b)), and Xception (Chollet (2017)) or standard 3× 3 convolutions.

6 CONCLUSION AND FUTURE WORK

In this work, we propose per-layer hybrid filter banks for MobileNets capable of quantizing its
weights to ternary values while exhibiting start-of-the-art accuracy on a large-scale dataset and re-
quiring a fraction of the model size and considerably lower energy per inference pass. We use 16-bit
floating-point format to represent the intermediate activations and traditional weight filters of hybrid
filter banks in this work. In future, we plan to explore the impact of quantizing them to 8-bit or less.
In addition, it will be interesting to see how channel pruning (He et al. (2018); Zhuang et al. (2018))
assists in reducing the computational complexity of strassenified MobileNets.
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don Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul A. Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda B. Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. CoRR, abs/1603.04467,
2016.

Alireza Aghasi, Afshin Abdi, Nam Nguyen, and Justin Romberg. Net-trim: Convex pruning of deep
neural networks with performance guarantee. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December
2017, Long Beach, CA, USA, pp. 3180–3189, 2017.

Hande Alemdar, Nicholas Caldwell, Vincent Leroy, Adrien Prost-Boucle, and Frédéric Pétrot.
Ternary neural networks for resource-efficient AI applications. CoRR, abs/1609.00222, 2016.

R. Andri, L. Cavigelli, D. Rossi, and L. Benini. Yodann: An architecture for ultralow power binary-
weight cnn acceleration. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 37(1):48–60, Jan 2018. ISSN 0278-0070. doi: 10.1109/TCAD.2017.2682138.

Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. Deep learning with low precision
by half-wave gaussian quantization. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 5406–5414, 2017. doi:
10.1109/CVPR.2017.574.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
decoder with atrous separable convolution for semantic image segmentation. In Computer Vision -
ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings,
Part VII, pp. 833–851, 2018. doi: 10.1007/978-3-030-01234-2\ 49.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. CoRR, abs/1512.01274, 2015.

Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen,
Zhiwei Xu, Ninghui Sun, and Olivier Temam. Dadiannao: A machine-learning supercomputer.
In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-47, pp. 609–622, Washington, DC, USA, 2014. IEEE Computer Society. ISBN 978-1-
4799-6998-2. doi: 10.1109/MICRO.2014.58.

Francois Chollet. Xception: Deep learning with depthwise separable convolutions. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in Neural Information Processing
Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada, pp. 3123–3131, 2015.

J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.
248–255, June 2009. doi: 10.1109/CVPR.2009.5206848.

Dibakar Gope, Ganesh Dasika, and Matthew Mattina. Ternary hybrid neural-tree networks for
highly constrained iot applications. CoRR, abs/1903.01531, 2019.

Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Edward Choi. Mor-
phnet: Fast & simple resource-constrained structure learning of deep networks. In 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,
June 18-22, 2018, pp. 1586–1595, 2018. doi: 10.1109/CVPR.2018.00171.

11



Under review as a conference paper at ICLR 2020

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In
Proceedings of the 30th International Conference on Neural Information Processing Systems,
NIPS’16, pp. 1387–1395, USA, 2016. Curran Associates Inc. ISBN 978-1-5108-3881-9.

Yiwen Guo, Anbang Yao, Hao Zhao, and Yurong Chen. Network sketching: Exploiting binary
structure in deep cnns. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 4040–4048, 2017. doi: 10.1109/CVPR.
2017.430.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. CoRR, abs/1510.00149, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las
Vegas, NV, USA, June 27-30, 2016, pp. 770–778, 2016. doi: 10.1109/CVPR.2016.90.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October
22-29, 2017, pp. 1398–1406, 2017. doi: 10.1109/ICCV.2017.155.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. AMC: automl for model com-
pression and acceleration on mobile devices. In Computer Vision - ECCV 2018 - 15th European
Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part VII, pp. 815–832, 2018.
doi: 10.1007/978-3-030-01234-2\ 48.

M. Horowitz. Computing’s energy problem (and what we can do about it). In 2014 IEEE Interna-
tional Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 10–14, Feb 2014.
doi: 10.1109/ISSCC.2014.6757323.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig Adam. Searching
for mobilenetv3. CoRR, abs/1905.02244, 2019.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. CoRR, abs/1704.04861, 2017.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. In British Machine Vision Conference, BMVC 2014, Nottingham, UK,
September 1-5, 2014, 2014.

