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Abstract

In this paper, a neural architecture search (NAS) framework is formulated for 3D medical
image segmentation, to automatically optimize a neural architecture from a large design
space. For this, a novel NAS framework is proposed to produce the structure of each layer
including neural connectivities and operation types in both of the encoder and decoder of a
target 3D U-Net. In the proposed NAS framework, having a sufficiently large search space
is important in generating an improved network architecture, however optimizing over such
a large space is difficult due to the extremely large memory usage and the long run-time
originated from high-resolution 3D medical images. Therefore, a novel stochastic sampling
algorithm based on the continuous relaxation on the discrete architecture parameters is
also proposed for scalable joint optimization of both of the architecture parameters and
the neural operation parameters. This makes it possible to maintain a large search space
with small computational cost as well as to obtain an unbiased architecture by reducing
the discrepancy between the training-time and test-time architectures. On the 3D medical
image segmentation tasks with a benchmark dataset, an automatically designed 3D U-Net
by the proposed NAS framework outperforms the previous human-designed 3D U-Net as
well as the randomly designed 3D U-Net, and moreover this optimized architecture is more
compact and also well suited to be transferred for similar but different tasks.
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1. Introduction

Recently, deep neural networks have been extensively used for medical image segmentation
tasks (Ronneberger et al., 2015; Çiçek et al., 2016; Mortazi et al., 2017; Ciresan et al., 2012;
Milletari et al., 2016a; Kamnitsas et al., 2016; Havaei et al., 2015; Yu et al., 2017; Kayalibay
et al., 2017; Oktay et al., 2018; Isensee et al., 2018). However, such a method in general
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relies on manual trial-and-error processes for making decisions on the network architecture,
hyperparameters for training, and pre-/post-procedures. Due to being restricted to manual
tuning, they would have limitations in performance improvement as well as fast transfer
to related tasks. Currently, the same problem in the field of general deep learning has
promoted the rapid development of automated machine learning (AutoML). Yet, in contrast
to the recent intensive studies on the use of advanced AutoML algorithms such as neural
architecture search (NAS) (Zoph et al., 2018; Liu et al., 2018a; Bender et al., 2018; Zoph
and Le, 2017; Liu et al., 2018b; Pham et al., 2018; Zhang et al., 2018; Cai et al., 2018; Brock
et al., 2018) and neural optimizer search (Bello et al., 2017; Alber et al., 2018; Wichrowska
et al., 2017; Li and Malik, 2017; Andrychowicz et al., 2016) for general computer vision
tasks, only a few naive AutoML approaches using simple hyperparameter optimization have
been proposed for medical imaging tasks (Mortazi and Bagci, 2018; Naceur et al., 2018).
Therefore, in this paper, we propose a novel NAS framework for AutoML in designing neural
networks especially for 3D medical image segmentation.

Since both semantic as well as spatial information can be efficiently exploited through
skip connections between an encoder and a decoder, a 3D U-Net has been popularly used
in most state-of-the-art deep learning based algorithms for segmenting high-resolution 3D
medical images (Çiçek et al., 2016; Milletari et al., 2016a; Yu et al., 2017; Kayalibay et al.,
2017; Oktay et al., 2018; Isensee et al., 2018). However, a convolutional block for each
layer in the 3D U-Net has been manually designed with various convolutional filter types,
pooling types, skip-connections, and non-linear activation functions. Instead of using the
suboptimally designed block, we propose to use a NAS framework to obtain an automatically
optimized structure of the block, which is called a cell, for each layer in the 3D U-Net where
all cell structures and the corresponding neural operation parameters (e.g. kernel weights)
are simultaneously learned in an end-to-end manner. For this, four types of cells - encoder-
normal cell, reduction cell, decoder-normal cell, expansion cell - are defined to compose the
encoder as well as the decoder for the learned U-Net architecture, which is different from
the use of two types of cells (normal cell and reduction cell) in previous NAS approaches
for encoder-only networks (Zoph et al., 2018; Liu et al., 2018b; Pham et al., 2018). Here, it
is noted that in NAS having a sufficiently large search space is important in generating an
improved network architecture on a target task. However, optimizing over such a large space
for this segmentation task is difficult due to the extreme memory usage and the long run-
time when dealing with high-resolution 3D images. Moreover, NAS basically needs to jointly
optimize not only the discrete architecture parameters but also the continuous operation
parameters, which is so-called bi-level optimization (Liu et al., 2018b; Franceschi et al.,
2018), and an exact bi-level optimization over this mixed domain(discrete and continuous)
is also difficult, especially with this large search space associated with the 3D U-Net.

