
[Re] Stabilizing Off-Policy Q-Learning via
Bootstrapping Error Reduction

Seungwon Kim
Incheon International Airport Corporation,

Georgia Institute of Technology
skim3222@gatech.edu

1 Introduction

Recent Reinforcement Learning(RL) algorithms have achieved great success on different tasks with
the comparable performance with humans or sometimes surpassing human ability. Nevertheless,
compared to the area of computer vision or NLP which can learn from large-scale datasets and have a
generalizable model, the application of RL algorithms to the real-world is still limited since it requires
active data collection. In principle, Off-policy RL algorithms such as Q-Learning can remedy this
issue since it can learn from the dataset collected from any policy. However, in practice, off-policy
Q-Learning is so sensitive to the training data distribution that it often fails to learn without data
collection that directly comes from the interaction with environments.

The authors have investigated off-policy Q-learning which learns from static dataset and identified
the instability of Q-learning is due to bootstrapping error, which results from selecting action lies
out-of-distribution of the dataset, in Bellman backup operator [4]. The authors theoretically analyze
bootstrapping error and suggest a way to reduce bootstrapping error by carefully constraining action
selection in backup operation. Finally, the authors present a practical algorithm, bootstrapping error
accumulation reduction (BEAR), which is a robust off-policy Q-learning algorithm, and empirically
show that BEAR Q-Learning (BEAR-QL) is able to learn from a variety of datasets including
suboptimal and random datasets in continuous control tasks.

In this work, we reproduce the main results of the paper, Stabilizing Off-Policy Q-Learning via
Bootstrapping Error Reduction, including the performance of baseline algorithms as well as BEAR-
QL [4]. We analyze and compare our results with those in the paper and provide practical suggestions
to reproduce the results of the paper. The implementation of BEAR-QL is done with Tensorflow and
we make the code and dataset available online 1.

2 Background

In reinforcement learning, Markov Decision Process (MDP) can be expressed as a tuple of
(S,A, P,R), which consists of state S, action A, reward function R, and trainsition distirubtion P
that is probability distribution of next state S′ given that action a is executed in state S, i.e., P (s′|s, a).
The goal of reinforcement learning is to maximize expected return, i.e.,

∑
t=1

γt−1Rt, where reward R

at time t is discounted by discount factor γ that is between 0 and 1. In continuous action spaces, the
objective can be transformed into finding the optimal policy π parameterized by θ that maximizes

1https://github.com/seungwon1/BEAR-QL

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

expected return as below equation (1). Here τ is the trajectory of states and actions induced by π, and
pθ(τ) is the distribution of τ defined as pθ(τ) = p(s1)

∏
t=1

πθ(at|st)p(st+1|st, at)

θ∗ = argmax
θ

Eτ∼pθ(τ)[
∑
t

r(st, at)] (1)

Q-learning is off-policy RL algorithm that allows target policy which is different from behavior policy
and the optimal Q function, state-action value Q∗(s, a), can be learned by iteratively updating Q
functions using Bellman optimality equation with backup operator T in equation (2).

(TQ̂) := R(s, a) + γ ET (s′|s,a)[max
a′

Q̂(s′, a′)] (2)

On the other hand, equation (2) is only valid when the action space is discrete. When the state or
action is in continuous space, it is necessary to approximate state or action to estimate Q functions
or directly finding the optimal policy π∗. Deep neural networks can be used to approximate Q(s, a)
and the policy, π(·|s), which directly outputs action values if the policy is deterministic or mean and
variance of the policy function, typically Gaussian function, if the policy is stochastic.

3 Analysis of BEAR Q-Learning

The authors point out that Q-learning fails to learn with a static dataset due to the bootstrapping
error. Bootstrapping error comes from the inappropriate action selection when performing Bellman
update. As shown in equation (2), the action should be selected to estimate the Q function in the next
state, Q̂(s′, a′). However, since the action is selected based on the current Q function, a′ does not
necessarily lie in the distribution of the training set and it is more likely to be far out of distribution
of the dataset if one continually updates Q-values. Out-Of-Distribution(OOD) action in Q-learning
makes learning process unstable, resulting in poor performance.

