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Abstract

Missing data is a common problem in machine learning, and in retrospective imaging
research it is often encountered in the form of missing imaging modalities. We propose
to take into account missing modalities in the design and training of neural networks, to
ensure that they are capable of providing the best possible prediction even when one of the
modalities is not available. This would enable algorithms to be applied to subjects with
fewer available modalities, without leaving out the same information in other subjects or
applying data imputation. This concept is evaluated in the context of glioma segmentation,
which is a problem that has received much attention in part due to the BraTS multi-
modal segmentation challenge. The UNet architecture has been shown to be effective in
this problem and therefore it serves as the reference method in this paper. To make the
network robust to missing data we leveraged the dropout principle during training and
applied this to the UNet architecture, but also to variations on the UNet architecture
inspired by multimodal learning. These networks drastically improved the performance
with missing modalities, while only performing slightly worse on the full dataset.
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1. Introduction

Tumor segmentation is a key task in brain imaging research, as it is a prerequisite for
obtaining quantitative measures of the tumor. Since manual segmentation by radiologists
is time-consuming and prone to inter-observer variation, there is a clear need for effective
automatic segmentation methods. Research into these methods for glioma has been ac-
celerated by the recurring BraTS multi-modal segmentation challenge on low-grade glioma
(LGG) and glioblastoma (GBM) (Menze et al., 2015). Each iteration of the challenge has
brought better performing segmentation methods, with the best performing methods in
recent editions all based on convolutional neural networks (CNNs).

While the BraTs challenge focuses on improving performance, there are practical prob-
lems to overcome before automatic segmentation can be applied in practice. One of these
challenges is dealing with missing data. The BraTS benchmark contains four MR modali-
ties: a T1-weighted image (T1W), a T1-weighted image with contrast agent (T1W+C), a
T2-weighted image (T2W) and a FLAIR image (FLAIR), which are co-registered so that
corresponding voxels in the image are aligned. Each of these images provides a different
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piece of information to the radiologist and a CNN can learn to segment a tumor from the
combination of modalities. Although these images are complementary, a radiologist is still
able to perform a decent segmentation if one of these modalities is missing while this is not
guaranteed for a CNN. Especially in retrospective studies it is not unlikely that the imag-
ing protocol does not contain all four modalities and even if it does, poor image quality or
registration errors can cause similar problems.

1.1. Dealing with missing data

A common way to deal with missing data is to use imputation, to provide the network with
some substitute value that is common (e.g. the mean or median) or even a value that is
generated from the remaining data. Artificial neural networks can also be used to generate
missing data (Jerez et al., 2010), and in the specific case of medical imaging they could be
used to generate entire images. However, we propose to avoid imputation completely by
designing and training a CNN so that it can adapt to missing data naturally.

In this paper we explore segmentation networks that are inherently robust to missing
data by leveraging the dropout principle (Srivastava et al., 2014), either through a simple
adaptation to the training procedure or by adapting the CNN architecture completely.
Dropout layers are a way of regularizing the network by randomly removing features during
training, which is supposed to make features more robust. In CNNs dropout is commonly
implemented on feature channels, which means that entire kernels are removed instead of
single features. In this study dropout layers are applied specifically to the layers where
image modalities are merged, so that the networks become more robust to missing data.

1.2. Combining modalities in CNNs

In most segmentation methods the modalities are concatenated as input channels to the
CNN, as if they were color channels in an RGB image (Pereira et al., 2016)(Işın et al.,
2016). This way of incorporating different images enables the network to learn low-level
features from the combination of MR sequences, which makes sense if we assume that the
voxel intensity in the different modalities correspond to different features of the same tissue.
However, this also makes the network vulnerable to missing data, since all features depend
on all input modalities to some extent. We explore adapted network architectures where
the information from different sequences is merged at a much later stage in the network, so
that the majority of features rely only on a single modality.

Although these architectures lack the ability to learn low-level features from multiple
MR sequences, they do offer potential benefits in terms of robustness and trainability. They
are potentially more robust to missing data and errors which occur in one of the input
modalities, such as registration errors, poor image quality or artifacts, because these errors
can not affect the low-level features from other modalities. Also, a network with separate
pathways for each modality offers the possibility to train these pathways individually and
this means that datasets with a one or more missing modalities can be used for training as
well. Furthermore, if these pathways are trained separately, it is easier to increase the size
of the network while keeping the memory usage limited.
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2. Methodology

2.1. Network architecture

The 3D UNet architecture (Çiçek et al., 2016) is a well-established segmentation network
and still was one of the best performing architectures at the most recent 2018 BraTS
challenge (Isensee et al., 2018). Therefore the UNet forms the baseline for our research as a
reference network and a building-block for different variations of multi-modal architectures.
The number of trainable parameters in the model depends on the number of feature maps
in each convolution, which we chose to parameterize by a single variable c. The first
convolution has c kernels, and as the size of the feature maps decreases the number of
kernels is increased. Figure 1 shows the UNet architecture with the number of feature maps
per convolution layer expressed as a multiple of c.

