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ABSTRACT

We propose a neural machine reading model that constructs dynamic knowledge
graphs from procedural text. It builds these graphs recurrently for each step of the
described procedure, and uses them to track the evolving states of participant enti-
ties. We harness and extend a recently proposed machine reading comprehension
(MRC) model to query for entity states, since these states are generally communi-
cated in spans of text and MRC models perform well in extracting entity-centric
spans. The explicit, structured, and evolving knowledge graph representations
that our model constructs can be used in downstream question answering tasks
to improve machine comprehension of text, as we demonstrate empirically. On
two comprehension tasks from the recently proposed PROPARA dataset (Dalvi
et al., 2018), our model achieves state-of-the-art results. The model also outper-
forms previous approaches on the RECIPES dataset (Kiddon et al., 2015), which
suggests it may apply broadly to procedural text. Finally, we present some evi-
dence that the model’s graphical representations help it to impose commonsense
constraints on its predictions.

1 INTRODUCTION

Automatically building knowledge graphs (KGs) from text is a long-standing goal in artificial in-
telligence research. KGs organize raw information in a structured form, capturing relationships
(labeled edges) between entities (nodes). They enable automated reasoning, e.g., the ability to infer
unobserved facts from observed evidence and to make logical “hops,” and render data amenable to
decades of work in graph analysis.

There exists a profusion of text that describes complex, dynamic worlds in which entities’ relation-
ships evolve through time. This includes news articles, scientific manuals, and procedural text (e.g.,
recipes, how-to guides, and so on). Building KGs from this data would not only help us to study the
changing relations among participant entities, but also to make implicit information more explicit.
For example, the graphs at each step in Figure 1 help us to infer that the new entity mixture is created
in the leaf, since the previous location of its participant entities (light, CO2, water) was leaf – even
though this is never stated in the text.

This paper introduces a neural machine-reading model, KG-MRC, that (i) explicitly constructs dy-
namic knowledge graphs to track state changes in procedural text and (ii) conditions on its own
constructed knowledge graphs to improve downstream question answering on the text. Our dy-
namic graph model is recurrent, that is, the graph at each time step depends on the state of the graph
at the previous time step. The constructed graphs are parameterized by real-valued embeddings for
each node that change through time.

In text, entities and their states (e.g., their locations) are given by spans of words. Because of the
variety of natural language, the same entity/state may be described with several surface forms. To
∗Work performed when author was an intern at MSR Montréal.
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Chloroplast in leaf of the plant trap light 
from the sun. The root absorbs minerals 
from the soil. This combination of water 
and minerals flows from the stem into the 
leaf. Carbon dioxide enters the leaf. 
Light, water and minerals, and the 
carbon dioxide all combine into a 
mixture. This mixture forms sugar 
(glucose) which is what the plant eats.
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Figure 1: Snapshot of the knowledge graphs created by
our model before and after reading the sentence in bold-
face. Since the KG explicitly stores the current location
of light, CO2, and water as leaf, the model can infer
that mixture is formed in the leaf even though this is
not explicitly stated. The three participant entities also
get destroyed in the process, which is captured in the
graph by pointing to a special Nowhere node.

address the challenge of entity/state recognition, our model uses a machine reading comprehension
(MRC) mechanism (Seo et al., 2017a; Xiong et al., 2017; Chen et al., 2017; Yu et al., 2018, inter
alia), which queries for entities and their states at each time step. We leverage MRC mechanisms
because they have proven adept at extracting text spans that answer entity-centric questions (Levy
et al., 2017). However, such models are static by design, returning the same answer for the same
query and context. Since we expect answers about entity states to change over the course of the text,
our model’s MRC component conditions on the evolving graph at the current time step (this graph
captures the instantaneous states of entities).

