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ABSTRACT

Social media have emerged to be increasingly popular and have been used as tools
for gathering and propagating information. However, the vigorous growth of so-
cial media contributes to the fast-spreading and far-reaching rumors. Rumor de-
tection has become a necessary defense. Traditional rumor detection methods
based on hand-crafted feature selection are replaced by automatic approaches that
are based on Artificial Intelligence (AI). AI decision making systems need to have
the necessary means, such as explainability to assure users their trustworthiness.
Inspired by the thriving development of Generative Adversarial Networks (GANs)
on text applications, we propose LEX-GAN, a GAN-based layered explainable
rumor detector to improve the detection quality and provide explainability. Un-
like fake news detection that needs a previously collected verified news database,
LEX-GAN realizes explainable rumor detection based on only tweet-level text.
LEX-GAN is trained with generated non-rumor-looking rumors. The generators
produce rumors by intelligently inserting controversial information in non-rumors,
and force the discriminators to detect detailed glitches and deduce exactly which
parts in the sentence are problematic. The layered structures in both generative and
discriminative model contributes to the high performance. We show LEX-GAN’s
mutation detection ability in textural sequences by performing a gene classifica-
tion and mutation detection task.

1 INTRODUCTION

Sequential synthetic data generation such as generating text and images that are indistinguishable to
human generated data have become an important problem in the era of Artificial Intelligence (AI).
Generative models, e.g., Variational AutoEncoders (VAEs) (Kingma & Welling, 2013), Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014), Recurrent Neural Networks (RNNs) with
Long Short-Term Memory (LSTM) cells (Hochreiter & Schmidhuber, 1997), have shown outstand-
ing generation power of fake faces, fake videos, etc. Consequently, we require discriminative models
capable of detecting AI-generated fake data with explainability in order to manage the malicious vi-
ral information (Knight, 2019). A black box decision maker without explainability that does not
shed light into how the decision are made may hence lose the trust of its users.

GANs estimate generative models via an adversarial training process (Goodfellow et al., 2014).
Powerful real-valued generators have found applications in image and video generation. However,
GANs face challenges when the goal is to generate sequences of discrete tokens such as text (Yu
et al., 2017). Given the discrete nature of text, backpropagating the gradient from the discriminator
to the generator becomes infeasible (Fedus et al., 2018). Training instability is a common problem
of GANs, especially those with discrete settings. Unlike image generation, the autoregressive prop-
erty in text generation exacerbates the training instability since the loss from discriminator is only
observed after a sentence has been generated completely (Fedus et al., 2018).

In addition to the recent development in GAN-based text generation, discriminator-oriented GAN-
style approaches are proposed for detection and classification applications, such as rumor detection
(Ma et al., 2019). Differently from the original generator-oriented GANs, discriminator-oriented
GAN-based models take real data as input to the generator instead of noise. Hence fundamentally,
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the detector may get high performance through the adversarial training technique. Current adversar-
ial training strategies improve the robustness against adversarial samples. However, these methods
lead to reduction of accuracy when the input samples are clean (Raghunathan et al., 2019).

On a related note, social media and micro-blogging have become increasingly popular (Yazdanifard
et al., 2011; Viviani & Pasi, 2017). The convenient and fast-spreading nature of micro-blogs fosters
the emergence of various rumors. Commercial giants, government authorities, and academic re-
searchers take great effort in diminishing the negative impacts of rumors (Cao et al., 2018). Rumor
detection has been formulated into a binary classification problem by a lot of researchers. Tradi-
tional approaches based on hand-crafted features describe the distribution of rumors (Castillo et al.,
2011; Kwon et al., 2013). More recently, Deep Neural Network (DNN)-based methods extract and
learn features automatically, and achieve significantly high accuracy on rumor detection (Chen et al.,
2018). Generative models have also been used to improve the performance of rumor detectors (Ma
et al., 2019). However, binary rumor classification lacks explanation since it only provides a binary
result without expressing which parts of a sentence could be the source of problem. The majority of
the literature defines rumors as “an item of circulating information whose veracity status is yet to be
verified at the time of posting” (Zubiaga et al., 2018). Providing explainability for unverified rumor
detection is challenging. A related research area works with fake news is more well-studied since
fake news has a verified veracity. Attribute information, linguistic features, and semantic meaning
of post (Yang et al., 2019) and/or comments (Shu et al., 2019) have been used to provide explain-
ability for fake news detection. A verified news database has to be established for these approaches.
However, for rumor detection, sometimes a decision has to be made based on the current tweet
only. Text-level models with explainability that recognize rumors by feature extraction should be
developed to tackle this problem.