To mitigate this problem, BEAR Q-Learning makes the policy, π(·|s), output actions that lie on the
support of the training set. Note that this is not the same as Batch Constrained Q-Learning (BCQ),
which constrains the policy more strictly to be close to the distribution of the training set [1]. It is less
strict than BCQ, and it has benefits to find better solutions than BCQ does especially given that the
training set is suboptimal. Consider that the training set is collected by a random uniform policy. In
this case, the policy of BEAR Q-Learning is less restrictive than those of BCQ and it is more likely to
find better solutions by learning from training sets, whereas BCQ tends to imitate the distribution of
training set. The overall description of BEAR-Q Learning built on actor-critic style is presented in
algorithm 1. The description of algorithm 1 is slightly different from those in the paper. Details and
specific architectures of the network are provided to help reproducibility.

Algorithm 1 BEAR Q-Learning (BEAR-QL)
Input: Dataset D, target network update rate τ , mini-batch size N , sampled actions p, m, n, MMD

threshold ε, minimum λ

1: Initialize Q-ensemble {Qθi}Ki=1, actor πφ , VAE networkGw = {Ew1, Dw2}, Lagrange multiplier
α, target networks {Qθ′i}

K
i=1, and a target actor πφ′ with φ′ ← φ, θ′i ← θi

2: for t in {1, ..., N} do
3: Sample mini-batch of transitions (s, a, r, s′) ∼ D
4: µ, σ = Ew1(s, a), ã = Dw2(s, z), z ∼ N(µ, σ)

w ← argminw
∑

(a− ã)2 +DKL(N(µ, σ)||N(0, 1))
Q-update:

5: Sample p action samples, {ai ∼ Gw(s′)}pi=1
6: Define y(s, a) := maxai[λminj=1,...,K Qθ′j (s

′, ai) + (1− λ)maxj=1,...,K Qθ′j (s
′, ai)]

7: ∀i, θi ← argminθi(Qθi(s, a)− (r + γy(s, a))2

Policy-update:
8: Sample action samples, {âi ∼ πφ(·|s)}mi=1 and {aj ∼ Gw(s)}nj=1, m, n between (1-10)
9: Update π, α by minimizing equation 3 using dual gradient descent with lagrange multiplier α

10: end for

2

There are several components used in BEAR Q-Learning. First of all, it uses Variational Auto-
Encoder(VAE) to approximate the behavior policy of dataset to sample actions from the dataset and
to compute the target function for updating Q functions (line 4, 5, 6). Note that VAE in algorithm
1 is not provided in the original paper [4]. In their paper, there is no specific guidance for training
behavior policy of dataset to sample actions and how to sample actions for calculating target y(s, a).
However, after examing several networks such as naive Behavior Cloning(BC) and VAE based BC
and through communication with authors, VAE-BC turned out to work well and they also confirmed
that VAE-BC is used for training behavior policy of the training set D. Using VAE to sample actions
for calculating target also makes sense since it reduces bootstrapping error by selecting the action is
likely to lie in the distribution of the dataset. The other component is an ensemble of Q functions
to estimate target values. This is similar to recent works in Q-learning with the static dataset and
stabilizes learning by reducing overestimation bias from the maximization step in Q-learning.

After updating Q functions, actions are sampled from dataset D and online policy networks πφ to
update the policy. The policy is updated by minimizing equation 3 using dual gradient descent.

πφ(s) = max
π∈Πε

Ea∼π(·|s)[ˆQk(s, a)]−λ
√
vark Ea∼π(·|s)[ˆQk(s, a)]

s.t.Es∼D[MMD(D(s), π(·|s))] ≤ ε
(3)

The policy update in BEAR-QL is a constrained optimization problem that the objective πφ(s) is
maximized while satisfying the MMD between sample actions. Here, the constraints of the objective
is maximum mean discrepancy(MMD), which measures the distance between two sample actions
from different distributions. We provide implementation details of this constrained optimization
problem using dual gradient descent in section 4.3. In summary, BEAR-QL tries to maximize Q
values with respect to current policy while constraining the actions to lie on the support of the
distribution of training set, resulting in reducing bootstrapping error and better performance than
other methods such as BCQ that has more strict constraints.