To address the challenge of aliased text mentions, our model performs soft co-reference as it updates
the graph. Instead of adding an alias node, like the leaf or leaves as aliases for leaf, the graph update
procedure soft-attends (Bahdanau et al., 2014) over all nodes at the previous time step and performs
a gated update (Cho et al., 2014; Chung et al., 2014) of the current embeddings with the previous
ones. This ensures that state information is preserved and propagated across time steps. Soft co-
reference can also handle the case that entity states do not change across time steps, by applying a
near-null update to the existing state node rather than duplicating it.

At each time step, after the graph has been updated with the (possibly) new states of all entities, our
model updates each entity representation with information about its state. The updated information
about each individual entity is further propagated to all other entities (§ 4.4). This enables the model
to recognize, for example, that entities are present in the same location (e.g., light, CO2 and water in
Figure 1). Thus, our model can use the information encoded in its internal knowledge graphs for a
more comprehensive understanding of the text. We will demonstrate this experimentally by tackling
comprehension tasks from the the recently released PROPARA and RECIPES datasets.

Our complete machine reading model, which both builds and leverages dynamic knowledge graphs,
can be trained end-to-end using only the loss from its MRC component; i.e., the negative log-
likelihood that the MRC component assigns to the span that correctly describes each entity’s queried
state. We evaluate our model (KG-MRC) on the above two PROPARA tasks and find that the same
model significantly outperforms the previous state of the art. For example, KG-MRC obtains a 9.92%
relative improvement on the hard task of predicting at which time-step an entity moves. Similarly on
the latter task, KG-MRC obtains a 5.7% relative improvement over PROSTRUCT and 41% relative
improvement over other entity-centric models such as ENTNET (Henaff et al., 2017). The same
model also obtains state-of-the-art performance on the RECIPES dataset.

2 RELATED WORK

There are few datasets that address the challenging problem of tracking entity state changes. The
bAbI dataset (Weston et al., 2015) includes questions about movement of entities; however, its
language is generated synthetically over a small lexicon, and hence models trained on bAbI often
do not generalize well when tested on real-world data. For example, state-of-the-art models like
ENTNET (Henaff et al., 2017) and Query Reduction Networks (Seo et al., 2017b) fail to perform
well on PROPARA.
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PROREAD (Berant et al., 2014) introduced the PROCESSBANK dataset, which contains paragraphs
of procedural text as in PROPARA. However, this earlier task involves mining arguments and rela-
tions from events, not tracking the dynamic state changes of entities. The model that Berant et al.
(2014) propose builds small knowledge graphs from the text, but they are not dynamic in nature.
The model also relies on densely annotated process structure for training, demanding curation by
domain experts. On the other hand, our model, KG-MRC, learns to build dynamic KGs just from
annotations of text spans, which are much easier to collect.

For the sentence-level PROPARA task they propose, Dalvi et al. (2018) introduce two models:
PROLOCAL and PROGLOBAL. PROLOCAL makes local predictions about entities by consider-
ing just the current sentence. This is followed by some heuristic/rule-based answer propagation.
PROGLOBAL considers a broader context (previous sentences) and also includes the previous state
of entities by considering the probability distribution over paragraph tokens in the previous step.
Tandon et al. (2018) recently proposed a neural structured-prediction model, (PROSTRUCT), where
hard and soft common-sense constraints are injected to steer their model away from globally in-
coherent predictions. We evaluate KG-MRC on the two PROPARA tasks proposed by Dalvi et al.
(2018) and Tandon et al. (2018), respectively, and find that our single model outperforms each of the
above models on their respective tasks of focus.

ENTNET (Henaff et al., 2017) and query reduction networks (QRN) (Seo et al., 2017b) are two
state-of-the-art entity-centric models for the bAbI dataset. ENTNET maintains a dynamic memory
of hidden states with a gated update to the memory slots at each step. Memory slots can be tied
to specific entities, but unlike our model, ENTNET does not maintain separate embeddings of indi-
vidual states (e.g., current locations); it also does not perform explicit co-reference updates. QRN
refines the query vector as it processes each subsequent sentence until the query points to the an-
swer, but does not maintain explicit representations of entity states. Neural Process Networks (NPN)
(Bosselut et al., 2018) learn to understand procedural text by explicitly parameterizing actions and
composing them with entities. These three models return an answer by predicting a vocabulary item
in a multi-class classification setup, while in our work we predict spans of text directly from the
paragraph.