In this work, we propose LEX-GAN, a GAN-based layered explainable framework for text-level
rumor detection. LEX-GAN keeps the ability of discriminating between real-world and generated
samples, and also serves as a discriminator-oriented model that classifies real-world and generated
fake samples. We overcome the infeasibility of propagating the gradient from discriminator back to
the generator by applying Reinforcement Learning (RL) to train the layered generators. The training
instability of long sentence generation is lowered by selectively replacing words in the sentence. We
solve the per time step error attribution difficulty by word-level generation and evaluation. We show
that our model outperforms the baselines in terms of addressing the degraded accuracy problem with
clean samples only. The major contributions of this work are listed as follows:

• LEX-GAN delivers an explainable rumor detection without requiring a verified news
database. Rumors could stay unverified for a long period of time because of information
insufficiency. Providing explainability of which words in the sentence could be problem-
atic is critical especially when there is no verified fact. When a verified news database is
achievable, LEX-GAN can be applied to fake news detection with minor modification.

• The layered structure of LEX-GAN avoids the function mixture and boosts the perfor-
mance. During framework design, we found that using one layer to realize two functions
either in generative or discriminative model causes function mixture and hurts the perfor-
mance. LEX-GAN generates high-quality rumors by first intelligently selecting words to
be replaced, then choosing appropriate substitutes to replace. The explanation generation
and rumor detection are realized separately by two layers in the discriminative model.

• LEX-GAN is a powerful framework in textural mutation detection. We demonstrate the
mutation detection power by applying LEX-GAN to a gene classification and mutation
detection task. LEX-GAN accurately identifies tokens in the gene sequences that are likely
from the mutation, and classifies mutated gene sequences with high precision.

2 RELATED WORK

GANs in continuous space promise full differentiability. When dealing with discrete elements such
as text, the discrete nature results in non-differentiability (Huszár, 2015). Researchers work with
discrete element generation to either avoid the issue and reformulate the problem, or consider RL
methods (Yu et al., 2017). Gulrajani et al. (Gulrajani et al., 2017) propose a fully differentiable
Convolutional Neural Network (CNN)-based wasserstein GAN that produces sequences of 32 char-
acters. However, the quality of generated sentences would be sufficient only if spelling errors are
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frequent. RNN-based GANs, on the other hand, generate a sequence word by word, hence the qual-
ity issues such as spelling errors are rare. Many researchers have explored the non-differentiable
problem in RNN-based GANs. Wolf et al. (Press et al., 2017) extend the work of (Gulrajani et al.,
2017) by training RNN using curriculum learning. They start by training on short sequences and
then slowly increase the sequence length. SeqGAN (Yu et al., 2017) bypasses the generator differ-
entiation problem by performing gradient policy update. The RL reward signal coming from the
discriminator is calculated on a complete sequence. Differently from SeqGAN, MaskGAN (Fedus
et al., 2018) employs an actor-critic training procedure on a text infilling task designed to provide
rewards at every time step.

Inspired by the thriving development of GANs on text applications, GAN-style rumor detection has
become the state-of-the-art. GAN-GRU (Ma et al., 2019) is one of the latest GAN-based rumor
detectors. By utilizing adversarial training, a generator is designed to create uncertainty. Hence, the
complicated sequences pressurise the discriminator to learn stronger rumor representations. GAN-
GRU reaches the highest accuracy of 78.1% on a bench-marking rumor dataset PHEME (Kochkina
et al., 2018). Although GAN-GRU outperforms other models, it does not offer explainability, nor
does it provide any information regarding the parts of the sentences that are problematic. Addressing
such deficiencies has been the main motivation for our work.

3 LEX-GAN

Figure 1 shows the architecture of our proposed LEX-GAN. In rumor detection task, the generators
have to intelligently construct a rumor that appears like non-rumor to deceive the discriminators.
Since a good lie usually has some truth in it, we choose to replace some of the tokens in the sequence
and keep the majority to realize this goal. Two steps for intelligently replacing tokens in a sequence
are: i) determine where to replace, and ii) choose what substitutes to use. Gwhere and Greplace
are designed to realize these two steps. After constructing the strong generators, the discriminators
are designed to provide a defense mechanism. Through adversarial training, the generators and
discriminators grow stronger together, in terms of generating and detecting rumors, respectively.
In rumor detection, given a sentence, there are two questions that need to be answered: i) is it a
rumor or a non-rumor, and ii) if a rumor, which parts are problematic. Dclassify and Dexplain are
designed to answer these two questions. We found that realizing two functions by one layer either
in discriminative model or generative model hurts the performance. Hence the layered structure is
designed.

