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ABSTRACT

In this paper we design a harmonic acoustic model for pitch detection. This model
arranges conventional convolution and sparse convolution in a way such that the
global harmonic patterns captured by sparse convolution are composed of the large
number of local patterns captured by layers of conventional convolution. When
trained on the MAPS dataset, the harmonic model outperforms all existing pitch
detection systems trained on the same dataset. Most impressively, when trained
on MAPS with simple data augmentation, the harmonic model with an LSTM
layer on top surpasses an up-to-date, more complex pitch detection system trained
on the MAESTRO dataset to which complicated data augmentation is applied
and whose training split is an order-of-magnitude larger than the training split of
MAPS. The harmonic model has demonstrated potential to be used for advanced
automatic music transcription (AMT) systems.

1 INTRODUCTION

1.1 BACKGROUND

In recent years, deep learning has emerged as a promising approach to pitch detection. Pitch de-
tection is the process of detecting the pitches present in a frame, i.e., a short snippet of musical
waveform. The results of pitch detection can be post-processed to extract note contours, i.e., note
onsets and offsets. The whole process of pitch detection and note extraction is called automatic
music transcription (AMT). This paper is devoted to pitch detection for solo piano music. For AMT,
of first importance is an acoustic model that can predict the active pitches in a frame. Using acoustic
models as building blocks, more advanced architectures can be constructed for various purposes.

Kelz et al. (2016) designed an acoustic model for pitch detection, which is referred to as the Kelz
model hereafter. This model was modified from the one developed in Schlüter & Böck (2014)
for onset detection and resembles the LeNet-5 model (Lecun et al., 1998). The Kelz model treats
pitch detection simply as image-related tasks by using convolution layers to capture local frequency
patterns. It does not explicitly capture the harmonic patterns of pitched music. Instead, it relies on
fully connected layers to this end. The above handling of harmonic patterns weakens the model’s
generalisation capability. This problem has been partially studied in Kelz & Widmer (2017).

Hawthorne et al. (2018) designed an AMT system. This system consists of an onset detector and a
frame detector that detects the pitches in each frame. The two detectors have similar structures by
topping the Kelz model with a bi-directional LSTM. Skip connections are featured by feeding the on-
set detector’s output into the other detector to serve as additional intermediate features. Hawthorne
et al. (2019) used a similar AMT system as a sub-system to build a bigger system for piano sound
generation. The AMT system in Hawthorne et al. (2019) uses more features and introduces a sepa-
rate detector for offset detection. The dataset used in Hawthorne et al. (2019) is far larger than the
one used in Hawthorne et al. (2018).

Kelz et al. (2019) designed an AMT system consisting of three separate detectors for pitch, onset
and offset detection. The pitch detector is a Kelz model. Some intermediate features of the pitch
detector are used as the sole inputs to the other two detectors. Both the onset and offset detectors
only have a convolution and a fully connected layer. Finally, note contours are extracted by fusing
the predictions from the three detectors with a hidden Markov chain model (HMM).
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Bittner et al. (2017) designed a fully convolutional acoustic model named the harmonic constant-q
transform (HCQT) model. It uses HCQTs as input representation. HCQTs are constructed from
CQTs, which like any spectrograms have a time and a frequency dimension. Besides the above two
dimensions, HCQTs have a newly added dimension called the harmonic dimension. The harmonic
dimension consists of the fundamental frequency/pitch (denoted by f0), a sub-harmonic at 1

2f0,
and four harmonics ranging from 2f0 to 5f0. Rearranging CQTs into HCQTs enables the capture
of harmonic patterns/structures specific to pitched music, whereas the convolutional architecture
enables the capture of local patterns as in most image-related problems.

Elowsson (2018) designed an AMT system consisting of six cascaded networks that are trained
one after another. Skip connections are used among these networks in a similar fashion as residual
networks do. Except the first network, all other networks are multilayer perceptrons (MLPs) that
have two to three layers. The first network N1 takes variable-q transforms (VQTs) as inputs and
detects tentative pitches by linearly combing 50 frequency bins for each pitch that include harmonics
and non-harmonics. N1 is essentially a convolution layer with a single sparse kernel. A second
network N2 performs more accurate pitch estimation from the output of N1. The overall effect of
N1 and N2 is equivalently an acoustic model that resembles the HCQT model. The difference is that
N1 and N2 take into account more frequency bins when capturing harmonic patterns, whereas the
HCQT model pays more attention to local patterns. The remaining four networks estimate onsets,
offsets and tentative notes, and compute probabilities for each note, respectively.