Therefore, in this work, a novel stochastic sampling algorithm is applied for bi-level opti-
mization of the mixed parameters in the proposed NAS framework. This can not only search
over a large design space but also lead to provide a consistent and unbiased architecture that
avoids the retraining of suboptimal operation parameters from the obtained architecture.
More specifically, the discrete architecture parameters corresponding to neural connections
and operation types in each cell are defined as a set of one-hot discrete variables, and a
continuous approximation using Gumbel-softmax (Jang et al., 2017; Maddison et al., 2016)
is imposed on these discrete variables. This makes it possible to compute the gradients with
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respect to both of the approximated architecture variables and the neural operation param-
eters through a back-propagation and thereby allows to use a stochastic gradient descent
(SGD) in bi-level optimization. Furthermore, during the SGD-based bi-level optimization,
we utilize an iterative sampling of the candidate architecture, which simulates the test-time
final architecture, based on the approximated continuous architecture variables by treating
those as logits to provide a categorical distribution. This sampling procedure enables to
reduce the computational burden of taking the entire connectivities and operations into
account within an outrageously large network originated from the continuous relaxation.
Moreover, it also reduces the discrepancy between the training-time and test-time archi-
tectures. Namely, the proposed differentiable NAS with stochastic sampling supports great
scalability in terms of solvable large search space with small computational cost.

Experimental results on the benchmark 3D medical image segmentation dataset show
that in comparison to the previous human-designed 3D U-Net, the network obtained by
the proposed scalable NAS leads to better performances even with the less numbers of
parameters and FLOPs (multiply-adds). It is furthermore shown that the found architecture
from a task having large amounts of labeled data can be transferred to build a network for
different segmentation tasks that have small amounts of labeled data and achieves better
generalization performances.

To our best knowledge, this is the first work to exploit a complete NAS framework for
automatically designing an architecture for the task of 3D medical image segmentation.

2. Related Works

NAS can be considered as one of meta-learning processes (Lemke et al., 2015; Vanschoren,
2018) in which a meta-controller performs a guided exploration on a given architecture space
via evaluation of each candidate architecture in the inner loop (Zoph et al., 2018; Pham
et al., 2018). Several recent works have focused on reducing the computational cost of this
architecture evaluation by reusing the trained weights on different architectures (Bender
et al., 2018; Liu et al., 2018b; Pham et al., 2018). Especially, they have sampled every can-
didate network from a single over-parametrized network, called an one-shot model, which
allows to train only the one-shot model and directly evaluate any candidate network by
inheriting this one-shot model’s trained weights. Among them, DARTS (Liu et al., 2018b)
have removed a meta-controller by continuous relaxation of the search space, which leads to
simultaneously learn the structure parameters as well as the kernel weights by SGD-based
bi-level optimization. Even though DARTS enables efficient SGD-based optimization, it
still suffers from the large computational cost to handle all possible neural connectivities
and operations in the whole large one-shot model. ProxylessNAS (Cai et al., 2018) have
resolved this cost issue by sampling two operation types for each neural connection ac-
cording to the multinomial distribution during the architecture training. However, it has
still used a biased architecture during the training in that there is no guidance for real-
valued operation gates (logits) representing the multinomial distribution to be converged to
discrete one-hot variables standing for the final architecture at test-time. Hence, we use a
stochastic architecture sampling based on the Gumbel-softmax (Jang et al., 2017; Maddison
et al., 2016), that is a continuous and differentiable approximation of these one-hot vari-
ables, which makes the sampled architecture converged to be the final architecture during
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the training by gradually reducing the softmax temperature to 0. While the previous NAS
approaches have been applied mostly to the tasks of image recognition and language model-
ing, Nekrasov et al. (2018) has recently adopted NAS for 2D image segmentation. However,
they have optimized only the decoder architecture in an encoder-decoder framework with
an RNN-based meta-controller trained by reinforcement learning.