Figure 1: LEX-GAN framework. The generative model (shown on the left hand side) consists of two
generators Gwhere and Greplace. The discriminative model (shown on the right hand side) consists
of two discriminators, namely Dexplain for explainability and Dclassify for classification.
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3.1 GENERATIVE MODEL

The sequence generation task of LEX-GAN is done by the generative model: Gwhere and Greplace.
Given a human-generated real-world sequence input x = (x1, x2, ..., xM ) with length M , for
example a tweet-level sentence containing M words, Gwhere outputs a probability vector p =
(p1, p2, ..., pM ) indicating the probabilities of each item xi (i ∈ [1,M ]) being replaced. p is applied
to input x to construct a new sequence xwhere with some items replaced by blank. For example, x2
becomes a blank and xwhere = (x1, , ..., xM ).

xwhere = f(p) ◦ x = f(Gwhere(x)) ◦ x, (1)

where f(·) binarizes the input based on a hyperparameter Nreplace. It determines the percentage of
the words to be replaced in a sentence. Operator ◦works as follows. If a = 1, then a◦b = b. If a = 0,
then a ◦ b = . Greplace is an encoder-decoder model with attention mechanism. It takes xwhere

and fills in the blank, then outputs a sequence xreplace = (x1, x
replace
2 , ..., xM ). The generative

model is not fully differentiable because of the sampling operations on Gwhere and Greplace. To
train the generative model, we adopt policy gradients (Sutton et al., 2000) from RL to solve the
non-differentiable issue.

3.1.1 Greplace GRU-BASED ENCODER

Gated Recurrent Units (GRUs) (Cho et al., 2014) are improved versions of standard RNNs that use
update gates and reset gates to resolve the vanishing gradient problem of a standard RNN. In our
GRU-based encoder, the hidden state ht is computed as GRUencoder(xwheret , ht−1):

ht = (1− zt)� ht−1 + zt � h′t, (2)

zt = σ(W enc
z xwheret + Uencz ht−1 + bencz ), (3)

h′t = tanh(W enc
h xwheret + Uench (rt � ht−1) + bench ), (4)

rt = σ(W enc
r xwheret + Uencr ht−1 + bencr ), (5)

where W enc
z , W enc

h , W enc
r , Uencz , Uench and Uencr are encoder weight matrices. σ(·) is the sigmoid

function. � represents element-wise multiplication.

3.1.2 Greplace GRU-BASED DECODER WITH ATTENTION MECHANISM

In LEX-GAN, our encoder-decoderGreplace utilizes attention mechanism (Bahdanau et al., 2014) to
automatically search for parts of a sentence that are relevant to predicting the target word. The con-
tent vector ct summarizes all the information of words in a sentence. It depends on the annotations
ht and is computed as a weighted sum of these ht:

ct =

M∑
j=1

αtjhj , (6)

αtj =
exp(etj)∑M
k=1 exp(etk)

, (7)

etj = a(st−1, hj), (8)
where etj scores how well the inputs around position j and the output at position tmatch. Alignment
model a is a neural network that jointly trained with all other components. The GRU decoder takes
the previous target yt−1 and the context vector ct as input, and utilizes GRU to compute the hidden
state st as GRUdecoder(yt−1, st−1, ct):

st = (1− z′t)� st−1 + z′t � s′t, (9)

z′t = σ(W dec
z yt−1 + Udecz st−1 + Cdecz ct), (10)

s′t = tanh(W dec
s yt−1 + Udecs (r′t � st−1) + Cdecs ct), (11)

r′t = σ(W dec
r yt−1 + Udecr st−1 + Cdecr ct), (12)

where W dec
z , W dec

s , W dec
r , Udecz , Udecs , Udecr , Cdecz , Cdecs and Cdecr are decoder weight matrices.