1.2 MOTIVATION AND CONTRIBUTION

Figure 1: An example VQT spectrogram of 10 seconds.

Loosely speaking, the waveform of a music note is composed of a number of monotones, among
which the lowest frequency is called the fundamental frequency or the pitch, and all the other are
integer multiples of the pitch referred to as the harmonics. For polyphonic music, there can be mul-
tiple notes active at the same time; and their pitches and harmonics often overlap. This leads to the
challenge for pitch detection. Figure 1 shows an example VQT spectrogram. This spectrogram fea-
tures a grid structure composed of frequency stripes. These stripes are a result of non-perfect pitches
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and the windowing effect (also known as power leakage) in the calculation of the discrete Fourier
transform (DFT). We call these stripes the local patterns, as they only involve a small number of
local neighbouring frequencies.

Next let us talk about harmonic patterns. To tell if a specific note is active, intuitively we will first
check if its pitch (denoted by f0) and harmonics are light (i.e., have energy). If it is the case, then
it is likely the note is active. On the other hand, if it is also light at 1

2f0 or 1
3f0, then the likelihood

drops, because now f0 could be the second or third harmonic of another note. When the degree
of polyphony increases, this logical reasoning is definitely over our heads and deep learning comes
in handy. We call the interaction patterns among the pitches and harmonics of different notes the
harmonic patterns.

Since the constituent frequencies of harmonic patterns are sparsely distributed, it is inappropriate
to capture harmonic patterns with the conventional convolution whose receptive field can cover
only contiguous frequencies. Instead, we need a type of convolution whose receptive field in the
frequency dimension corresponds to the above sparsely distributed frequencies. We term this type
of convolution sparse convolution.

For pitch detection, it is critical as well as challenging to capture both of the above two types of
frequency patterns. The existing acoustic models focused only on either of them. The existing AMT
systems concentrated on more advanced, complex network structures. The contribution of this paper
is as follows.

1. We design a harmonic acoustic model for pitch detection. This model takes VQTs as inputs.
In the first part of this model, the stripe-shaped local frequency patterns are captured with
layers of conventional convolution. Then in the second part, the global harmonic patterns
are captured with sparse convolution.

2. When all the systems participating in the comparison are trained on MAPS, the harmonic
model achieves the best performance, leading the runner-up by 3.5%.

3. When trained on MAPS with simple data augmentation, the harmonic model enhanced by
an LSTM layer outperforms an up-to-date, more complex system trained on the MAESTRO
dataset to which complicated data augmentation is applied and whose training split is 15
times as large as the training split of MAPS, demonstrating the potential of the harmonic
model to be used for building advanced AMT systems.

2 DATASETS

2.1 MAPS

MAPS (Emiya et al., 2010) is a piano dataset generated by a software synthesizer and a real piano,
namely, a Yamaha Disklavier upright piano, from standard MIDI files. Disklavier can be controlled
by computer, and accept MIDI files as inputs and output MIDI files that are strictly synchronized
with the sound generated. These output MIDI files can be used to generate ground-truth labels. The
sound from Disklavier was recorded under two settings, namely, a close and an ambient setting. The
synthesizer has 7 settings that differ in soundfont and reverberation configuration. Thus, there are 9
settings in total. Each setting has 30 recordings, resulting in a total of 270 recordings. Since there
are only 160 musical compositions, these 9 settings have overlap in composition.

Next we need to partition the dataset into three splits, namely, a training, a validation and a test split.
In this process, the general criterion is that the training and test splits should have no instrument
and composition overlap so as to fairly compare the generalisation capability of different models.
We choose the 60 recordings from Disklavier as the test split. We exclude the 71 recordings whose
compositions appear in the test split from the 210 synthesized recordings and use the remaining 139
recordings as the training split. We use the above 71 recordings as the validation split.