MRC models have been used previously for extracting the argument of knowledge base (KB) re-
lations, by associating one or more natural language questions with each relation (querification).
These models have been shown to perform well in a zero-shot setting, i.e., for a previously unseen
relation type (Levy et al., 2017), and for extracting entities that belong to non-standard types (Roth
et al., 2018). These recent positive results motivate our use of an MRC component in KG-MRC.

3 DATA & TASKS

We evaluate KG-MRC on the recently released PROPARA dataset (Dalvi et al., 2018), which com-
prises procedural text about scientific processes. The location states of participant entities at each
time step (sentence) in these processes are labeled by human annotators, and the names of par-
ticipant entities are given. As an example, for a process describing photosynthesis, the partici-
pant entities provided are: light, CO2, water, mixture and glucose. Although participant entities
are thus known a priori, the location of an entity could be any arbitrary span in the process text.
This makes the task of determining and tracking an entity’s changing location quite challenging.

# para 488
# train/#dev/#test 391/43/54
avg. # entities 4.17
avg. # sentences 6.7
# sentences 3.3K

Table 1: Statistics of PROPARA.

It should also be noted that the dataset does not provide infor-
mation on whether a particular entity is an input to or output
of a process. Not all entities exist from the beginning of the
process (e.g. glucose) and not all exist at the end (e.g. wa-
ter). Table 1 shows statistics of PROPARA. As can be seen,
the training set is small, which makes learning challenging.

Along with the dataset, Dalvi et al. (2018) introduce the task
of tracking state changes at a fine-grained sentence level. To solve this task, a model must answer
three categories of questions (10 questions in total) about an entity E: (1) Is E created, (destroyed,
moved) in the process? (2) When (step #) is E created, (destroyed, moved)? (3) Where is E created,
(destroyed, moved from/to)? Cat. 1 asks boolean questions about the existence and movement of
entities. Cat. 2 and 3 are harder tasks, as the model must correctly predict the step number at which
a state changes as well as the correct locations (text spans) of entities at each step.
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Tandon et al. (2018) introduce a second task on the PROPARA dataset that measures state changes at
a coarser process level. To solve this task, a model must correctly answer the following four types
of questions: (1) What are the inputs to the process? (2) What are the outputs of the process? (3)
What conversions occur, when and where? (4) What movements occur, when and where? Inputs to
a process are defined as entities that exist at the start of the process but not at the end and outputs are
entities that exist at the end of the process and were created during it. A conversion is when some
entities are created and others destroyed, while movements refer to changes in location. Dalvi et al.
(2018) and Tandon et al. (2018) propose different models to solve each of these tasks separately,
whereas we evaluate the same model, KG-MRC, on both tasks.

Bosselut et al. (2018) recently released the RECIPES dataset, which has various annotated states (e.g.
shape, composition, location, etc.) for ingredients in cooking recipes. We further test KG-MRC on
the location task to align with our PROPARA experiments. This is arguably the dataset’s hardest
task, since it requires classification over more than 260 classes while the others have a much smaller
label space (maximum of 4). Note that rather than treating this problem as classification over a fixed
lexicon as in previous models, our model aims to find the location-describing span of text in the
recipe paragraph.

4 MODEL

KG-MRC tracks the temporal state change of entities in procedural text. Naturally, the model is
entity-centric (Henaff et al., 2017; Bansal et al., 2017): it associates each participant entity of the
procedural text with a unique node and embedding in its internal graph. KG-MRC is also equipped
with a neural machine reading comprehension model which is queried about the current location of
each entity.

