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ABSTRACT

This paper proposes a dual variational autoencoder (DualVAE), a framework for
generating images corresponding to multiclass labels. Recent research on condi-
tional generative models, such as the Conditional VAE, exhibit image transfer by
changing labels. However, when the dimension of multiclass labels is large, these
models cannot change images corresponding to labels, because learning multi-
ple distributions of the corresponding class is necessary to transfer an image. This
leads to the lack of training data. Therefore, instead of conditioning with labels, we
condition with latent vectors that include label information. DualVAE divides one
distribution of the latent space by linear decision boundaries using labels. Conse-
quently, DualVAE can easily transfer an image by moving a latent vector toward
a decision boundary and is robust to the missing values of multiclass labels. To
evaluate our proposed method, we introduce a conditional inception score (CIS)
for measuring how much an image changes to the target class. We evaluate the im-
ages transferred by DualVAE using the CIS in CelebA datasets and demonstrate
state-of-the-art performance in a multiclass setting.

1 INTRODUCTION

Recent conditional generative models have shown remarkable success in generating and transfer-
ring images. Specifically, a conditional variational autoencoder (CVAE) (Kingma et al., 2014) can
generate conditional images by learning the latent space Z that corresponds to multiclass labels. In
addition, StarGAN (Choi et al., 2017) and FaderNetworks (Lample et al., 2017) can generate images
corresponding to multiple domains by conditioning with domains such as attributes.

However, when the dimension of the multiclass is increased, these models cannot transfer the images
corresponding to one arbitrary domain (an element of a multiclass label). The possible reasons are
the following. For simplicity, we consider a binary multiclass classification. To transfer an image of
a certain class, it is necessary to learn the distributions of the corresponding class. That is, assuming
that the number of classes in the multiclass is N, conditional models need to create 2N distributions.
However, when N is large, training is difficult as O(2N ) training samples will be required.

Hence, instead of conditioning with labels, we propose DualVAE, which conditions with latent
vectors that include label information. DualVAE divides one distribution of the latent space by N
linear decision boundaries which need to learn only O(N) parameters by adding another decoder
pw(y|z) to a variational autoencoder (VAE) (Kingma & Welling, 2013). DualVAE assumes that
a label is a linear combination of vectors of the latent space and the dual latent space. There are
two advantages to the DualVAE decoder pw(y|z) being a linear model. First, DualVAE can easily
transfer an image by moving a latent vector toward a decision boundary. Next, DualVAE is robust
to the missing values of multiclass labels.

In addition to this method, we propose the conditional inception score (CIS), a new metric for
conditional transferred images. Although the evaluation methods often used in the generation models
are the Inception Score (IS) (Salimans et al., 2016) and the Fréchet Inception Distance (Heusel et al.,
2017), they are used for evaluating the diversity of images and not suitable for evaluating transferred
images conditioned with domains such as attributes or classes. Therefore, we propose a new metric
to evaluate two properties: the first property pertains to whether images in one domain are transferred
properly to images in another domain; the second property pertains to whether images in one domain
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Figure 1: Conditional VAE learns 2n distributions for each binary multiclass label when the number
of class is n. DualVAE learns n decision boundaries for dividing a distribution of latent space. u1 is
a parameter of a decision boundary, which we call a dual vector.

transferred to images in another domain can preserve the original properties. By using the CIS, we
compare DualVAE with other methods that can perform image-to-image translations for multiple
domains.

In summary, the contributions from this study are as follows: 1) We introduce DualVAE, a method
for transferring images corresponding to multiclass labels and demonstrate that images can be trans-
ferred quantitatively and qualitatively. 2) We propose the CIS, a new metric that can evaluate trans-
ferred images corresponding to multiclass labels.

2 RELATED WORK

Conditional model Several studies have been conducted to generate or transfer images condi-
tioned with labels. For example, conditional VAE (Kingma et al., 2014) is an extension of a VAE
(Kingma & Welling, 2013) where latent variables z are inferred using image x and label y, and im-
age x is reconstructed with y,z. Further, a CGAN (Mirza & Osindero, 2014) is a conditional model
using a GAN, where a noise z and a class label y are input to the generator, and learning is per-
formed similarly to the GAN using image x corresponding to class label y. FaderNetworks (Lample
et al., 2017) learns latent variables from which label information is eliminated by using adversarial
learning and assigns attributes to images by providing labels to the decoder. Furthermore, StarGAN
(Choi et al., 2017), a method of domain transfer, had succeeded in outputting a beautiful image cor-
responding to an attribute by conditioning with a domain (attribute). However, all these methods are
models conditioned with labels; therefore, as the dimension of the labels becomes larger, the number
of training samples becomes insufficient.

