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ABSTRACT

In this paper, we propose a weak supervision framework for neural ranking tasks
based on the data programming paradigm (Ratner et al., 2016), which enables
us to leverage multiple weak supervision signals from different sources. Empir-
ically, we consider two sources of weak supervision signals, unsupervised rank-
ing functions and semantic feature similarities. We train a BERT-based passage-
ranking model (which achieves new state-of-the-art performances on two bench-
mark datasets with full supervision) in our weak supervision framework. Without
using ground-truth training labels, BERT-PR models outperform BM25 baseline
by a large margin on all three datasets and even beat the previous state-of-the-art
results with full supervision on two of the datasets.

1 INTRODUCTION

Recent advances in deep learning have allowed promising improvement in developing various state-
of-the-art neural ranking models in the information retrieval (IR) community (Guo et al., 2017;
Xiong et al., 2017; Mitra et al., 2017; Hui et al., 2018; Nogueira & Cho, 2019). Similar achievement
has been seen in the reading comprehension (RC) community using neural passage ranking (PR)
models for answer selection tasks (Yu et al., 2014; Tan et al., 2015; Yang et al., 2018; Lai et al.,
2018). Most of these neural ranking models, however, require a large amount of training data. As
such, we have seen the progress of deep neural ranking models is coming along with the development
of several large-scale datasets in both IR and RC communities, e.g. (Bajaj et al., 2016; Feng et al.,
2016; Dietz et al., 2017; Cohen et al., 2018). Admittedly, creating hand-labeled ranking datasets is
very expensive in both human labor and time.

To overcome this issue, one strategy is to utilize weak supervision to replace human annotators.
Usually we can cheaply obtain large amount of low-quality labels from various sources, such as
prior knowledge, domain expertise, human heuristics or even pretrained models. The idea of weak
supervision is to extract signals from the noisy labels to train our model. Dehghani et al. (2017) first
applied weak supervision technique to train deep neural ranking models. They show that the neural
ranking models trained on labels solely generated from BM25 scores can remarkably outperform
the BM25 baseline in IR tasks. Macavaney et al. (2017) further investigated this approach by using
external news corpus for training.

In this work, we focus on the setting where queries and their associated candidate passages are given
but no relevance judgment is available. Instead of solely relying on the labels from single source
(BM25 score), we propose to leverage the weak supervision signals from diverse sources. Ratner
et al. (2016) proposed a general data programming framework to create data and train models in a
weakly supervised manner. To tailor to the ranking tasks, instead of generating a ranked list of pas-
sages for each query, we generate binary labels for each query-passage pair. In our neural ranking
models, we focus on BERT-based ranking model (Devlin et al., 2018) (architecture shown in Fig. 1),
which achieves new state-of-the-art performance on two public benchmark datasets with full super-
vision. The contributions of this work are in two fold: (a) we propose a simple data programming
framework for ranking tasks; (b) we train a BERT ranking model using our framework, by consid-
ering two simple sources of weak supervision signals, unsupervised ranking methods (BM25 and
TF-IDF scores) and unsupervised semantic feature representation, we show our model outperforms
BM25 baseline by a large margin (around 20% relative improvement in top-1 accuracy on average)
and the previous state-of-the-art performance (around 10% relative improvement in top-1 accuracy
on average) on three datasets without using ground-truth training labels.
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(a) (b)

Figure 1: BERT-PR model architecture. (a) depicts the architecture of BERT scoring model. (b)
depicts the forward computation pipeline of training our ranking model.

2 APPROACH

In this section, we will describe in detail how we train a neural ranking model using weak supervi-
sion. We begin with introducing our BERT-PR model in Section 2.1. Then in Section 2.2 we will
describe the weakly supervised training pipeline.

2.1 PASSAGE-RANKING WITH BERT
The goal of a ranking model is to estimate the (relative) relevance of a set of passages {pi} to a
given query q. Here we apply BERT as our scoring model, which measures the relevance score
of a candidate passage pi and the query q. Similar to the setup of sentence pair classification task
in Devlin et al. (2018), we concatenate the query sentence and the candidate passage together as a
single input of the BERT encoder. We take the final hidden state for the first token ([CLS] word
embedding) of the input, and feed it into a two-layer feedforward neural network (with hidden units
100,10 in each layer and ReLU activation). The final output will be the relevance score between
the input query and input passage. In the supervised setting, we assume we have the ground truth
relevance label of the candidate passages for each query in the training set. To train our BERT
ranking model, we use pairwise hinge loss. Specifically, for each triplet {q, pi, pj}, where q is the
query and pi, pj are two candidate passages, the train loss of this instance is