At a high level, the model operates as follows. We summarize some important notation in Table 2.
KG-MRC takes as input a paragraph p = {w j}P

j=1 = {st}T
t=1, consisting of P tokens spread across T

sentences. The model reads this paragraph incrementally. Specifically, at each time step (sentence)
t, the model reads the paragraph prefix comprising all sentences up to and including st . We then
engage the MRC module to query for the state of each participant entity (these participants are
known in PROPARA a priori and we index them with i). The querying process conditions on both
the input text and the constructed knowledge graph from the previous time step. In response to a
query, the MRC module returns a span from the text that describes the ith entity’s location at t. We
encode this into a vector representation. Finally, conditioning on the span vectors for all entities, the
model constructs the graph Gt by updating graph Gt−1 from the previous time step.

The model’s knowledge graphs Gt are bipartite, having two sets of nodes with implied connections
between them: Gt = {ei,t ,λi,t}. Each node denotes either an entity (ei,t ) or that entity’s corresponding
location (λi,t ), and is associated with a real-valued vector. We use ei,t and λi,t to denote nodes in
the graph and their vector representations interchangeably. The bipartite graphs Gt have only one
(implicit) relation type, the current location, though we plan to extend this in future work. To derive
Gt from its previous iterate Gt−1, we combine both hard and soft graph updates. The update to an
entity’s node representation with new location information arises from a hard decision made by the
MRC model, whereas co-reference between entities across time steps is resolved with soft attention.
We now describe all components of the model in detail.

4.1 ENTITY AND SPAN REPRESENTATIONS

In the PROPARA dataset, entities appear in the paragraph text.1 Therefore, we derive the initial entity
representations from contextualized hidden vectors by encoding the paragraph with a bi-directional
LSTM (Hochreiter & Schmidhuber, 1997). This choice has the added advantage that initial entity
representations share information through context, unlike in previous models (Henaff et al., 2017;
Das et al., 2017; Bansal et al., 2017). Entities in the dataset can be multi-word expressions (e.g.,
electric oven). To obtain a single representation, we concatenate the contextualized hidden vectors
corresponding to the start and end span tokens and take a linear projection. i.e., if the mention
of entity i occurs between the j-th and j + k-th position, then the initial entity representation νi
is computed as νi = We[c j;c j+k] + be. We use i to index an entity and its corresponding location,

1We compute the positions of the occurrence of entities by simple string matching.
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Notation Meaning
N ∈ N Number of participant entities in the process.
νi ∈ Rd Initial entity representation, derived from the text, for the i-th entity at time t = 0 (§ 4.1)
ei,t ∈ Rd Entity node representation for the i-th entity at time t, in the graph Gt (§ 4.4)
ψi,t ∈ Rd Location representation derived from the text for the i-th entity at time t (§ 4.1)
λi,t ∈ Rd Location node representation for the i-th entity at time t, in the graph Gt (§ 4.3, 4.4)
Λt ∈ RN×d Matrix of all location node representations at time t. (Essentially all λi,t stacked row-wise at t)
Ut ∈ RN×N Soft co-reference matrix at time step t (§ 4.3)

Table 2: Symbols used in Section 4. The text-based representations of entities and locations are derived from
the hidden representations of the context-RNN (§ 4.1). The node representations are added to the graph Gt at
the end of time step t (§ 4.4).

while c j represents the contextualized hidden vectors for token j and [; ] represents the concatenate
operation. An entity may occur multiple times within a paragraph. We give equal importance to all
occurrences by summing the representations for each.

When queried about the current location of an entity, the MRC module (§ 4.2) returns a span of text
as the answer, whose representation is later used to update the appropriate node vector in the graph.
We obtain this answer-span representation analogously as above, and denote it with ψi,t .

4.2 MACHINE READING COMPREHENSION MODEL

Rather than design a specialized MRC architecture, we make simple extensions to a widely used
model – DRQA (Chen et al., 2017) – to adapt it to query about the evolving states of entities. In
summary, our modified DRQA implementation operates on prefixes of sentences rather than the full
paragraph (like PROGLOBAL), and at each sentence (time step) it conditions on both the current
sentence representation st and the dynamic entity representations in Gt−1.