4 Reproducibility

4.1 Data generation

The authors made three kinds of datasets: optimal, medium quality, and random datasets; for four
different Mujoco environments: HalfCheetah-v2, Walker2d-v2, Hopper-v2, and Ant-v2. The optimal
and medium quality dataset are generated by rolling the policy trained by Soft Actor-Critic (SAC)
algorithm [3]. They used near-optimal policy to generate the optimal dataset and partially trained
policy to generate the medium quality dataset. The random dataset is made by rolling uniform policy.
Each dataset contains 1e6 number of tuples and each tuple contains S,A,R, S′, and T , where S is
state, A is action, R is reward, S′ is the next state, and T terminal value that indicates whether the
episode terminates. As denoted by the paper, we used the official implementation of Soft Actor-Critic
(SAC) algorithm and trained SAC on four environments, logged the performance of the agent in the
evaluation stage, and saved all the policy variables trained by SAC for every certain time step interval,
e.g., 100 iterations [3]. To make optimal and medium quality datasets, we selected several policy
candidates in which the average return during the evaluation stage is close to those of the behavior
policy of the dataset presented in the paper. This is because there is no information about the standard
deviation of the performance of the behavior policy that generates each dataset and the authors only
provided the average return of the behavior policy of the dataset. We rolled out several policies for
100 episodes, picked the best one which has the closest average return with lower standard deviation.
We assumed that selecting the dataset has consistent performance between individual trials reduces
errors and helps reproducibility. Then, we simulated the final policy and saves the experiences of
which consist of (S,A,R, S′, T) for 1e6 time steps. For the random dataset, since the standard
deviation of the performance of the behavior policy is negligible, we just simulated uniform policy
for 1e6 time steps. We provide the average return with a standard deviation (±%) of the policy in 1e6
time steps for each dataset in table 1 for future reproducibility.

3

Quality HalfCheeta-v2 Walker2d-v2 Hopper-v2 Ant-v2

Optimal 12254 ±2% 3146 ±22% 2695 ±0.7% 5193 ±9%
Medium 3995 ±11% 510 ±46% 1119 ±8% 614 ±45%

Table 1: Performance of behavior policy in data generation

4.2 Experimental Setup

Using above datasets, we first performed experiments of baseline to match the performance with
those in the paper. Baseline experiments were done using the official implementations of BCQ, TD3,
and BC-VAE as denoted in the paper [1, 2]. We did not change hyper-parameters as well as network
architecture and used the default value, which is the same as those used in the paper for BCQ, BC-
VAE, and TD3 [1, 2]. To train BEAR-QL, there is a lack of information for some hyper-parameters.
Since BEAR-QL is similar to BCQ, we used similar values for missing hyper-parameters such as
learning rate, optimizer, and target update rate and adjusted some others such as the number of actions
to sample through communication with authors. Also, we observed that the standard deviation of
the Q-values across the ensemble model often makes learning unstable and policy variables diverge.
Details of hyper-parameters as well as some clipping values to stabilize learning used in BEAR-QL
are summarized in table 2.

Hyper-parameter value

Number of ensemble k 2
Threshold ε for MMD 0.05
Learning rate 1e-3
Optimizer Adam
Batch size 100
gamma 0.99
λ for estimating target Q 0.75
Target Update Rate τ 5e-3
Number of samples p, m, n 5, 5, 5
Clipping dual variable α [-5, 10]
Clipping standard deviation of Q functions [0, 10]

Table 2: Default hyper-parameter used in BEAR-QL

4.3 Implementation details

Here we provide practical implementation details of network architecture for critic and actor, VAE
used in BEAR-QL as well as how the dual gradient descent is performed using Lagrange multiplier α.
Since BEAR-QL shares similar components with BCQ, the same network architecture used in BCQ
is selected for the critic, actor, and VAE network. For critic, there are two separate networks and each
output unique value of Q function, Q(s, a), given observation and action. Each Q function network
is a 3-layer network where hidden units are 400, 300 respectively with relu activation function except
for the output layer. For actor, there is a 3-layer network where hidden units are 400, 300 respectively
with relu activation function. It is connected to two individual output components respectively, the
mean and standard deviation of gaussian policy. Note that mean and variance have a shared network.
The encoder network of VAE is similar to the actor network but different number of hidden units
with 750, 750 and it outputs mean and variance of gaussian policy. The decoder network is a 3-layer
network outputs action where hidden units are 750, 750. Latent dimension for VAE is twice as big as
the dimension of action space.