Since Ronneberger et al. (2015) first introduced the U-Net for biomedical image seg-
mentation, several modifications have been proposed. For example, Çiçek et al. (2016) has
extended it with 3D convolutional kernels, and then Milletari et al. (2016a) has incorpo-
rated the residual blocks into the 3D U-Net. Moreover, Kayalibay et al. (2017) and Yu
et al. (2017) have utilized multiple segmentation maps at different scales while Oktay et al.
(2018) has adopted attention gates between an encoder and a decoder to simulate multi-
stage cascaded convolutional neural networks (CNNs). Recently, Isensee et al. (2018) has
introduced the nnU-Net that is able to dynamically adapt itself to any given segmentation
task on the medical domain via non-architectural self-modifications based on the original
U-Net. In (Mortazi and Bagci, 2018) the policy gradient algorithm automatically searches
for the hyperparameters such as the number of filters, the filter size, and the pooling type for
each layer for the 2D cine cardiac MR image segmentation while Naceur et al. (2018) incre-
mentally optimized those hyperparameters as well as the number of layers for the 2D brain
tumor segmentation. It is noted that unlike these architecture hyperparameter optimiza-
tions, we use the complete NAS to obtain the entire topology of the network architecture
in this work.

3. Method

In this section, we first describe an architecture search space based on the U-Net-like network
for 3D medical image segmentation, and then present a SGD-based bi-level optimization
with the proposed stochastic sampling to simultaneously learn both of the architecture and
the corresponding neural operation parameters.

3.1. Search Space for 3D Medical Image Segmentation

Following the idea of micro search space popularly used in the state-of-the-art NAS ap-
proaches (Liu et al., 2018b; Zoph et al., 2018; Pham et al., 2018), U-Net-like networks,
which is composed of encoder and decoder layers, are designed as repeated encoder and
decoder cells. The neural structure in each cell C is represented as a directed acyclic graph
(DAG) (see Figure 1). Let G = (V(C), E(C)) be the DAG where each node i ∈ V corresponds
to an intermediate feature vector xi, and each directed edge (i, j) ∈ E stands for a connec-
tion between nodes i and j with a certain operation o(i,j) such that xj =

∑
(i,j)∈E o

(i,j)(xi).
The output of a cell is a channel-wise concatenation of all the intermediate nodes. Here,
a cell C is one of four cell-types - encoder-normal (Cenc), reduction (Cred), decoder-normal
(Cdec), and expansion (Cexp) - such that C ∈ C = {Cenc, Cred, Cdec, Cexp}, and the normal
cells and resizing cells are stacked alternately with skip connections between the cells in the
encoder and the cells in the decoder, layer-by-layer. Note that every cell takes two outputs
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Figure 1: Architecture search space for 3D medical image segmentation tasks. Both encoder
and decoder alternately stack normal cells and resizing cells. The directed arrows
between cells indicate the forward paths. Each cell is represented as a DAG which
receives two inputs and produces an output.

of the last previous two cells as inputs1 except the first reduction cell which takes an output
of the predefined first convolutional block, called a stem cell, and then duplicates it as two
inputs. The segmentation output is obtained from the predefined last convolutional block,
referred to as an out cell.