2.2 MAESTRO

MAESTRO (Hawthorne et al., 2019) is a piano dataset generated by Yamaha Disklavier grand pianos
from 9 years of an international piano competition. It has 1184 recordings in total that have a total
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duration of about 172 hours and a total size of about 103 GB. By contrast, MAPS only has a total
duration of about 18 hours and a total size of about 11 GB. When partitioning MAESTRO into
training, validation and test splits, we simply follow the recommendation given in Hawthorne et al.
(2019). In particular, the training split has 954 recordings, the validation split has 105 recordings,
and the test split has 125 recordings. The training split of MAESTRO is about 15 times as large as
the training split of MAPS.

3 MODEL CONFIGURATION

3.1 INPUT REPRESENTATION

The harmonic model uses VQT as input representation. The procedure for computing VQT is given
in appendix A.1. The setting for VQT computation is as follows. The sampling rate is 44.1 kHz. The
number of frequency bins per octave (denoted byB) is 36. The minimum frequency is the frequency
of MIDI note 21 multiplied by a factor of 2−1/B . The maximum frequency is the frequency of MIDI
note 132 multiplied by a factor of 21/B . Thus, we have 336 frequency bins in total. The bandwidth
for each frequency bin is set to

Ωk = max
(
fk(21/B–2−1/B), 14.1

)
Hz (1)

where fk is the centre frequency. The hop size (denoted by h) is 64 samples. For pitch detection,
we do not like the hop size to be too small, because in this case adjacent frames in the spectrogram
will be highly correlated. So we down-sample the resulting spectrogram by a factor of 22.

3.2 LABELLING

We formulate frame-wise pitch detection as a multi-label classification problem. Frame labels are
determined from the MIDI file. First, we translate the use of the sustain pedal into extended note
duration as in Hawthorne et al. (2018). Next, we express the onset and offset for a specific note in
terms of samples as {

son = bton × src,
soff = btoff × src, (2)

where ton and toff are the onset and offset times in seconds, respectively. Finally, the start and end
frames of this note can be expresses as{

fon = b(son + h/2)/hc,
foff = b(soff + h/2− 1)/hc. (3)

3.3 NETWORK STRUCTURE

We propose a harmonic acoustic model for frame-wise pitch detection. The structure of this model
is given in Table 1. In this table, we use – to mean that the output shape of a layer is the same as
the output shape of the above layer. Layer 0 is the input with shape (none× none× 336× 1) where
the dimension order is batch, frame, frequency and channel. Here we use none to denote a dynamic
dimension. The abbreviations used in this table are defined as follows. 1) conv(32 × 3 × 3) stands
for a convolution layer with 32 kernels of receptive field 3 × 3. 2) dropout(0.8) is a dropout layer
with keeping probability 0.8. 3) sparse-conv(256 × 1 × 79) is a sparse convolution layer with 256
kernels of receptive field 1 × 79. 4) maxpool(1 × 3) is a max-pooling layer with receptive 1 × 3 ,
frame stride 1, and frequency stride 3. 5) FC(n) is a fully connected layer with n features.

This structure can be divided into three parts. Part 1 consists of layers 1 through 7. This part uses
four consecutive convolution layers to capture local frequency patterns. The overall receptive field
of these layers in the frequency domain is 9 frequency bins. Part 2 consists of layers 8, 9 and 10.
Layer 8 is a sparse convolution layer. This layer does the same job as network N1 of Elowsson
(2018). In particular, for each pitch f0 we select 50 frequency bins relative to f0 as the input
features for detecting the presence of f0. These 50 frequency bins include bins over and under f0,
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Table 1: Structure of the harmonic acoustic model

LAYER NO. OPERATION OUTPUT SHAPE

0 input(none× none× 336× 1) none× none× 336× 1
1 conv(32× 3× 3) none× none× 336× 32
2 conv(32× 3× 3) –
3 dropout(0.8) –
4 conv(32× 3× 3) –
5 dropout(0.8) –
6 conv(32× 3× 3) –
7 dropout(0.8) –
8 sparse-conv(256× 1× 79) none× none× 264× 256
9 maxpool(1× 3) none× none× 88× 256
10 dropout(0.8) –
11 FC(64) none× none× 88× 64
12 dropout(0.8) –
13 FC(1) none× none× 88

f
0

frequency

Figure 2: The receptive field of the sparse convolution in the frequency dimension where the solid
vertical line is the pitch and the dotted vertical lines are the input features for the pitch (Elowsson,
2018).