In algorithm 1, BEAR-QL has to solve a constrained optimization problem using dual gradient
descent. Dual gradient descent is a popular technique for maximizing the objective while constraining
the policy. The objective and constraints is defined in equation (3). Using equation (3), the Lagrange
L with Lagrange multiplier α is defined as

L(φ, α) = −πφ(s) + α(Es∼D[MMD(D(s), π(·|s))]−ε) (4)

4

Note that πφ(s) is flipped in sign since it has to be maximized. We alternately performed gradient
descent on Lagrange L with respect to the policy variable φ and gradient ascent with respect to
Lagrange multiplier α to maximize dual loss α(Es∼D[MMD(D(s), π(·|s))]−ε). The learning rate
for each gradient step is the same as shown in table 2.

5 Results

The results of experiments are shown in Figures 1, 2, 3 for the medium quality dataset, random
dataset, optimal dataset respectively. We evaluated the policy of the agent in every 1000 episodes and
used the average return of 10 trials for plotting as done in their paper. Here to make the graph more
legible, we applied the exponential moving average with window size 50 to ours. The average return
of behavior policy of the dataset is plotted as a dashed magneta line in the figure.

Figure 1: Performance on medium quality dataset. Top (paper) and Bottom (Ours)

As shown in figure 1-bottom, our BEAR-QL outperforms any other baseline algorithms in all tasks
except for HalfCheetah-v2. In HalfCheetah-v2, BCQ outperforms BEAR-QL with a small margin,
which is different from the original results. We found that it is difficult to make BEAR-QL outperform
BCQ in HalfCheetah-v2 since the margin between the performance of BEAR-QL and BCQ is quite
small. However, in Ant-v2, our BEAR-QL outperforms all baseline algorithms including BCQ and
the behavior policy of dataset by far large margins, demonstrating the main claim of the paper, which
is in medium quality dataset, BEAR-QL tries to find a policy that is more superior than behavior
policy of dataset, whereas BCQ and BC tend to stay within the data distribution.

Figure 2: Performance on random dataset. Top (paper) and Bottom (Ours)

5

Figure 2 shows the performance of algorithms in the random dataset is similar to those in the paper.
Although the performance of our BEAR-QL is way better or not comparable to those of the original
results in Hopper-v2 and HalfCheetah-v2 on medium quality dataset, it demonstrates that BEAR-QL
consistently achieves better results than the average return of dataset in all domains, whereas BCQ
performs poorly in some tasks such as HalfCheetah-v2 because of the strict constraints.

Figure 3: Performance on optimal dataset. Top (paper) and Bottom (Ours)

The performance of BEAR-QL and baseline algorithms in the optimal dataset is presented in figure 3.
In all domains, BEAR-QL performs comparably with BCQ and it achieved near-optimal performance
except for HalfCheetah-v2. In HalfCheetah-v2, there is a large gap between the performance of
BC-VAE and BEAR-QL. Since our BEAR-QL shows better performance in some domains such as
Hopper-v2 random dataset or Ant-v2 medium quality dataset, the reason that the performance of
BEAR-QL is different from the original results in some domains might result from hyper-parameters
or datasets which are different from the paper. Further hyper-parameter tuning or generating additional
datasets with a different standard deviation of average return seems to mitigate this issue, resulting in
more similar results.

6 Conclusion

In this paper, we study off-policy Q-Learning with static datasets and explored BEAR-QL as well as
other baseline algorithms, reproduced the main results in the paper [4]. Although our results are not
perfectly matched with the paper, those are roughly same and we empirically show that BEAR-QL
can consistently work well on all kinds of datasets in different control tasks: it can learn a better
policy from the random dataset, achieve near-optimal or suboptimal performance with optimal or
medium quality datasets.

References
[1] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without

exploration. arXiv preprint arXiv:1812.02900, 2018.

[2] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

[3] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

[4] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems, pages 11761–11771, 2019.

6

	Introduction
	Background
	Analysis of BEAR Q-Learning
	Reproducibility
	Data generation
	Experimental Setup
	Implementation details

	Results
	Conclusion