In the reference UNet architecture each 3D convolution block contains a batch nor-
malization, a 3D convolution layer with kernels of size 33 and ReLu activation. The last
fully connected layer was implemented as a 3D convolution with kernels of size 13. The
downsampling step is a max-pooling layer of stride 2 and size 23 and the upsampling was
implemented by tri-linear interpolation. For this UNet architecture each target voxel has a
receptive field of 883 voxels.

Figure 1: Illustration of the UNet architecture. The number of feature maps, as a function
of the parameter c, is indicated for each step.

UNet with Dropout

A simple way to make the network robust to missing data, is to train it with missing
data. Therefore the UNet architecture was adapted with a single dropout layer at the
input, replacing the Batch Normalization layer, which removes entire input channels (MR
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sequences) with probability p = 0.2. This dropout probability is lower than in the multi-
pathway architectures (see below) because it has fewer feature channels.

Ensemble network

The Ensemble and Late Fusion architectures explore a completely different way of combining
the MR modalities. In these architectures, one network is trained for each MR modality
and the predictions (or features) of each of them is combined in a final prediction layer.
The ensemble network architecture applies a technique similar to the concept of ensemble
learning, where multiple algorithms or instances of the same algorithm are combined after
training them separately (Maji et al., 2016). In this implementation, the separate UNet
pathways produce probability estimates per class, which are concatenated to eight channels
in the fusion layer. The final prediction layer is a 13 convolutional layer with dropout
(p = 0.5), so the final layer is in fact a trainable combination of all predictions.

Late Fusion network

The idea of a fusion network originates from multimodal learning (Ngiam et al., 2011),
where different modalities are more inherently different, such as images and text. The
network has one pathway for each of the four modalities and the feature maps of the final
convolutional layer are concatenated to an output of 8c channels. The final prediction is
performed again by a 13 convolution layer with dropout (p = 0.5). The late fusion network
can be trained end-to-end or separately. When trained separately, a UNet is trained for
each individual MR modality and the separate prediction layers are replaced by the fusion
layer followed by a single prediction layer.

The last layer of the Ensemble and Late Fusion network needs to be trained, but the
original UNet weights can be frozen while doing this which drastically decreases the required
memory with respect to training the full network end-to-end. The networks are visualized
in Figure 2.

Figure 2: Illustration of the late fusion network (left) and ensemble network (right). The
asterisk (*) indicates that the last feature layer is used instead of binary label
predictions.
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2.2. Data

The networks were trained and evaluated on the training set of the BraTS challenge 2018
(Bakas et al., 2017), which is a benchmark dataset of pre-operative scans of 278 patients with
low-grade glioma (LGG, 75) or glioblastoma (GBM, 203). The images in this benchmark
are skull-stripped, co-registered and resampled to a size of 240 by 240 by 155 voxels. The
segmentations contain separate labels for the tumor edema, core and enhancing core, but
we restricted the analysis to a binary whole-tumor segmentation.

2.3. Preprocessing

The non-background voxels of each separate image were normalized to zero mean and unit
standard deviation. To limit memory usage, random patches of 1083 voxels were extracted,
which correspond to 203 target voxels. With a probability of 50% a patch was selected
from a tumor area, meaning that the center voxel was part of the tumor, and with 50%
probability the center voxel was located outside of the tumor but inside the brain.

2.4. Training and evaluation

The networks were optimized with the Adam optimizer (Kingma and Ba, 2014) and the
cross-entropy loss function. For every epoch, one patch from each patient was extracted
randomly and fed to the network. The dataset was divided into five cross-validation folds,
so that 20% of the subjects were always selected for testing and never used during training.
The folds are random, but the same for each experiment. Due to time constraints, only two
of these folds were evaluated.

Evaluation took place on the whole image, although it was classified by the network in
patches to limit memory usage. These patches were selected to cover the whole image. The
Dice coefficient is reported as performance metric.

2.5. Evaluating robustness

To assess whether the UNet with Dropout, the Ensemble network and Late Fusion network
are indeed more robust to missing data, we evaluated the same models in a situation where
one of the sequences is removed. The result is expected to be largely dependent on the
sequence that is affected, so the four sequences were evaluated separately. The missing
sequence was removed from the network by setting the input to zero and scaling the other
inputs by n/(n − 1), where n is the number of original inputs, which is equivalent to the
procedure applied in dropout layers. For the single UNet architecture this procedure was
applied at the input, but for the Ensemble and Late Fusion networks the dropout procedure
was applied at the fusion layer.

2.6. Network parameters and implementation

For a fair comparison of the different architectures it is important to consider the number
of trainable parameters. For the Ensemble and Late Fusion architectures, if c were the
same, the network would have approximately four times the number of trainable weights.
To create a network of the same size as a single reference network the UNets that form the
pathways of a multi-pathway network should have half the number of channels per layer,

5



Glioma Segmentation Networks with Missing Modalities

because the number of weights scales quadratically with c. Taking this into account, we
designed and trained the different networks in the following way:

• UNet: A single UNet with four input channels and c = 32. It was trained end-to-end
for 300 epochs. The number of trainable weights is 16, 323, 690.

• UNet dropout: A single UNet with four input channels and c = 32, where dropout
was applied to input channels with p = 0.2. It was trained end-to-end for 300 epochs.
The number of trainable weights is the same as UNet.