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Ba-
jwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin,
Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy,
James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin,
Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda,
Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory
Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory
Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. In-datacenter performance analysis of a tensor process-
ing unit. In Proceedings of the 44th Annual International Symposium on Computer Architec-
ture, ISCA ’17, pp. 1–12, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4892-8. doi:
10.1145/3079856.3080246.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems 25: 26th
Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting
held December 3-6, 2012, Lake Tahoe, Nevada, United States., pp. 1106–1114, 2012.

12



Under review as a conference paper at ICLR 2020

Fengfu Li and Bin Liu. Ternary weight networks. CoRR, abs/1605.04711, 2016.

Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network. In
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Informa-
tion Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp. 344–352, 2017.

Zhi Gang Liu and Matthew Mattina. Learning low-precision neural networks without straight-
through estimator (STE). In Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pp. 3066–3072, 2019.
doi: 10.24963/ijcai.2019/425.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015,
Boston, MA, USA, June 7-12, 2015, pp. 3431–3440, 2015. doi: 10.1109/CVPR.2015.7298965.

Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, and Max Welling. Re-
laxed quantization for discretized neural networks. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In IEEE International Conference on Computer Vision, ICCV 2017, Venice,
Italy, October 22-29, 2017, pp. 5068–5076, 2017. doi: 10.1109/ICCV.2017.541.

David R. Lutz. Arm floating point 2019: Latency, area, power. In IEEE Symposium on Computer
Arithmetic, 2019.

Sharan Narang, Gregory F. Diamos, Shubho Sengupta, and Erich Elsen. Exploring sparsity in re-
current neural networks. CoRR, abs/1704.05119, 2017.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In Computer Vision - ECCV 2016 -
14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part IV, pp. 525–542, 2016. doi: 10.1007/978-3-319-46493-0\ 32.

Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 779–788, 2016. doi: 10.
1109/CVPR.2016.91.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real-time object
detection with region proposal networks. In Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pp. 91–99, 2015.

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and seg-
mentation. CoRR, abs/1801.04381, 2018.

Qigong Sun, Fanhua Shang, Kang Yang, Xiufang Li, Yan Ren, and Licheng Jiao. Multi-precision
quantized neural networks via encoding decomposition of {-1, +1}. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Ar-
tificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019.,
pp. 5024–5032, 2019.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Computer Vision and Pattern Recognition (CVPR), 2015.

Cheng Tai, Tong Xiao, Xiaogang Wang, and Weinan E. Convolutional neural networks with low-
rank regularization. CoRR, abs/1511.06067, 2015.

13



Under review as a conference paper at ICLR 2020

Michael Tschannen, Aran Khanna, and Animashree Anandkumar. StrassenNets: Deep learning
with a multiplication budget. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 4985–4994, Stockholmsmssan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated quan-
tization with mixed precision. In The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2019.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, NIPS’16, pp. 2082–2090, USA, 2016. Curran Associates Inc. ISBN 978-1-
5108-3881-9.

Wei Wen, Cong Xu, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Coordinating filters for
faster deep neural networks. In IEEE International Conference on Computer Vision, ICCV 2017,
Venice, Italy, October 22-29, 2017, pp. 658–666, 2017. doi: 10.1109/ICCV.2017.78.

Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing Deng, Jianqiang Huang, and Xian-
sheng Hua. Quantization networks. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

Tien-Ju Yang, Andrew G. Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne Sze, and
Hartwig Adam. Netadapt: Platform-aware neural network adaptation for mobile applications. In
Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part X, pp. 289–304, 2018. doi: 10.1007/978-3-030-01249-6\ 18.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets: Learned quantization
for highly accurate and compact deep neural networks. In Computer Vision - ECCV 2018 - 15th
European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part VIII, pp. 373–
390, 2018a. doi: 10.1007/978-3-030-01237-3\ 23.

Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo, Tianshi Chen,
and Yunji Chen. Cambricon-x: An accelerator for sparse neural networks. In The 49th An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO-49, pp. 20:1–20:12,
Piscataway, NJ, USA, 2016. IEEE Press. URL http://dl.acm.org/citation.cfm?
id=3195638.3195662.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018b.

Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients. CoRR, abs/1606.06160,
2016.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained ternary quantization. CoRR,
abs/1612.01064, 2016.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. CoRR, abs/1710.01878, 2017.

Shilin Zhu, Xin Dong, and Hao Su. Binary ensemble neural network: More bits per network or
more networks per bit? In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. Structured binary neural
networks for accurate image classification and semantic segmentation. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019.

Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou
Huang, and Jin-Hui Zhu. Discrimination-aware channel pruning for deep neural networks. In
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada., pp.
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A FAST MATRIX MULTIPLICATIONS VIA STRASSEN’S ALGORITHM
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(a) Strassen’s matrix multiplication for two
filters fj anf fk having unique values.
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(b) Strassen’s matrix multiplication for two
filters fj anf fk having some common val-
ues.

Figure 3: Understanding the sensitivity of Strassen’s algorithm to filter values.

Strasssen’s algorithm can multiply 2× 2 matrices using only 7 multiplications instead of 8 required
otherwise by a naı̈ve matrix multiplication algorithm. Figure 3(a) specifies a set of weight matrices
that can perform exact convolution of the 2 × 2 filter bank comprising fj and fk with the feature
map using 7 multiplications. Note that the two filters fj and fk do not have any common values.
However, owing to the presence of common value of a between fj and fk filters in Figure 3(b),
Strassen’s algorithm now can compute the exact product matrix using only 6 multiplications instead
of 7 required otherwise in Figure 3(a). A set of ternary weight matrices implementing an exact
convolution in this case is shown in Figure 3(b).

B RELATION OF PER-LAYER HYBRID FILTER BANKS TO GOOGLENET
ARCHITECTURE.

The per-layer hybrid filter banks proposed here is inspired by the Inception module from the
GoogLeNet architecture (Szegedy et al. (2015)). In a traditional convolutional network, each layer
extracts information from the previous layer in order to transform the input data into a more useful
representation. However, salient features of an input volume can have extremely large variation in
size. Because of this variation in the size of the required information, choosing the right kernel size
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Previous Depthwise
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convolution using 

full-precision weights

Strassen 1x1  
convolution using 
ternary weights

Channel 
concatenation
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(a) A MobileNets layer with hybrid filter
bank.

Previous layer

1x1 
convolution

3x3 max 
pooling 5x5 convolution

3x3 
convolution

Channel 
concatenation

(b) Inception module from GoogleNet.

Figure 4: MobileNets with hybrid filter banks and its relation to Inception module from GoogleNet.
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Table 3: Hyperparameters for training Hybrid MobileNets

.

Training phase Hyperparameters

Batch size per GPU: 128
Number of GPUs used: 4
Optimizer: Nesterov accelerated gradient (NAG)
(Momentum: 0.9, Weight decay: 0.0001)

Train using Number of epochs: 200
full-precision Weight initialization: Xavier

strassen matrices Initial, final learning rate: 0.2, 0.0
Learning rate schedule: cosine decay
Number of warmup epochs: 5
Starting warmup learning rate: 0.0
Size of the input image: 224 x 224 x 3

Batch size per GPU: 128
Number of GPUs used: 4

Activate quantization Optimizer: Nesterov accelerated gradient (NAG)
for strassen matrices (Momentum: 0.9, Weight decay: 0.0001)

Number of epochs: 75
Initial, final learning rate: 0.02, 0.0
Learning rate schedule: cosine decay

Batch size per GPU: 128
Number of GPUs used: 4

Freeze strassen matrices Optimizer: Nesterov accelerated gradient (NAG)
to ternary values (Momentum: 0.9, Weight decay: 0.0001)

Number of epochs: 25
Initial, final learning rate: 0.002, 0.0
Learning rate schedule: cosine decay

for the convolution operation becomes difficult. The Inception module addresses this by allowing
the GoogLeNet architecture to use convolutional filters of different sizes – a small sized (1×1) filter
convolution, a medium sized (3 × 3) filter convolution, and a large sized (5 × 5) filter convolution
at each layer and let the network decide for itself the appropriate convolutional filter to capture the
necessary features. The 1 × 1 or 3 × 3 convolutions cover a small receptive field of the input and
can capture fine grain details and features in the input volume, whereas the 5 × 5 filters are able to
cover a large receptive field, and thus can capture spread out features of higher abstraction.