For complete details of the DRQA model, we refer readers to the original publication (Chen et al.,
2017). Broadly, it uses a multi-layer recurrent neural network (RNN) architecture for encoding both
the passage and question text and uses self-attention to match these two encodings. For each token
j in the text, it outputs a score indicating its likelihood of being the start or end of the span that
answers the question. We reuse all of these operations in our model, modified as described below.

We query the DRQA model about the state of each participant entity at each time step t. This in-
volves reading the paragraph up to and including sentence st . To query, we generate simple natural
language questions for an entity, E, such as “Where is E located?” This is motivated by the work
of Levy et al. (2017). Our DRQA component also conditions on entities. Recall that vector ei,t−1
denotes the entity’s representation in the knowledge graph Gt−1. The module conditions on ei,t−1
in its output layer, basically the same way as the question representation is used in the output align-
ment step in Chen et al. (2017). However, instead of taking a bi-linear map between the question
and passage representations as in that work, we first concatenate the question representation with
ei,t−1 and pass the concatenation through a 2-layer MLP. This yields an entity-dependent question
representation. We use this to compute the output start and end scores for each token position, taking
the argmax to obtain the most likely span. As mentioned, we encode this span as vector ψi,t (§ 4.1).

The PROPARA dataset includes two special locations that don’t appear as text spans: nowhere and
somewhere. The current location of an entity is nowhere when the entity does not exist yet or
has been destroyed, whereas it is somewhere when the entity exists but its location is unknown
from the text. Since these locations don’t appear as tokens in the text, the span-predictive MRC
module cannot extract them. Following Dalvi et al. (2018), we address this with a separate classifier
that predicts, given a graph entity node and the text, whether the entity represented by the node
is nowhere, somewhere, or its location is stated. We learn the location-node representations for
nowhere and somewhere during training.

4.3 SOFT CO-REFERENCE

To handle cases when entity states do not change and when states are referred to with different
surface forms (either of which could lead to undesired node duplication), our model uses soft co-
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Chloroplast in leaf of the plant trap 
light from the sun. The root absorbs 
minerals from the soil. This 
combination of water and minerals 
flows from the stem into the leaf. 
Carbon dioxide enters the leaf. Light, 
water and minerals, and the carbon 
dioxide all combine into a mixture. 
This mixture forms sugar (glucose) 
which is what the plant eats.
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Figure 2: Soft co-reference across time steps. The sentence at the current time step is highlighted. When the
MRC model predicts a span (leaf ) present in the graph at the previous time step, KG-MRC does soft attention
and a gated update to preserve information across time steps (§ 4.3). The thicker arrow shows higher attention
weight between the old and new node.

reference mechanisms (Figure 2) both across and within time steps. Disambiguation across time
steps is accomplished by attention and a gated update, using the incoming location vector ψi,t and
the location node representations from the previous time step:

ai,t = softmax(Λt−1ψi,t)

ψ
′
i,t = Λ

>
t−1ai,t

gi = sigmoid(Wi[ψ
′
i,t ;ψi,t ]+bi)

λ
′
i,t = giψi,t +(1−gi)ψ

′
i,t ,

(1)

where Λt−1 = [λi,t ]
N
i=1 ∈ RN×d is a matrix of location node representations from the previous time

step (stacked row-wise) and ψi,t is the location span vector output by the MRC module. The result
vector λ′i,t is a disambiguated intermediate node representation.

This process only partially addresses node de-duplication. Since different instances of the same
location can be predicted for multiple entities, we also perform a co-reference disambiguation within
each time step using a self-attention mechanism:

ui,t = softmax(Λ′tλ
′
i,t)

λi,t = Λ
′>
t ui,t ,

(2)

where Λ′t = [λ′i,t ]
N
i=1 ∈RN×d is a matrix of intermediate node representations (stacked row-wise) and

Ut = [ui,t ]
N
i=1 ∈ RN×N is a co-reference adjacency matrix. We calculate this adjacency matrix at the

beginning of each time step to track related nodes within t, and re-use it in the graph update step.