Since o(i,j) ∈ O where O denotes the set of all candidate operations, the architecture
search problem now amounts to find the best combination of all edge operations in the four
cell-types. Basically, even the same type of cells can have different structures according to
their layer levels. However, in this work, for simplicity, all cells that have a common type
share a common structure regardless of layer levels. It is noted that a special zero operation
is also one of the candidate operations to optimize the neural connectivities as well; zero
means a lack of connection between two nodes.

1. In the decoder, before used as one of inputs of the current cell, an output of the last previous cell is
summed with an output of the encoder cell at the same level by skip connection.
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3.2. Stochastic Bi-Level Optimization

We first represent the selected edge operation using the one-hot indicator vector, z(i,j), as
follows:

o(i,j)(xi) =
∑
o∈O

z(i,j)
o o(xi; θ(i,j)

o ), (1)

where z(i,j) = {z(i,j)
o | o ∈ O}, θ(i,j) = {θ(i,j)

o | o ∈ O}, and θ
(i,j)
o denotes the parameter set

of the operation o on edge (i, j), which means that the operation on each edge is differently
learned even though the cells from different layers have the same structure, i.e. the same
combination of operation types.

Then, finding the best cell architecture corresponds to solving the following bi-level
optimization problem:

min
Z

Lval(Θ∗(Z), Z)

s.t. Θ∗(Z) = argmin
Θ
Ltrain(Θ, Z),

(2)

where Z = {z(i,j) | (i, j) ∈ E(C), C ∈ C}, Θ = {θ(i,j) | (i, j) ∈ E(C), C ∈ C}, and Lval
and Ltrain are validation loss and training loss, respectively. Note that this loss splitting is
typically used in meta-learning processes including NAS for better generalization. This is
a bi-level program in the mixed domain of continuous variables (Θ) and discrete variables
(Z), which is hard to solve. DARTS (Liu et al., 2018b) and proxylessNAS (Cai et al., 2018)
try to circumvent this difficulty by relaxing Z to a continuous operation-weight variables

Z̄ such that z̄
(i,j)
o ∈ [0, 1] and

∑
o∈O z̄

(i,j)
o = 1 and making Lval(Θ, Z̄) be differentiable with

respect to both of Θ and Z̄. This allows to use a SGD-based optimization to obtain an
approximate solution (Θ∗, Z̄∗) and derive the final architecture from the relaxed variables
Z̄∗ by taking the operation with the highest weight on each edge.

One problem with this method is that the performance of the final architecture is in-
consistent with the performance of the relaxed architecture since the relaxed architecture
is not guaranteed to be converged to the final architecture. Hence, they necessarily have
to retrain Θ from the scratch after obtaining the final network architecture. Moreover, ap-
plying this method directly to a large-scale task such as high-resolution 3D medical image
segmentation is infeasible due to the extremely large memory usage and the long run-time
during the training to compute the loss functions Lval and Ltrain as well as their gradients
from the fact that the required resources are proportional to the number of nonzero entries
in Z̄, which scales with the number of candidate operations.

To overcome the aforementioned problems, we propose a modified optimization, called
stochastic bi-level optimization, by first treating Z as random discrete variables and then
replacing (2) as

min
α

EZ∼Pα [Lval(Θ∗(Z), Z)]

s.t. Θ∗(Z) = argmin
Θ
Ltrain(Θ, Z),

(3)

where Pα is the discrete distribution on Z, parameterized by α. Since it is intractable
to exactly compute ∇αEZ∼Pα [Lval(Θ∗(Z), Z)], this gradient with respect to α is estimated
by a continuous relaxation with sampling on Z in order to use the gradient-based bi-level
optimization method in this work.
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Algorithm 1: Gradient-based stochastic bi-level optimization

Initialize α and Θ;
while not done do

Ẑ ←− GumbelSoftmaxSample(α, τ);

Update Θ by a gradient descent using ∇ΘLtrain(Θ, Ẑ);