and harmonics and non-harmonics. Please refer to Elowsson (2018) for a complete list of these bins.
Figure 2 shows the distribution of these bins. The original 50 bins were given when the number
of bins per octave is 240. And when converted to 36 bins per octave used by the harmonic model,
some bin indices become non-integers. For these non-integers, we take both their floors and ceils.
Thus, for each f0 we have a total of 79 input features. For an f0, some of its input features could be
out of the VQT’s bin range. In this case, we assume that the out-of-range input features are zeros.
Since a typical piano only has 88 keys ranging from MIDI notes 21 to 108, among the VQT’s 336
frequency bins only the first 264 are pitches to detect. Therefore, after the sparse convolution layer,
we get an output of shape (none × none × 264 × 256) where 256 is the number of output features
for each pitch. This output is at pitch level. However, the datasets only allow labels at note level. So
we use max-pooling of receptive field 1× 3 to down-sample the output to note level, resulting in an
output of shape (none × none × 88 × 256). Part 3 consists of layers 11, 12 and 13, after which we
get predictions for the 88 notes. In the above structure except the last layer, when it is applicable,
ReLU is used as activation function and the output is batch-normalized. The last layer uses sigmoid
as activation function. We use dropout at different places to control overfitting.

The difference between the harmonic model and the Kelz model is that the former explicitly cap-
tures harmonic frequency patterns with sparse convolution, whereas the latter does this implicitly by
letting the network to learn them on itself. This implicit handling of harmonic patterns makes the
trained model overfit the timbres and composition styles of the training split. However, the training
and test splits often have different timbres and composition styles so that this implicit handling will
impact the generalisation capability of the trained model.

The harmonic model differs from network N1 of Elowsson (2018) in two aspects. First, the harmonic
model captures enough number of local frequency patterns with part 1, whereas N1 did not consider
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Table 2: Comparison of pitch detection systems tested on MAPS (ensemble/average in percentage)

F P R

the Kelz model (Kelz et al., 2016) /71.60 /81.18 /65.07
Elowsson (2018) 72.9/ 84.1/ 64.4/
Hawthorne et al. (2018) /78.30 /88.53 /70.89
Kelz et al. (2019) /77.16 /90.73 /67.85

w/o data aug. /82.02 N/A N/AHawthorne et al. (2019) w/ data aug. /84.91 /92.86 /78.46
w/o data aug. & LSTM 81.33/81.78 86.86/86.68 76.47/77.89

the harmonic model w/ data aug., w/o LSTM 83.16/83.42 85.52/85.44 80.93/81.96
w/ data aug. & LSTM 85.85/85.82 87.33/87.80 84.41/84.42

these patterns. Second, the harmonic model has 256 output features for each pitch, whereas N1 only
has one.

Compared with the HCQT model, the harmonic model is able to capture more complex frequency
patterns by using more features for each pitch and placing sparse convolution after conventional
convolution. The overall receptive field of the convolution layers in the HCQT model is over one
octave and thus could lead to overfitting of the composition styles. This problem has been adver-
tently avoided in both the Kelz and the harmonic model by using a relatively small overall receptive
filed when capturing local frequency patterns.

3.4 LOSS FUNCTION

We use the binary cross entropy loss. Denote by p ∈ {0, 1} the ground-truth label for a note in a
frame and by p̂ ∈ [0, 1] the predicted probability for this note. The loss for this note is formulated as

l , −p ln(p̂) – (1− p) ln(1− p̂). (4)

3.5 PERFORMANCE MEASURE

As a convention, the performance of pitch detection is solely measured by the f-measure defined as

F ,
2PR

P +R
. (5)

In the above equation P and R are the precision and recall defined, respectively, as
P ,

TPs
TPs + FPs

,

R ,
TPs

TPs + FNs
,

(6)

where TPs is the number of true positives, FPs is the number of false positives, and FNs is the number
of false negatives. When there is more than one recording, the above metrics can be calculated in
two ways. We can first calculate them for individual recordings and then average these results. We
call metrics obtained this way the average results. We can alternatively treat all the recordings as
an ensemble and directly calculate the metrics. We refer to metrics obtained this way the ensemble
results.