4.4 GRAPH UPDATE

The graph update proceeds according to the following set of equations for each update layer l:

hl
i,t = LSTM([el−1

i,t ;λ
l−1
i,t ;hl

i,t−1])

el
i,t = el−1

i,t +hl
i,t

λ̃
l
i,t = λ

l−1
i,t +hl

i,t

λ
l
i,t = Λ̃

l>
t ui,t .

(3)

We first compose all connected entity and location nodes with their history summary, hl
i,t−1, using

an LSTM unit. Next, the updated node information is attached to the entity and location representa-
tions through two residual updates (He et al., 2016). These propagate information between the entity
and location representations; i.e., if two entities are at the same location, then the corresponding en-
tity representations will receive a similar update. Likewise, location representations are updated
with pertinent entity information. Last, we perform another co-reference pooling operation for the
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location nodes. After the recurrent and residual graph updates, information propagation may yield
different, diverging representations for nodes that belong to the same location. This final pooling op-
eration corrects for this, by tying the co-referent representations in a soft way. It uses the previously
computed adjacency matrix Ut and Λ̃l

t , which is a row-wise stacked matrix of the λ̃l
i,t .

The recurrent graph module stacks L such layers to propagate node information along the graph’s
edges. The resulting node representations are eL

i,t and λL
i,t for each participant entity and its location.

We use ei,t = eL
i,t to condition the MRC model, as described in §4.2. We make use of this particular

graph module structure, rather than adopting an existing model like GraphCNNs (Edwards & Xie,
2016; Kipf & Welling, 2017), because recurrent networks are designed to propagate information
through time.

4.5 TRAINING

The full KG-MRC model is trained end-to-end by minimizing the negative log-likelihood of the
correct span tokens under the MRC module’s output distribution and the textual entailment model.
This is a fairly soft supervision signal, since we do not train the graph construction modules di-
rectly. We teacher-force the model at training time by updating the location-node representations
with the encoding of the correct span. We do not pretrain the MRC module, but we represent para-
graph tokens with pretrained FastText embeddings (Joulin et al., 2016). See the appendix A for full
implementation and training details.

5 EXPERIMENTS AND DISCUSSION

We evaluate our model on three different tasks. We also provide an ablation study along with
quantitative and qualitative analyses to highlight the performance contributions of each module.

5.1 RESULTS ON PROCEDURAL TEXT

We benchmarked our model on two PROPARA comprehension tasks introduced respectively in Dalvi
et al. (2018) and Tandon et al. (2018). Refer to Section 3 for a detailed description about the data and
tasks. Dalvi et al. (2018) and Tandon et al. (2018) respectively introduce a specific model for each
task, whereas we test KG-MRC on both tasks. A primary motivation for building KGs is because
they can be queried for salient knowledge in downstream applications. We evaluate KG-MRC on
the above two tasks by querying the KGs it builds at each time-step; we use the official evaluation
pipeline2 for each task. In results below, we report an average score of three runs of our model with
different hyperparameter settings.

5.1.1 TASK 1: SENTENCE-LEVEL EVALUATION

Table 3 shows our main results on the first task. Following the original task evaluation, we report
model accuracy on each subtask category and macro and micro averages over the subtasks.

Human performance is 79.69%, micro-average. A state-of-the-art memory augmented network,
ENTNET (Henaff et al., 2017), which is built to track entities but lacks an explicit graph structure,
achieves 25.96%. The previous best performing model is PROGLOBAL, which achieves 45.37%.
Our KG-MRC improves over this result by 1.25% absolute score in terms of micro-averaged accu-
racy. Comparing various models for each subtask category, PROGLOBAL leads in Category 1 by a
small margin of around 0.1%. For the more challenging Categories 2 and 3, KG-MRC outperforms
PROGLOBAL by a large margin. These questions require fine-grained predictions of state changes.