Update α by a gradient descent using ∇αLval(Θ, Ẑ);
Anneal τ ;

end

Algorithm 2: GumbelSoftmaxSample(α, τ)

for (i, j) ∈ E do

ε
(i,j)
o ∼ Gumbel(0, 1), o ∈ O;

z̄(i,j) ←− Softmax((α(i,j) + ε(i,j))/τ);
foreach pair {o1, o2} in O do

q{o1,o2} ←− z̄
(i,j)
o1

+z̄
(i,j)
o2

|O|−1 ;

end

Sample {o1, o2} with probability q{o1,o2};(
ẑ

(i,j)
o1 , ẑ

(i,j)
o2

)
←−

(
z̄
(i,j)
o1

z̄
(i,j)
o1

+z̄
(i,j)
o2

,
z̄
(i,j)
o2

z̄
(i,j)
o1

+z̄
(i,j)
o2

)
, ẑ

(i,j)
o ← 0, o /∈ {o1, o2};

end

return Ẑ;

3.3. Gumbel-Softmax Relaxation with Operation Sampling

The Gumbel-softmax reparametrization technique (Jang et al., 2017; Maddison et al., 2016)
can approximate the above gradient by continuous relaxation as

∇αEZ∼Pα [Lval(Θ∗(Z), Z)] ≈ Eε∼Gumbel(0,1)[∇αLval(Θ∗(Z̄(α, ε; τ)), Z̄(α, ε; τ)], (4)

where continuously relaxed variables Z̄(α, ε; τ) = Softmax((α + ε)/τ), τ denotes the tem-
perature, and ε is α-independent random variables drawn from the Gumbel distribution.
Here, the expectation in (4) is approximated with ε-sampling. It is noted that as τ → 0,
the distribution of Z̄ is identical to Pα, which means that by annealing τ we can enforce Z̄
to be one-hot discrete variables Z during the training; the relaxed architecture is forced to
be converged to the final architecture.

Algorithm 1 summarizes our stochastic bi-level optimization algorithm which alternately
updates Θ and α by respective gradient descents. Here, note that in order to reduce the
number of nonzero operation weights in Z̄ and hence to reduce the computational cost, in
each iteration during the training we again replace Z̄ with Ẑ by sampling two operations
from the Gumbel-softmax and then rescaling the corresponding two operation weights to
be summed to one with zero weights of the other operations on each edge, as shown in
Algorithm 2.
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Owing to our continuous relaxation based on the Gumbel-softmax with τ -annealing, the
number of sampled operations on each edge is naturally reduced from two to one during the
training. As a result, the proposed differentiable NAS with stochastic operation sampling
is able to support improved scalability in terms of solvable large search space with small
computational cost.

4. Experiments

Dataset The proposed scalable NAS (SCNAS) was evaluated on the three segmentation
tasks of 3D MRI data, (1) brain tumor (484 labeled images, 3 classes), (2) heart (20 labeled
images, 1 class), and (3) prostate (32 labeled images, 2 classes), from the Medical Segmen-
tation Decathlon challenge (MSD, http://medicaldecathlon.com) where each task has
different MRI sequences as well as different foreground classes, which is therefore suitable
for evaluating the generalizability and transferability of the SCNAS.

Implementation Details We compared the SCNAS to the state-of-the-art architecture,
3D U-ResNet with the use of multiple segmentation maps (Kayalibay et al., 2017) and
attention gates (Oktay et al., 2018), and the random architecture by random selection of
edge-operations in each cell from the same architecture search space in the SCNAS. The
set of operations O on each edge in the SCNAS consists of the following eight operations:
3 × 3 × 3 convolutions, depthwise separable dilated 3 × 3 × 3 convolutions with rate 2, 3
and 4, 3 × 3 × 3 max and average 3D pooling, identity (skip connection), and zero. Here,
we used the LeakyReLU-Conv-InstanceNorm for convolutional operations.