4 EXPERIMENTS

In this section, we will compare performance of the harmonic model, the Kelz model and other more
complex pitch detection systems built upon acoustic models. To enhance the performance, the exist-
ing systems exploited various techniques/tricks, such as data augmentation (Hawthorne et al., 2019),
RNN (Hawthorne et al., 2018; 2019), HMM (Kelz et al., 2019), joint-task training (Hawthorne et al.,
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2018; 2019; Kelz et al., 2019), and larger training split (Elowsson, 2018). Therefore, for a fair com-
parison we will apply two tricks to the harmonic model, namely, data augmentation and RNN. The
first type of data augmentation is pitch shift whose procedure is detailed in appendix A.2. The
second type is to change the powers of different frequencies by multiplying the amplitude of each
frequency bin by a random number ranging from 0.9 to 1.1. The third type is to use the two sound
channels of each recording in the training split as independent training examples. In this case, for
testing we will average the logits of the two sound channels. To enhance the harmonic model, we
can top the harmonic model with an LSTM layer. Specifically, in this case we first train the harmonic
model. Next, we remove layers 11, 12 and 13 and keep the parameters of the remaining layers fixed
and untrainable. Then we replace these removed layers with an LSTM of 64 hidden units, which is
in turn followed by an FC(1) layer (i.e., a fully connected layer that converts the number of features
for each note from 64 to 1).

We use Tensorflow 1.13.1 (Abadi et al., 2016) as the neural network framework and implement
sparse convolution ourselves. The optimizer is the Adam optimizer. For the harmonic model without
LSTM on top, each example has 300 frames; the batch size is 2; and the learning rate is 10−4. For
the harmonic model with LSTM on top, each example has 600 frames; the batch size is 1; and the
learning rate is 10−3.

Table 2 compares the performance of different pitch detection systems. The system in Elowsson
(2018) was trained on a self-made training dataset that was purely synthesized and does not overlap
in musical composition with the test split of MAPS. The system in Hawthorne et al. (2019) was
trained on MAESTRO. Hawthorne et al. (2019) also augmented the training split by pitch shift,
compressing, equalising, and adding reverberation and pink noise. The results of the Kelz model
are cited from Hawthorne et al. (2018) which implemented this model and tested it on MAPS by
following the training-test split partition given in section 2.1. Note that MAESTRO cannot be used
both for training and for testing, because this has the problem of instrument overlap. Therefore,
to objectively access a system’s generalisation capability, we only compare the test performance of
different systems on the test split of MAPS. Among the existing systems, some used the ensemble
results and some used the average results. For the system of Hawthorne et al. (2019) trained without
data augmentation, only the f-measure is available.

In its pure form without data augmentation and LSTM, the harmonic model defeats all the existing
systems except the system in Hawthorne et al. (2019). The system in Hawthorne et al. (2019) trained
without data augmentation leads the pure harmonic model by 0.24. This lead is attributed to the
MAESTRO’s far larger training split and joint-task training with more complex network structure, as
evidenced and contrasted by the results of Hawthorne et al. (2018) that were obtained on MAPS with
a less complex network structure. The system of Hawthorne et al. (2019) with data augmentation
surpassed the harmonic model with data augmentation but without LSTM by 1.49. However, when
data augmentation and LSTM are both applied, the harmonic model outperforms the system of
Hawthorne et al. (2019) with data augmentation by 0.91 and reaches a record high of 85.82. Note
that, even when LSTM is applied to the harmonic model, none of the existing systems except the
Kelz model is simpler than the harmonic model.

5 CONCLUSIONS

In this paper we designed a harmonic acoustic model for pitch detection. This model effectively
captures the complex frequency interactions characterizing polyphonic pitched music through con-
ventional convolution and sparse convolution inspired by the harmonic structure of pitched music.
In its pure form without RNN and data augmentation, the harmonic model outperformed most of the
existing pitch detection systems. Most noticeably, when trained on MAPS and data augmentation
is done, the harmonic model with an LSTM layer on top outdid the complex system in Hawthorne
et al. (2019) trained on MAESTRO whose training split 15 times as large as the training split of
MAPS. Thus, the harmonic model has shown great potential to be used for building advanced AMT
systems.