Connection to the Information Bottleneck As with DualVAE, there are several papers related to
finding a latent variable z that predicts label y. For example, Information Bottleneck (IB) (Tishby
et al., 2000) is a method for obtaining a latent expression z that solves task y. IB is a method which
leaves the latent information z for solving the task y by maximizing the mutual information amount
I(Z; Y). At the same time, extra information about input x is discarded by minimizing I(Z; X).
Variational Information Bottleneck (VIB) (Alemi et al., 2016) succeeded in parameterizing the IB
with a neural network, by performing a variational approximation. VIB can also be considered as a
kind of extension of VAE. VAE minimizes the mutual information I(Z; i) between individual data i
and latent variable z while maximizing I(Z; X). DualVAE can be regarded as a framework of VIB
as well, and it minimizes I(Z; i) while maximizing I(Z; Y) and I(Z; X).

Connection to the Probabilistic Matrix Factorization We can also regard DualVAE as a proba-
bilistic matrix factorization (PMF) (Mnih & Salakhutdinov, 2008) extended to a generative model.
A PMF is used in several application areas, primarily in collaborative filtering, which is a typical
recommendation algorithm. It can predict missing ratings of users by assuming that the user’s ratings
are modeled by a linear combination of the item and user latent factors. Similarly, we experimentally
show that DualVAE is also robust to missing labels.
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Figure 2: Left: Graphical models of the probabilistic models of Conditional VAE and DualVAE.
The gray and white circles indicate the observed variables and latent variables, respectively. Arrows
between the symbols indicate probabilistic dependency. Right: The network structure of DualVAE.
The predicted label is structured as the inner product of latent z and dual vector ui.

3 DUALVAE

We devised DualVAE by adding a decoder pw(y|z) = p(y|z,u) to the VAE to learn the decision
boundaries between classes. Here, z is a vector of the latent space Z , u is a vector of the dual latent
space Z∗ and y is a label. Unlike the CVAE, this model does not require label y at the time of
inference of z corresponding to x, and the difference is shown in Figure 2. The objective function
of the VAE is as follows:

L(x) = Eqφ(z|x)[log pθ(x|z)]−DKL (qφ(z|x)||p(z)) , (1)

where φ, θ are parameters of the encoder and decoder of the VAE, respectively. The lower bound of
DualVAE is as follows:

log pθ(x,y) ≥ Eqφ(z|x)

󰀗
log

pθ(x,y, z)

qφ(z|x)

󰀘

= Eqφ(z|x)[log pθ(x|z) + log p(z)− log qφ(z|x) + log pw(y|z)]
= L(x) + Eqφ(z|x) [log pw(y|z)] , (2)

where pw(y|z) = Bern(y|σ(Uz)). Here, U is a domain feature matrix whose row vector is a dual
vector u and Bern is a Bernoulli distribution. As you can see from Equation 2, the objective function
of DualVAE is the objective function of the VAE plus the expectation of log-likelihood of pw(y|z)
Specifically, training is performed such that the inner product of zj ∈ Z and ui ∈ Z∗ predicts the
label yij where j is the index of a sample and i is the index of a domain. At the same time, we find
the values of θ and φ that maximize the lower bound in Equation 1.

We transfer the images on domain i by performing the following operation. We calculated the fol-
lowing vector wi:

wi = z+ λui, (3)

where λ(∈ R) is a parameter. Image transfer can be demonstrated by changing λ and decoding wi.
Equation 3 corresponds to moving a latent vector toward a decision boundary.

Algorithm 1 DualVAE
Require: images (xj)

m
j=1, batch size M , indicator function Iij VAE/encoder optimizers: g, ge,

hyper parameter α, and the label matrix Y = (yij).
Initialize encoder parameter, decoder parameter and dual vector: θ,φ, U = (ui)

n
i=1

repeat
Randomly select batch (xj)j∈B of size M
Sample zj ∼ qφ(zj |xj) ∀j ∈ B
φ, θ ← g(∇φ,θ

󰁓
j∈B[log pθ(xj |zj) - DKL (qφ(zj |xj)||p(z))])

φ, U ← ge(∇φ,U

󰁓
i

󰁓
j∈B αIij log p(yij |zj , ui))

until convergence of parameters θ,φ, U
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Figure 3: Computation flow of the transfer score and the reconstruction score for CIS. x is an original
image. x(i) denotes a transferred image on domain i.

4 CIS

Although IS (Salimans et al., 2016) is a score for measuring generated images, it can only measure
the diversity of the images, and cannot be used for evaluating the domain transfer of the images.
Therefore, we proposed using a CIS, a score for evaluating the transformation of images into multi-
class target domains.

The CIS is a scalar value calculated from the sum of two elements. The first is whether the domain
transfer of the original image has been successful (transfer score), and the second is whether the
features other than the transferred domain are retained (reconstruction score). The computation flow
of these scores can be found in Figure 3.