Through this attention-equipped encoder-decoder,Greplace intelligently replaces items in sequences
and outputs adversarial samples.
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3.2 DISCRIMINATIVE MODEL

The generated adversarial samples xreplace combined with original data x are fed to the discrimina-
tive model. Dclassify and Dexplain are trained independently. We note that the two discriminators
can depend on each other, but we have chosen to explore the dependency as part of our future work
on LEX-GAN. Dclassify provides a probability in rumor detection, and Dexplain provides the prob-
ability of each word in the sentence being problematic. The explainability of LEX-GAN is gained
by adversarial training. We first insert adversarial items in the sequence, then trainDexplain to detect
them. Through this technique, LEX-GAN can not only classify data with existing patterns, but also
classify sequences with unseen patterns that may appear in the future. Adversarial training improves
the robustness and generalization ability of LEX-GAN. We will show in Section 5 the effectiveness
of LEX-GAN in addressing the accuracy reduction problem, when compared to prior work.

3.3 TRAINING

In rumor detection, a sequence x has a true label Y being either a rumor R or a non-rumor N .
After manipulating the sequence x, output of the generative model xreplace is labeled as R since
it is machine generated. The objective of a φ-parameterized generative model is to mislead the θ-
parameterized discriminators. In our case, Dθ

classify(xreplace) indicates how likely the generated
xreplace is classified as N . Dθ

explain(xreplace) indicates how accurately Dθ
explain detects the re-

placed words in a sequence. The error attribution per time step in LEX-GAN is achieved naturally
since Dθ

explain evaluates each token and therefore provides a fine-grained supervision signal to the
generators. For example, a case where the generative model produces a sequence that deceives the
discriminative model. Then the reward signal from Dθ

explain indicates how well the position of each
replaced word contributes to the error result. The reward signal from Dθ

classify represents how well
the combination of the position and the replaced word deceived the discriminator. The generative
model is updated by applying a policy gradient on the received rewards from the discriminative
model.

The rumor generation problem is defined as follows. Given a sequence x, Gφwhere is used to
produce a sequence of probabilities p indicating the replacing probability of each token in x.
Gφreplace takes xwhere and produces a new sequence xreplace. This newly generated xreplace is
a sentence, part of which is replaced and labeled as R. At time step t, the state s consists of
swhere and sreplace. swhere = (p1, ..., pt−1), sreplace = (xreplace1 , ..., xreplacet−1 ). The policy model
Gφwhere(pt|p1, ..., pt−1) and Gφreplace(x

replace
t |xreplace1 , ..., xreplacet−1 ) are stochastic. Following RL,

Gφwhere’s objective is to maximize its expected long-term reward:

Jwhere(φ) = E[RT |s0, φ] =
∑
p1

Gφwhere(p1|s
where
0 ) ·QG

φ

Dθ (s
replace
0 , a), (13)

QG
φ

Dθ (s
replace
0 , a) = −Dθ

explain(s
replace
0 ) +Dθ

classify(s
replace
0 ), (14)

where QG
φ

Dθ (s0, a) is the accumulative reward following policy Gφ starting from state s0 =

{swhere0 , sreplace0 }. −Dθ
explain(sreplace) indicates how much the generative model misleads

Dθ
explain. a is an action set that contains output of both Gφwhere and Gφreplace. RT is the reward

for a complete sequence. Similarly to Gφwhere, G
φ
replace maximizes its expected long-term reward:

Jreplace(φ) =
∑

xreplace1

Gφreplace(x
replace
1 |sreplace0 ) ·QG

φ

Dθ (s
replace
0 , a). (15)

We apply a discriminative model provided reward value to the generative model after the sequence
is produced. The reason is that our Gφreplace doesn’t need to generate each and every word in the
sequence, but only fills a few blanks that are generated byGφwhere. Under this assumption, long-term
reward is approximated by the reward gained after the whole sequence is finished.

The discriminative model and the generative model are updated alternately. The loss function of
discriminative model is defined as follows:

LD = λexplainD LexplainD + λclassifyD LclassifyD , (16)
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LexplainD = −Ey∼f(Gφwhere(x))[ylog(D
θ
explain(x

replace))+(1−y)log(1−Dθ
explain(x

replace))] (17)

LclassifyD = −Ey∼Y [ylog(Dθ
classify(x

replace)) + (1− y)log(1−Dθ
classify(x

replace))] (18)

where λexplainD and λclassifyD are the balancing parameters.