The proposed quantization technique instead allows the different convolutional filters at each layer
to decide its acceptable precision level (among full-precision and ternary quantization in this work)
to derive the best possible representational power of the network. Figure 4(a) shows a hybrid filter
bank and Figure 4(b) compares that to the Inception module from the GoogleNet architecture.

C TRAINING DETAILS

C.1 SENSITIVITY OF CONVOLUTIONAL FILTERS TO STRASSENNETS

We generate a training set containing 100k pairs (Ai, Bi) with values i.i.d. uniform on [−1, 1] in
Ai, and values of a given convolutional filter in Bi. The SPN is then trained using different number
of hidden units. We begin training with full-precision weights (initialized i.i.d. uniform on [−1, 1])
for one epoch with SGD (learning rate 0.1, momentum 0.9, mini-batch size 4), activate quantization,
and train for few epochs with initial learning rate of 0.01 and progressively smaller learning rates.
Once the training converges after activation of the quantization, we collect the L2-loss.
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C.2 HYPERPARAMETERS SETTINGS FOR TRAINING HYBRID MOBILENETS

The training images from ImageNet are preprocessed by using mean and standard deviation. These
images are resized such that the shorter side has length of 256 and are then randomly cropped to
224× 224 pixels. Random horizontal flips are applied for data augmentation. The center 224× 224
crop of the images are used for evaluation.

Table 3 shows the hyperparameters values used for training Hybrid MobileNets. Similar hyperpa-
rameters values are used for training baseline full-precision MobileNets and ST-MobileNets also.
The learning rate scheduling involves a ’warm up’ period in which the learning rate is annealed
from zero to 0.2 over the first 5 epochs, after which it is gradually reduced following a cosine decay
function.

D COMPARISON AGAINST PRIOR WORKS

Table 4: Top-1 and top-5 accuracy (%) of Mobilenet (full resolution and multiplier of 0.5) on Ima-
genet for different number of bits per weight and activation.

Method #bits per weight/activation Top-1 Acc. Top-5 Acc.
(%) (%)

Baseline MobileNets6 32/32 65.53 86.48
Baseline MobileNets7 16/16 65.2 86.34
ST-MobileNets (r = 0.5cout) 2/16 48.92 73.68
ST-MobileNets (r = 0.75cout) 2/16 56.95 80.25
ST-MobileNets (r = cout) 2/16 61.8 83.97
ST-MobileNets (r = 2cout) 2/16 65.14 86.26
Hybrid MobileNets (α = 0.25, r = 1.33cout) 2,16/16 63.47 85.1
Hybrid MobileNets (α = 0.25, r = 2cout) 2,16/16 65.2 86.05
Hybrid MobileNets (α = 0.375, r = cout) 2,16/16 64.13 85.4
Hybrid MobileNets (α = 0.375, r = 1.6cout) 2,16/16 64.17 85.38
Hybrid MobileNets (α = 0.375, r = 2cout) 2,16/16 65.2 86.05
Hybrid MobileNets (α = 0.5, r = cout) 2,16/16 64.69 85.66
Hybrid MobileNets (α = 0.5, r = 2cout) 2,16/16 65.17 85.98
Baseline MobileNets8 32/32 63.3 84.9
Baseline MobileNets9 8/8 62.2 -
Alpha-blending (Liu & Mattina (2019)) 8/8 63 -
Alpha-blending (Liu & Mattina (2019)) 4/8 58.4 -
HAQ (Wang et al. (2019))10

RQ (Louizos et al. (2019))11

6https://gluon-cv.mxnet.io/model zoo/classification.html#mobilenet
7https://gluon-cv.mxnet.io/model zoo/classification.html#mobilenet
8https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet v1.md
9https://github.com/tensorflow/tensorflow/tree/r1.14/tensorflow/contrib/quantize

10HAQ only shows accuracy results for the width multiplier of 1.
11RQ only shows accuracy results for the width multiplier of 1.
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