A possible future direction is to make more potential of complex spectrograms, instead of using
only amplitude spectrograms. A mixture of signal can be inseparable in the real number domain but
could be separable in the complex number domain. Trabelsi et al. (2018) has done some preliminary
study in this direction. However, our own study showed that the technique of deep complex network
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proposed in Trabelsi et al. (2018) did not yield a performance comparable with that of real networks.
Therefore, definitely more can be done.
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A APPENDIX

A.1 COMPUTATION OF VQT

Since there is no clear, standard procedure for computing VQT, here we will sketch such a procedure
by ignoring the underlying details. CQT is arguably the only choice for characterizing harmonic
frequency patterns due to the following advantages. First, it was born for processing musical signal
of equal tempered scale, because its frequency bins are strictly log-linearly spaced and the bandwidth
of each filter is proportional to the centre frequency (Brown, 1991). Second, it is preferable over
the traditional wavelet transform, because the latter cannot provide sufficient frequency resolution
for musical signal processing. Third, there exists a fast algorithm for CQT (Schörkhuber & Klapuri,
2010). The drawback with CQT is the low time resolution for lower frequencies. For example, when
the number of frequency bins per octave is 36, the frame length for MIDI note 21 is 1.87 seconds.
Therefore, CQT is not ideal for detecting lower notes. Hence there comes VQT (Holighaus et al.,
2013).

In VQT the bandwidth of a filter within the filter bank can be expresses as

Ωk = fk(21/B–2−1/B) + γ (7)

where fk is the filter’s centre frequency, B is the number of frequency bins per octave, and γ is a
non-negative constant. When γ is zero, VQT reduces to CQT. The rationale behind VQT is that by
enlarging the bandwidth we can shrink the frame length and thus get better time resolution. In order
to properly apply VQT, we need to understand what the bandwidth means. In VQT, filters have
strictly finite bandwidth therefore infinite length in the time domain. That is, the frame length for
each frequency is infinite. We can only consider the frame length from an engineering perspective.
Let us define the frame length as the length of the zone within the infinite frame that contains a
major proportion of the frame’s energy. If this proportion is to be over 99%, then it can be proved
that the frame length is 2.88/Ωk seconds, or 2.88 × sr/Ωk samples where sr is the sampling rate.
Thus, if we like a maximum frame length of 20000 samples when sr is 44.1 kHz, we should set the
minimum bandwidth to be 2.88× 44100/20000 = 6.35 Hz.

Next, let us talk about zero padding. In VQT, when computing the spectral coefficients for each
frequency at different times, the signals involved are cyclic shifts of the original recording. Thus,
when computing the coefficient at sample zero, half the data comes from the end of the recording.
We can get around this undesirable effect by zero padding. To be specific, we can pad

d1.44/Ωmin × sr/he × h (8)

zeros at each end of the recording, where h is the hop size, and then compute the VQT. After that
we throw away

d1.44/Ωmin × sr/he (9)
coefficients at each end of the spectrogram. Finally, let us talk about the hop size in terms of samples.
In VQT, the hop size is any number such that

sr/h ≥ Ωmax (10)
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where Ωmax is the maximum bandwidth. After getting the spectrogram, we convert it to dB scale
according to

20× log10

(
|VQT|+ 10−10

)
+ 200 (11)

where | · | is the absolute operator to get the amplitude. Adding 10−10 is to make the computation
numerically stable. When the amplitude is zero, we get the minimum power of −200 dB. When
padding values for the inputs to the first neural network layer, it is desirable that the padded values
are physically meaningful. In our case, we would like these values to stand for a zero power level.
Thus, these values should be -200. For convenience we alternatively shift the dB scaled spectrogram
by 200 so that we can keep on using zeros for padding.

A.2 PITCH SHIFT

Step 1 Setting the number of frequency bins per octave (B) to a higher value of 84, calculate the
VQT.

Step 2 As per the procedure given in Schörkhuber et al. (2013), shift the pitch of the above VQT
by 0, ±1 and ±2 frequency bins.

Step 3 For each pitch-shifted VQT, recover the discrete Fourier transform (DFT) of the signal.
Step 4 From the above DFT, calculate the VQT for B = 36.
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