We adopt the training method in GANs to train the networks. In each epoch, the generative model
and the discriminative model are updated alternately. Over-training the discriminators or the gener-
ators may result in a training failure. Thus hyper-parameters GSTEP and DSTEP are introduced to
balance the training. In each epoch, the generators are trained GSTEP times. Then discriminators
are trained DSTEP times.

4 EXPERIMENT SETTINGS

4.1 DATASETS

We evaluate LEX-GAN on a benchmark Twitter rumor detection dataset PHEME (Kochkina et al.,
2018), and a splice site benchmark dataset NN269 (Reese et al., 1997). PHEME has two versions.
PHEMEv5 contains 5792 tweets related to five news, 1972 of them are rumors and 3820 of them
are non-rumors. PHEMEv9 contains 6411 tweets related to nine news, 2388 of them are rumors
and 4023 of them are non-rumors. NN269 dataset contains 13231 splice site sequences. It has 6985
acceptor splice site sequences with length of 90 nucleotides, 5643 of them are positiveAP and 1324
of them are negativeAN . It also has 6246 donor splice site sequences with length of 15 nucleotides,
4922 of them are positive DP and 1324 of them are negative DN .

4.2 MODELS

In the rumor detection task, we compare LEX-GAN with six popular rumor detectors: RNN with
LSTM cells, CNN, VAE-LSTM, VAE-CNN, a contextual embedding model with data augmenting
(DATA-AUG) (Han et al., 2019), and a GAN-based rumor detector (GAN-GRU) (Ma et al., 2019).
One of the strengths of LEX-GAN is that under the delicate layered structure that we designed, the
choice of model structure effects the results but not significantly. To showcase this ability of the
layered structure, we generate a variation of LEX-GAN as one baseline. LEX-LSTM is generated
by replacing LEX-GAN’s Greplace with a LSTM model. LEX-GAN generates a set of sequences
by substituting around 10% of the words in original sequences. We pre-train the Dclassify by fix-
ing Nreplace = 10%. We then freeze Dclassify and train the other three models. During training,
we lower Nreplace from 50% to 10% to guarantee data balancing for Dexplain and hence better re-
sults in terms of explainability. All the embedding layers in the generators and discriminators are
initialized with 50 dimension GloVe (Pennington et al., 2014) pre-trained vectors. Early stopping
technique is applied during training. LEX-LSTM is trained under the same training process. The
generated data in the rumor task are labeled as R, and we denote this dataset as PHEME’. For fair-
ness and consistency, we train baselines LSTM, CNN, VAE-LSTM, and VAE-CNN with PHEME
and PHEME+PHEME’. For all baselines, we use two evaluation principles: (i) hold out 10% of the
data for model tuning. (ii) Leave-one-out (L) principle, i.e., leave out one news for test, and train
the models on other news. Final results are calculated as the weighted average of all results. L
principle constructs a realistic testing scenario and evaluates the rumor detection ability under new
out-of-domain data. For DATA-AUG and GAN-GRU, we import the best results reported in their
papers.

For the gene classification and mutation detection task, LEX-GAN generates a dataset NN269’
by replacing nine characters in acceptor sequences and three characters in donor sequences. We
compare LEX-GAN with six models: RNN with LSTM cells, CNN, VAE-LSTM, VAE-CNN, LEX-
LSTM, and a state-of-the-art splice site predictor EFFECT from (Kamath et al., 2014). The first
four baselines are trained under NN269+NN269’, and tested on both NN269+NN269’ and clean
data NN269. We import EFFECT’s results from (Kamath et al., 2014). To evaluate LEX-GAN’s
generalization ability, we label the generated sequences by the following rule: if the input sequence
x has label Y , then the output sequence xreplace is labeled as Y ′, indicating that xreplace is from
class Y but with modification. The final classification output of LEX-GAN is two-fold: AP , AN
for acceptor, or DP , DN for donor. We merge the generated classes AP ′, AN ′ and DP ′, DN ′
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with original classes to evaluate the generalization ability of LEX-GAN. Given a sequence, LEX-
GAN can classify it into one of the known classes, although the sequence could be either clean or
modified.