As shown in Figure 1, the whole network in the SCNAS is composed of 12 automatically
designed cells, each of which has 4 nodes. This number of stacked cells is consistent with
that of the 3D U-ResNet in terms of respective three times of downsampling and upsampling
by a factor of 2. Here, all operations in the reduction cell in the SCNAS are of stride two
while the expansion cells perform pre-upsampling for the inputs of the cell. Since the 3D
U-ResNet in this evaluation was set to have 32 output channels in the first convolutional
block, the number of output channels in the stem cell of the SCNAS was set to 32, and also
similar to the 3D U-ResNet, the reduction and expansion cells in the SCNAS respectively
double and halve the number of output channels of given inputs.

In both of the 3D U-ResNet and the SCNAS, patch-based training and inference were
carried out such that each image was randomly cropped to the region of nonzero values with
the predefined resolution during the training, while in testing, the prediction results were
obtained by combining patch-based inference results with 50 percent overlap. Similar to
Isensee et al. (2018), the predefined resolution for the input patch was set to 128×128×128
for the tasks of brain tumors and heart while for the prostate task, the length of the z-
axis was reduced to 24. Since even the same task provides 3D images with heterogeneous
voxel spacings, the input images were first resized for all voxel spacings to be physically
equal using the given meta-data, and then z-normalization was separately applied to each
input channel. Note that unlike Isensee et al. (2018), any heuristic pre-/post-processing
techniques including data augmentation, network-cascade, and prediction-ensemble were
not adopted in this evaluation to solely examine the effects by the use of NAS in designing
the network architecture.
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Since the ground-truth labels for test images are not provided in the MSD dataset,
the evaluation is conducted by 5-fold cross-validation (CV) on the training images with
the average dice similarity coefficient (DSC) as the metric, and accordingly, we applied
the well-known multi-class dice loss function (Milletari et al., 2016b; Isensee et al., 2018).
With the ADAM optimizer, the 3D U-ResNet and the SCNAS models were trained for
300 epochs and 400 epochs, respectively, taking their convergences into consideration. The
3D U-ResNet was set with the batch size as 8, initial learning rate as 0.0001, and beta
parameters for ADAM optimizer as (0.9, 0.999) while in the SCNAS, with the batch size 1,
the initial learning rates / beta parameters were as set to be 0.025 / (0.1, 0.001) for training
operation parameters Θ and 0.003 / (0.5, 0.999) for training architecture parameters α. If a
plateau for 20 epochs on the training loss was detected, the learning rate was reduced by a
factor of 10. All experiments were conducted on V100 GPUs, and the implementation was
done using PyTorch (Paszke et al., 2017).

Architecture Transfer Since the heart and prostate tasks only have 20 and 32 labeled
MRI images, respectively, the 3D U-ResNet as well as the SCNAS can be prone to overfitting
on the training set and hence to resulting in performance degradation on the validation set.
Therefore, we transferred the optimized architecture obtained from the brain tumor task,
which has 484 labeled MRI images, by the SCNAS into these two tasks having scarce data
and retrained only the operation parameters on each task, in order to demonstrate that the
SCNAS produces a more generalizable neural architecture for the similar tasks of 3D MRI
image segmentation. Here, the transferred architecture came from the first CV fold in the
brain tumor task.

Results Table 1 shows that the SCNAS produced better architectures than the (human-
designed) 3D U-ResNet as well as the randomly designed 3D U-Net in terms of the overall
performances on all three tasks. Especially, on the heart and prostate segmentation tasks,
the transferred architecture from the brain tumor task achieved significantly better gener-
alization performances. Note that the obtained architectures by the SCNAS have been also
shown that the number of neural operation parameters and the computational complexity
for output prediction (in terms of FLOPs) were significantly reduced compared to the 3D U-
ResNet. We observed the performance degradation of the 3D U-ResNet when the number of
initial output channels was halved. It is also noted that most previous NAS approaches re-
trained the neural operation parameters after completing architecture optimization because
of the utilization of a biased architecture during the training, while the SCNAS simultane-
ously optimized both of the architecture parameters and neural operation parameters with
an unbiased architecture and thereby removed the requirement of retraining. We conjec-
ture that Isensee et al. (2018) might be benefit from complicated pre-/post-procedures and
thus obtained slightly better performances than the SCNAS. Some example images and the
corresponding segmentation outputs are included in Appendix A, and the details of the
optimized cell architectures by the SCNAS are presented in Appendix B.