2https://github.com/allenai/propara/tree/master/propara/eval
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Cat 1 Cat 2 Cat 3 Macro-avg Micro-avg

Human upper bound 91.67 87.66 62.96 80.76 79.69

Majority 51.01 – – – –
Rule based 57.14 20.33 2.40 26.62 26.24

Feature based 58.64 20.82 9.66 29.7 29.64
EntNet (Henaff et al. (2017)) 51.62 18.83 7.77 26.07 25.96

Pro-Local (Dalvi et al. (2018)) 62.65 30.50 10.35 34.50 33.96
Pro-Global (Dalvi et al. (2018)) 62.95 36.39 35.90 45.08 45.37

KG-MRC (ours) 62.86 40.00 38.23 47.03 46.62

Table 3: Task 1 results (accuracy).

5.1.2 TASK 2: DOCUMENT-LEVEL EVALUATION

We report the performance of our model on the document-level task, along with previously published
results, in Table 4. The same KG-MRC model achieves 3.02% absolute improvement in F1 over the
previous best result of PROSTRUCT. PROSTRUCT incorporates a set of commonsense constraints
for globally consistent predictions. We analyzed KG-MRC’s outputs and were surprised to discover
that our model learns these commonsense constraints from the data in an end-to-end fashion, as we
show quantitatively in §5.4.

Precision Recall F1

Pro-Local (Dalvi et al. (2018)) 77.4 22.9 35.3
QRN (Seo et al. (2017b)) 55.5 31.3 40.0

EntNet (Henaff et al. (2017)) 50.2 33.5 40.2
Pro-Global (Dalvi et al. (2018)) 46.7 52.4 49.4

Pro-Struct (Tandon et al. (2018)) 74.2 42.1 53.75
KG-MRC (ours) 64.52 50.68 56.77

Table 4: Task 2 results.

5.2 RECIPE DESCRIPTION EXPERIMENTS

We also evaluate our model on the RECIPES dataset, for which we predict the evolving locations
of cooking ingredients. In the original work of Bosselut et al. (2018), they treat this problem as
classification over a fixed lexicon of locations. KG-MRC searches for the correct location span
in the text. On this task, our model outperforms the baseline NPN model by a significant margin,
achieving a score of 54.27% F1 compared to NPN’s 51.28% F1. On further analysis of the results, we
found several cases where our model was wrongly penalized, e.g., for predicting the span “saucepan”
when the ground truth class label was “pan.” We believe that our results would improve further if
we mapped our predicted spans to the ground truth class labels.

5.3 ABLATION STUDY

We performed an ablation study to evaluate different model variations on PROPARA Task 1. The
main results are reported in Table 5. Removing the soft co-reference disambiguation within time
steps (Equations 2) from KG-MRC resulted in around 1% performance drop. The drop is more
significant when the co-reference disambiguation across time steps (Equations 1) is removed.

We also replaced the recurrent graph module with the standard LSTM unit and used the LSTM
hidden state for the entity representation. Because this model variant does not propagate information
across graph nodes (the final step in Equations 3), we observed a large performance decrease.

For the last two variations, we simply train the MRC model in isolation and predict location spans
from the current sentence or paragraph prefix text (i.e., the current and all previous sentences).
These models construct no internal knowledge graphs. We can see that training the MRC model on
paragraph prefixes already provides a good starting performance of 40.83% micro-average, which
is significantly boosted by the recurrent graph module and graph conditioning up to 47.64%.
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Cat 1 Cat 2 Cat 3 Macro-avg Micro-avg

KG-MRC 58.55 38.52 42.22 46.43 47.64
- Coref across time steps 61.07 37.38 35.58 44.68 46.32
- Coref within time step 57.88 38.09 40.19 45.39 46.63

- Coref in the graph-update step 60.91 34.71 32.34 42.65 44.48

Standard LSTM as graph unit 56.84 13.15 10.95 26.98 29.97
MRC on entire paragraph 58.85 21.82 26.52 35.73 35.98