`(q, pi, pj ; θ) = max{0, ε− sign(Pospi
− Pospj

)(S(q, pi; θ)− S(q, pj ; θ)} (1)

where Pos(p) indicates the ground truth ranking position of candidate passage p, S is our BERT
scoring model as described and ε is the hyperparameter that determines the margin of hinge loss.
Note that our BERT-PR is different from (Nogueira & Cho, 2019) in two aspects: (1) Nogueira &
Cho (2019) uses cross-entropy loss instead of ranking hinge loss for training; (2) Nogueira & Cho
(2019) does not have an MLP module. The details of our BERT-PR model is illustrated in Fig. 1.

2.2 WEAK SUPERVISION FOR PR

Now we present the weak supervision training pipeline for PR tasks. The main idea follows the
paradigm in Ratner et al. (2016), which contains three major steps: (a) defining labeling functions
that can generate noisy labels on the datasets (without true labels), (b) aggregating all the noisy labels
to generate potentially more accurate labels as well as more coverage, (c) using the aggregated label
to train a supervised model.

Labeling Functions Ideally, we require a ranked list for each query in our training set for super-
vised training. However, obtaining accurate ranking labels for all sets of documents is very difficult.
Instead, we reduce the task to a simpler problem, labeling whether the a candidate passage is strongly
related to the query. With the binary label on the question-passage pair, it is easy to generate triplet
training instance by doing positive and negative sampling. Formally, the labeling function is defined
as λ : Q × P → {1,−1, 0}, i.e. for each query-passage pair, we would like to label it as positive,
negative or neutral (undetermined). We first define some score function to measure the similarity
of query-passage pair. Considering that the similarity scores across different queries may not be
comparable, we categorize passages based on each individual query. Specifically, for each query,
we rank the candidate passages based on the similarity scores and we take the top-1 passages as
positive ones, the bottom half as negative ones, and label the rest in this list as neutral. With this
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schema, we obtain {(qi, p(i)j ), yij} for every query-passage pair (qi, p
(i)
j ) with yij ∈ {1,−1, 0}. In

this work, we apply 4 scoring functions: (1) BM25 score, (2) TF-IDF score, (3) cosine similarity
of universal embedding representation (Cer et al., 2018) and (4) cosine similarity of the last hidden
layer activation of pretrained BERT model (Devlin et al., 2018).

Label Aggregation This step is to aggregate all the weak supervision signals from all the labeling
functions. Each label function may produce low quality labels. The step can be considered as an
ensemble step to improve the quality of labels. We consider two simple strategies. The first one
is through majority voting, i.e., we assign the final label based on the majority agreement, with
the majority fraction as the confidence score. The second strategy is to learn a simple generative
model based on the assumption that the labeling functions are conditionally independent given the
true label. We apply the same parameterization as proposed in Ratner et al. (2016); see details in
Appendix A. We predict the final label based on the learned simple generative model.

Supervised Training After label aggregation, we have a collection of query-passage pairs where
each is associated with a binary label and confidence score, i.e. {qi, p(i)j , y′ij , sij} where y′ij ∈
{−1, 1} and sij ∈ [0, 1]. In order to do supervised training, we can generate the triplet training
instances by combining positive and negative pairs that share the same query through uniform sam-
pling. For confidence score of the triplet, we simply take the geometric mean of confidence scores
of original two pairs. Then we train our supervised model based on these labels.

3 EXPERIMENT AND RESULTS

We apply our approaches on three passage-ranking datasets, WikipassageQA (Cohen et al.,
2018), InsuranceQA v2 (Feng et al., 2016), and MS-MARCO (Bajaj et al., 2016). In all these
datasets, the groundtruth labels are binary, indicating whether the passage is relevant to the ques-
tion. Table 1 shows the basic statistics of these datasets. In our weak supervision settings, we do not
use any ground-truth labels or rank information of the datasets.
Table 1: Statistics of datasets used in the experiments. The number in parenthesis is the average number of
passages associated with each question.