• Ensemble: An ensemble network of four UNets and c = 16. The networks were
trained separately with a single MR sequence (200 epochs). The final prediction layer
was added and trained for 100 epochs while the rest of the weights were frozen. The
number of trainable weights is 16, 329, 890.

• Late Fusion: A late fusion network with four pathways in the shape of a UNet
(c = 16). The networks were trained separately with a single MR sequence (200
epochs). The final prediction layer was added and trained for 100 epochs. The
number of trainable weights is 16, 330, 130.

All networks were implemented in PyTorch (Paszke et al., 2017) and trained on two
NVIDIA GeForce GTX 1080 Ti graphics cards, each with 11 Gb memory.

3. Results

The four networks were evaluated with the full datasets and after removing each of the four
modalities, on two cross-validation folds of 57 subjects each. The results are summarized
in Table 1 and the distribution of performance across subjects is shown using boxplots in
Figure 3.

Figure 3 shows that, on the full dataset (without missing data), the simple UNet without
dropout performs best, but the other networks are not significantly worse. For missing data
scenarios, the regular UNet suffers while the other networks are able to maintain a decent
performance. It seems that FLAIR is the most informative MR sequence in this problem,
and this is not surprising because that image was used as gold standard for the original
whole-tumor segmentation. The Ensemble network is most stable in its performance and
suffers the least from missing data, but it is also the least effective when using the full
dataset.

Significance between results was tested using the Wilcoxon signed-rank test and reported
in Table 1 for the comparison of different methods to the UNet baseline. The difference
between the UNet with dropout and the Ensemble networks is also significant in the case
of missing FLAIR image (p < 0.001 for both folds).

4. Discussion and conclusion

We showed that it is possible to design and train a CNN to be robust to missing MR
modalities, in the context of the BraTs multi-modal segmentation challenge with four MR
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Figure 3: Boxplot of performance on both cross-validation folds for each network, with full
data and single MR sequences removed.
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Table 1: Numeric results for in terms of mean Dice coefficient and standard deviation over
subjects. Results with asterisk are significantly different from the corresponding
UNet performance (p < 0.001).

Model Full No T1W No T2W No FLAIR No T1W+C

F
o
ld

1

UNet 0.86 (0.13) 0.78 (0.20) 0.78 (0.19) 0.56 (0.31) 0.80 (0.16)
UNet Dropout 0.85 (0.13) 0.82 (0.17)* 0.82 (0.16) 0.73 (0.22)* 0.85 (0.12)*
Ensemble 0.85 (0.15) 0.84 (0.15) 0.84 (0.15) 0.81 (0.18)* 0.85 (0.14)
Late Fusion 0.85 (0.12) 0.84 (0.14)* 0.80 (0.18) 0.80 (0.16)* 0.85 (0.12)*

F
o
ld

2

UNet 0.85 (0.11) 0.71 (0.18) 0.50 (0.27) 0.29 (0.32) 0.78 (0.16)
UNet Dropout 0.79 (0.18)* 0.83 (0.15)* 0.79 (0.18)* 0.72 (0.21)* 0.81 (0.17)
Ensemble 0.83 (0.14) 0.83 (0.14)* 0.81 (0.15)* 0.78 (0.18)* 0.83 (0.14)
Late Fusion 0.82 (0.14) 0.82 (0.15)* 0.79 (0.13)* 0.69 (0.25)* 0.82 (0.14)

sequences. Applying dropout on the input channels is a simple way to achieve robust-
ness with only a minimal impact on performance for complete datasets. More advanced
multimodal architectures, with a separate pathway for each modality, might give an even
better balance between performance and robustness with the additional benefit of training
the pathways separately. Especially in retrospective studies, where the availability of dif-
ferent modalities is not guaranteed, these architectures simplify the training procedure by
considering the modalities separately.

One important parameter to take into account is the dropout percentage. In this study it
is set to p = 0.5 for the multi-pathway architectures, but for the UNet input channels it was
set to p = 0.2 due to the smaller number of channels in the dropout layer. Further research
is needed to assess the effect of the dropout percentage on performance and robustness.

From this study it seems that the Ensemble network shows the best balance between
overall performance and robustness. However, this could be due to the balance between
dropout probability and the number of feature maps in the fusion layer, which is eight for
this network and 8c = 128 for the Late Fusion network. For the Ensemble network it is
likely that the information from an entire MR modality is sometimes removed, while this
is highly unlikely for the Late Fusion network. A logical next step would be to design a
specialized dropout layer that removes specific subsets (i.e. entire pathways) of the input
rather than random elements.

In this paper we consider a specific use-case, but the principle of leveraging dropout for
missing data extends to other applications of deep learning in medical imaging. Most of all
this paper is a proof of concept, demonstrating that it is worthwile to consider missing data
when training an algorithm and that neural networks offer the possibility to be inherently
robust to missing data. This prevents researchers who need the algorithms in practice from
having to apply strict selection criteria based on the available data or use data imputation.
Further research on different architectures and training procedures can possibly improve
the performance and robustness even more.
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