MRC on prefix 61.28 32.58 29.48 41.11 40.83

Table 5: Ablation experiment results

5.4 COMMONSENSE CONSTRAINTS

For accurate, globally consistent predictions on the second PROPARA task, Tandon et al. (2018)
introduced a set of commonsense constraints that they impose on their model in a pruning stage.
Stated in natural language, these constraints are: 1) An entity must exist before it can be moved or
destroyed; 2) An entity cannot be created if it already exists; 3) An entity cannot change until it is
mentioned in the paragraph.

To analyze whether our model can learn these constraints directly from data, we count the number of
model predictions that violate constraints on the test set. To our surprise, this demonstrates that KG-
MRC learns to violate fewer constraints (proportionally) than PROSTRUCT, even without explicitly
training it to do so. In more detail, we find that KG-MRC, like PROSTRUCT, does not violate any
Type 1 or Type 2 constraints. In Table 6 we compare several models in terms of Type 3 constraint
violations. Note that we only count instances where a model predicts an entity state change.

Model State Change Predictions Violations Violation Proportion (%)

PROSTRUCT (Tandon et al. (2018)) 270 17 6.30
MRC on entire paragraph 381 104 27.30

MRC on prefix 703 154 21.93
Standard LSTM as graph unit 447 20 4.47

KG-MRC 466 19 4.08

Table 6: Commonsense constraint violations.

As shown, KG-MRC makes fewer Type 3 violations that PROSTRUCT. Furthermore, MRC models
without recurrent graph modules perform worse in terms of constraint violations than both KG-
MRC and a model using a standard LSTM as its graph unit. This suggests that recurrent graphical
representations play an important role in helping the model to learn and adhere to the constraints.

5.5 QUALITATIVE ANALYSIS

We picked an example from the test data and took a closer look at the model outputs to investigate
how KG-MRC dynamically adjusts its decisions via the dynamic graph module and finds accurate
spans with the conditional MRC model. The step-by-step output of both PROGLOBAL (Dalvi et al.
(2018)) and KG-MRC is shown in Table 7, where we track the state of entity blood across six
sentences. KG-MRC outputs smoother and more accurate predictions.

Sentences Location of entities after each sentence

(Before first sentence) somewhere somewhere
Blood enters the right side of your heart. heart right side of your heart
Blood travels to the lungs. lung lungs
Carbon dioxide is removed from the blood. blood lungs
Oxygen is added to your blood. lung lungs
Blood returns to left side of your heart. blood heart
The blood travels through the body. body body

Table 7: Two models’ predictions of entity locations, on randomly selected paragraph about blood circulation.
In this example the entity is blood. Predicted results from Pro-Local (Dalvi et al. (2018)) are in orange, results
from KG-MRC are in red, important locations in paragraph are in blue.
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6 CONCLUSION

We proposed a neural machine-reading model that constructs dynamic knowledge graphs from text
to track locations of participant entities in procedural text. It further uses these graphical representa-
tions to improve its downstream comprehension of text. Our model, KG-MRC, achieves state-of-the-
art results on two question-answering tasks from the PROPARA dataset and one from the RECIPES
dataset. In future work, we will extend the model to construct more general knowledge graphs with
multiple relation types.
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A IMPLEMENTATION DETAILS

Implementation details of KG-MRC are as follows.
In all experiments, the word embeddings are initialized with FastText embeddings (Joulin et al.,
2016); we use a document LSTM with two layers, the number of hidden units in each layer is 64.
We apply dropout rate of 0.4 in all recurrent layers, and 0.3 in all other layers. The number of
recurrent graph layers were set to (L = 2). The hidden unit size for the recurrent graph component
was set to 64.

During training, the mini-batch size is 8. We use adam (Kingma & Ba, 2014) as the step rule for
optimization, The learning rate is set to 0.002. The model is implemented using PyTorch (Paszke
et al., 2017).
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