Dataset Train: #Q (#P/Q) Val: #Q (#P/Q) Test: #Q (#P/Q)

WikipassageQA 3,332 (58.3) 417 (62.9) 416 (57.6)
InsuranceQA v2 12,889 (500) 2,000 (500) 2,000 (500)

MS-MARCO 398,791 (1,000) 6,980 (1,000) -

Training configuration In all the experiments, we use pretrained BERT base model from Devlin
et al. (2018). For WikipassageQA dataset, we set the maximum sequence length to be 200 in
BERT and batch size 64. For InsuranceQA v2, we set the maximum sequence length to be 100
in BERT and batch size 128. For MS-MARCO, we set the maximum sequence length to be 70 in
BERT and batch size 256. For all the training, we sweep over {1e−5, 2e−5, 3e−5} for learning rate
and the maximum number of training steps is 10,000. We use a learning rate warmup ratio of 0.1.

3.1 QUALITY OF PSEUDO LABELS

As we described in Section 2, we define four labeling functions. We adopt the retrieval component
in DrQA(Chen et al., 2017) for the implementation of BM25 and TF-IDF scoring functions. We
calculate cosine-similarity of BERT features and universal sentence embedding. To measure the
quality of our labeling functions, we apply these labeling function on the training sets and compare
our pseudo labels with the ground truth labels. Note that in ranking datasets, positive and negative
pairs are highly imbalanced. So here we use precision and recall at 1 (P@1, R@1), and AUC
to measure the quality of pseudo labels. The results are shown in Table 2. We learn the simple
generative model (GM) over labeling functions to estimate the true label. Also we show the result
of majority voting strategy. The quality of aggregated labels is shown in the bottom rows of Table 2.

3.2 PASSAGE RANKING PERFORMANCES

After aggregating the results of labeling functions, we now train our BERT-PR model. We compare
the final performances of different models with different supervision signals along with the unsu-
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Table 2: Quality of labeling functions. BM25: BM25 scores for each pair. TF-IDF: TF-IDF similarity scores
for each pair. BERT: cosine similarity scores over the feature extracted from the last layer of hidden state
of pretrained BERT base model. Universal: cosine similarity scores over features from universal sentence
embedding. MV: labels after majority voting. GM: predicted labels of learned generative model.

WikipassageQA InsuranceQA v2 MS-MARCO
pseudo label P@1 R@1 AUC P@1 R@1 AUC P@1 R@1 AUC

BM25 48.25 29.09 77.25 22.48 19.11 85.38 31.30 30.02 81.21
TF-IDF 43.39 26.01 75.90 17.51 14.88 84.47 26.53 25.44 81.86
BERT 31.36 18.80 70.98 03.76 03.19 66.32 10.50 10.06 63.79

Universal 40.01 23.98 80.37 10.55 08.97 83.80 23.59 22.62 79.44

MV 48.74 29.21 83.54 21.72 18.46 85.44 40.93 39.24 89.08
GM 50.24 30.11 82.60 22.46 19.01 85.76 32.64 31.29 89.35

Table 3: PR performance on different datasets. SOTA: Cohen et al. (2018) for WikipassageQA, Rücklé &
Gurevych (2017) for InsuranceQA v2, Nogueira & Cho (2019) for MS-MARCO. The best numbers achieved
by weak supervision models are in bold. ∗ indicates the new SOTA performance in full supervision.

WikipassageQA (test) InsuranceQA v2 (test) MS-MARCO (validation)
method MAP MRR P@1 P@5 MAP MRR P@1 P@5 MAP MRR P@1 P@5

BM25 (baseline) 53.73 62.58 48.53 19.47 28.60 32.76 23.90 09.68 16.27 16.48 8.58 4.94

full supervision

SOTA 56.08 67.92 - 20.83 - 36.9 - - - 34.71 - -
BERT-PR 73.55∗ 80.87∗ 70.19∗ 27.35∗ 45.32∗ 49.59∗ 40.05∗ 15.19∗ 34.53 35.00 23.02 10.10

weak supervision with BERT-PR

BM25 57.25 65.47 52.16 21.11 32.25 36.29 26.50 11.08 18.65 18.97 9.86 5.77
MV 62.58 69.89 56.49 23.46 29.66 33.73 23.25 10.40 20.37 20.64 10.89 6.29

MV (noise) 61.62 69.31 54.67 23.58 30.03 34.09 24.10 10.35 20.12 20.27 10.16 6.30
GM 59.67 67.38 56.25 22.60 34.16 38.46 28.75 11.59 20.36 20.64 10.87 6.26

GM (noise) 59.04 66.98 52.16 22.12 33.18 37.31 27.20 11.52 20.44 20.70 10.86 6.33

pervised BM25 baseline. We use mean average precision (MAP), mean reciprocal rank (MRR),
precision at 1 (P@1) and 5 (P@5) as our evaluation metrics. The results are shown in Table 3.