We calculated the CIS using Algorithm 2. First, we assumed that the number of domains is n and the
domain that each image belonged to was known. We finetuned Inception-v3 (Szegedy et al., 2016)
using train images as inputs and domains as outputs. To enable the model to classify the images
with the domains, we replaced the last layer of the model with a new layer that had n outputs.
Next, we transferred test images into n domain images and loaded the transferred images into the
pretrained Inception-v3. Through this process, we obtained an n×n matrix for every original image
because one image was transferred into n domain images and each domain image was mapped to an
n-dimension vector. We subsequently mapped the original image into an n-dimension vector using
Inception-v3 and subtracted this vector from each row of the n × n matrix. We named this matrix
M. The key points are the following: (1) the diagonal elements of M should be large because the
specified domain should be changed significantly, and (2) the off-diagonal elements of M should be
small because the transferred images should preserve the original features.

Algorithm 2 Conditional Inception Score (CIS)
Require: observation x ∈ X , Inception-v3 f : X → Rn, domain transfer model m.

for i = 1 . . . n do
x(i) ← mi(x)
Mi ← f(x(i))− f(x)

end for
ts ← avg(diag(M ))
rs ←−avg(abs(notdiag(M )))
CIS ← ts+rs

In the algorithm, abs denotes taking the absolute value, diag denotes taking the diagonal elements
of the matrix, notdiag denotes taking the nondiagonal elements, avg denotes taking the mean of the
multiclass values. x is an original image, and x(i) denotes a transferred image on domain i.
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5 EXPERIMENT

We performed a standard image transfer task with the 40 attributes in the CelebA (Liu et al., 2015)
dataset, which comprises approximately 200,000 images of faces of celebrities.

Comparison of DualVAE and several models DualVAE was compared with several models ca-
pable of performing image-to-image translations for multiclass labels using a single model. In each
model, we calculated the CIS several times when applying Algorithm 2 on 160 CelebA test images;
subsequently, the average and standard deviation were obtained. DualVAE obtained a higher CIS
than the other models and the results are shown in Table 1 and Figure 4.

Table 1: Average CISs for three conditional models, which demonstrates DualVAE outperforms
several models based on the CIS.

Method 20 domains 40 domains
CVAE (Kingma et al., 2014) -0.112±0.007 -0.152±0.006
FaderNetworks (Lample et al., 2017) 0.075±0.008 -0.002±0.003
StarGAN (Choi et al., 2017) 0.068±0.188 0.050±0.032
DualVAE 0.163±0.025 0.140±0.020

Figure 4: Scatter plot of DualVAE, FaderNetworks, StarGAN and CVAE. Different color denotes
different models. All of the transferred images are in Figure 5.

Visualization of transferred images We visualized transferred images of the 40 attributes by the
proposed method and other models in Figure 5. Although StarGAN and FaderNetworks retained
the characteristics of the original image considerably, it was qualitatively understood that domain
transfer was poor.
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DualVAE

StarGAN

FaderNetworks

CVAE

Figure 5: DualVAE transferred images of the 40 attributes well; however, StarGAN, FaderNetworks
and CVAE did not transform the images well.
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Robustness to sparsity To demonstrate experimentally that DualVAE is robust to the missing val-
ues of multiclass labels, the following steps were performed. We calculated the rs and ts values when
applying Algorithm 2 on 160 CelebA test images and plotted the figure below when we changed the
missing ratio of CelebA’s domain labels and the λ in Equation 3.

Figure 6: Scatter plot of the missing ratio of CelebA’s label and CIS of DualVAE. Variable s is the
missing ratio. The original image is shown on the bottom left of the figure. The attributes of the
original images are transformed into blond hair, eyeglasses, and a mustache. The vertical axis is the
ts value of Algorithm 2 and the horizontal axis is the rs value of Algorithm 2. CIS grows in the upper
right corner.

DualVAE

(a) s = 0.9. Image transfer was still
well-conducted.

StarGAN

(b) s = 0.9. All identical images were generated,
and image transfer was not conducted properly.

As shown in Figure 6, DualVAE is robust in terms of the sparseness of domain labels, and the CIS
does not decrease even when 90% of the labels are missing. Meanwhile, we found that StarGAN is
not as robust as DualVAE with respect to sparseness. When 90% of the domain labels are missing,
StarGAN cannot learn at all and generates identical images.
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6 CONCLUSION AND FUTURE WORK

We proposed DualVAE, a simple framework for generating and transferring images corresponding
to multiclass labels. Further, we introduced the CIS, a new metric for measuring how much of an
image corresponding to the change of labels could be generated. The decoder of DualVAE was a
simple linear model in this study; however, we would like to test more complex models in the future.
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