5. Conclusion

In this work, a complete NAS framework for automatically designing an architecture is
proposed and demonstrated on the benchmark dataset of 3D medical image segmentation
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Table 1: Mean DSC in Brain Tumor, Heart, and Prostate.

Brain Tumor

Model GFLOPs, Params Edema Non-Enhancing Enhancing Average

3D U-ResNet 881, 7.6M 79.10± 1.80 58.38± 1.29 77.37± 2.76 71.61
Random Search 152, 2.7M 79.59± 1.28 57.97± 1.36 77.85± 1.35 71.80

SCNAS 129, 2.2M 79.42± 1.45 58.01± 1.46 78.68± 1.80 72.04

Heart Prostate

Model GFLOPs, Params Left Atrium Peripheral Transitional Average

3D U-ResNet 870-163, 7.6M 89.60± 2.35 48.37± 1.44 79.17± 4.30 63.77
Random Search 104-18, 1.5M 89.14± 2.74 50.78± 1.22 79.58± 5.01 65.18

SCNAS 136-32, 3.0M 89.99± 1.32 49.70± 1.23 80.89± 3.19 65.30
SCNAS(transfer) 193-37, 4.2M 90.47± 1.70 53.81± 1.30 82.02± 4.52 67.92

tasks. In the proposed framework, NAS is formulated as finding the optimal structure of
four types of cells composing an encoder as well as a decoder, and both the architecture
parameters and the neural operation parameters are learned by gradient descent in an
end-to-end manner. We introduce a novel stochastic sampling algorithm which results in
significant improvement in terms of the scalability suitable for handling high-resolution 3D
medical images and also reduces the inconsistency of the train-time architecture against the
final architecture, which leads to avoid the retraining of the operation parameters. Empirical
evaluation demonstrates that the automatically optimized network via the proposed NAS
outperforms the manually designed 3D U-Net. Moreover, the architecture learned from
a task with the large number of training data is successfully transferred to different MRI
segmentation tasks with the small number of data.

The analysis using more candidate operations and different cell structures of the same
type at different layer levels are left for future research. In addition, the effects of including
non-architectural procedures such as data augmentation, network-cascade, and prediction-
ensemble in the proposed NAS framework need to be analyzed in future works. Another
interesting research direction would be applying the NAS framework, either directly or by
architecture transfer, to other medical modalities including CT, mammography, and X-ray.
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(a) Raw data (c) 3D U-ResNet (d) SCNAS(b) Ground Truth

Enhancing Tumor

Misclassi!ed  
Transitional Zone

Figure 2: (a) Raw data. (b) Ground Truth. Segmentation results of (c) 3D U-ResNet (d)
SCNAS in Brain Tumor (top), Heart (middle), and Prostate (bottom) from the
MSD dataset. The prediction results on the heart and prostate data are obtained
from transferred networks which are trained on brain tumor data.

In this appendix, we provide examples of segmentation predictions by the 3D U-ResNet
and proposed method. For a qualitative assessment, we compare the two results with ground
truth. Additionally, samples of cell architectures found by the SCNAS are illustrated in the
sequent section.

Appendix A. Segmentation Samples

Figure 2 shows samples of 3D segmentation results of 3D U-ResNet and proposed method
for each MSD dataset. The above samples demonstrate that the architectures found by
SCNAS predict more accurately than 3D U-ResNet. Especially, the architecture found on
brain tumor images can be transferred well to the dataset of different MRI segmentation
tasks.
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Appendix B. Cell Architectures

Figure 3-6 show the samples of cell architectures which SCNAS found in the first CV fold
experiment on the Brain Tumor dataset at the convergence.
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