Note that through weak supervision solely on BM25 scores, BERT-PR already outperforms the un-
supervised BM25 baseline, which is consistent with the results from Dehghani et al. (2017). In our
training pipeline, using the simple generative model over the 4 labeling functions, BERT-PR trained
on GM labels outperforms BM25 baselines as well as BERT-PR trained solely on BM25 scores. For
example, in terms of P@1, BERT-PR trained on GM labels outperforms BERT-PR trained on BM25
by around 10% relatively on all three datasets. In the case of WikipassageQA and InsuranceQA
datasets, our weak supervision models even beat the previous SOTA performances in the fully su-
pervised settings, exhibiting the great potential of our weak supervision models in real applications.
Also we report the results on supervised training on generated labels with confidence scores, as
noise-aware training objective (See Eq. (4) in Appendix B), indicated by “noise” in the parenthesis.
In our experiment, noise-aware training does not improve the performances significantly, probably
because using geometric mean of scores of the pairs as the confidence scores of the triplets is not
very good approximation of actual probability of generated labels. We leave this for future research.

4 CONCLUSIONS

In this work, we proposed a simple weak supervision pipeline for neural ranking models based on
the data programming paradigm. In particular, we also proposed a new PR model based on BERT,
which achieves new SOTA results. In our experiments on different datasets, our weakly supervised
BERT-PR model outperforms the BM25 baseline by a large margin and remarkably, even beats the
previous SOTA performances with full supervision on two datasets. Further research can be done
on how to better aggregate pseudo ranking labels. In our pipeline we reduce the ranking labels into
binary labels of relevance of query-passage pairs, which may result in loss of useful information. It
would be interesting to design generative models on the ranking labels directly.

1The number listed in SOTA was reported on BERT base model for comparison. A better one was reported
on BERT large model, which has MRR 36.5 (Nogueira & Cho, 2019).
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A SIMPLE GENERATIVE MODEL FOR LABELING FUNCTIONS

In this section, we present the simple generate model on labeling functions and true labels as in Rat-
ner et al. (2016). For completeness, here we restate the formulation as in Ratner et al. (2016). The
basic model assumption is that given the true label, the labeling functions are conditionally inde-
pendent. Formally, suppose y ∈ {−1, 1} is the true label, λ1, · · · , λk are the labels from k labeling
functions. The probabilistic graphic model is shown as in Fig. 2. Given the conditional independence
assumption, we can parameterize the conditional distribution of the labeling function as follows:

Figure 2: Simple Generative Model of
labeling functions.

Pr(λi|y) =


βiαi, if λi = y

βi(1− αi), if λi = −y
1− βi, if λi = 0

. (2)

We also assume the prior of true label y that Pr(y =
1) = γ (In our experiment,for WikipassageQA, we set
γ = 0.01, for InsuranceQA v2, we set γ = 0.002,
for MS-MARCO, we set γ = 0.001). Then we can find
the optimal parameter αi, βi as maximizing the marginal
likelihood of (λ1, · · · , λk), i.e.

α∗, β∗ = argmax
1

N

N∑
i=1

logPr(λ
(i)
1 , · · · , λ(i)k ) = argmax

1

N

N∑
i=1

log
∑
yi

Pr(y(i))
k∏

j=1

Pr(λ
(i)
j |y

(i))

(3)

where N is the total number of data points. It is worth mentioning that given this formation, the
model is not identifiable due to the symmetry of the model. A simple solution to remedy this issue
is assuming αi > 0.5, meaning the most of labeling functions are doing right. With that, we can
solve the problem Eq. (3) through projected gradient descent methods.

B NOISE-AWARE TRAINING OBJECTIVE

Ratner et al. (2016) introduces the noise-aware training objective to better incorporate the noise in
the generated labels. The exact objective is as follows:

L(θ) := 1

N

N∑
i=1

`(zi; θ)si, (4)

where si ∈ [0, 1] is the confidence score for data point zi being a correct training instance. For
example, in our case of PR, zi is a triplet (q, p+, p−) and si is the confidence score of p+ being
more relevant to q than p−.
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