Architecture setup of LEX-GAN is as follows. Gwhere is a RNN with Bidirectional LSTM (BiL-
STM). It has two hidden BiLSTM layers followed by a dense layer. The one we used in all ex-
periments has the architecture of EM-32-32-16-OUT, where EM, OUT represent embedding and
output, respectively. Greplace is an encoder-decoder with attention mechanism. The encoder has
two GRU layers, and the decoder has two GRU layers equipped with attention mechanism. The
architecture of Greplace we used in all experiments is EM-64-64-EM-64-64-OUT. Dexplain has the
same architecture asGwhere. Dclassify is a CNN with two convolutional layers followed by a dense
layer. The one we used in all experiments has the architecture of EM-32-64-16-OUT. LEX-LSTM
utilizes an LSTM-based encoder-decoder with architecture EM-32-32-EM-32-32-OUT as Greplace.
For baselines architecture details, see Appendix A.

Table 1: Macro-f1 and accuracy comparison between LEX-GAN and baselines on the rumor detec-
tion task. BOTH represents the models are trained on PHEME+PHEME’. * indicates the best result
from the work that proposed the corresponding model. L represents the model is evaluated under
leave-one-out principle.

PHEMEv5 PHEMEv9
PHEME PHEME+PHEME’ PHEME PHEME+PHEME’

Macro-f1 Accuracy Macro-f1 Accuracy Macro-f1 Accuracy Macro-f1 Accuracy

LSTM PHEME 0.6425 0.6542 0.4344 0.4345 0.6261 0.6269 0.4999 0.5283
BOTH 0.5413 0.5761 0.6421 0.6621 0.4938 0.5341 0.5937 0.6103

CNN PHEME 0.6608 0.6660 0.4792 0.4833 0.6549 0.6552 0.5028 0.5253
BOTH 0.4936 0.5273 0.5757 0.5927 0.5025 0.5400 0.5880 0.6040

VAE-LSTM PHEME 0.4677 0.5625 0.2582 0.2871 0.4454 0.4589 0.4231 0.4326
BOTH 0.4587 0.4589 0.5001 0.5595 0.3349 0.4960 0.2148 0.2592

VAE-CNN PHEME 0.5605 0.5605 0.4655 0.4902 0.3859 0.5029 0.2513 0.2778
BOTH 0.5395 0.5429 0.4838 0.5302 0.5164 0.5166 0.4573 0.4794

GAN-GRU PHEME 0.7810∗ 0.7810∗ - - - - - -
LEX-LSTM PHEME 0.8242 0.8242 0.6259 0.6302 0.8066 0.8066 0.6884 0.7044
LEX-GAN PHEME 0.8475 0.8476 0.6524 0.6777 0.8084 0.8095 0.7620 0.8085

LSTM (L) PHEME 0.5693 0.6030 0.5260 0.5710 0.5217 0.5827 0.5055 0.5906
BOTH 0.3854 0.4478 0.4980 0.6572 0.4120 0.4933 0.5050 0.6729

CNN (L) PHEME 0.5994 0.6406 0.5324 0.5779 0.5477 0.6035 0.5051 0.5769
BOTH 0.4265 0.4719 0.5256 0.6587 0.3679 0.4601 0.4562 0.6455

VAE-LSTM (L) PHEME 0.3655 0.3996 0.3620 0.3959 0.4256 0.5367 0.4284 0.5397
BOTH 0.3919 0.5198 0.3876 0.5174 0.4225 0.5442 0.4270 0.5442

VAE-CNN (L) PHEME 0.4807 0.5190 0.4816 0.5214 0.4316 0.4597 0.4314 0.4587
BOTH 0.4594 0.5320 0.4662 0.5380 0.4686 0.5347 0.4786 0.5411

DATA-AUG (L) PHEME 0.5350∗ 0.7070∗ - - - - - -
LEX-LSTM (L) PHEME 0.6666 0.6866 0.5703 0.6411 0.5972 0.6272 0.5922 0.6371
LEX-GAN (L) PHEME 0.6745 0.7016 0.6126 0.6342 0.6207 0.6438 0.6016 0.6400

5 RESULTS

5.1 RUMOR DETECTION

Comparison between LEX-GAN Dclassify and baselines in the rumor detection task is shown in
Table 1. In this experiment, we use PHEME data to train LEX-GAN. During training, LEX-GAN
generates PHEME’ to enhance the discriminative model. In real world applications, original clean
dataset is available all the time. However, the modified or adversarial data that contains different pat-
terns are not always accessible. Models like LSTM and CNN do not have generalization ability and
usually perform worse facing adversarial input. Generative models such as GANs are more robust.
In VAE-LSTM and VAE-CNN, we first pre-train VAEs, then LSTM and CNN are trained under
latent representations of pre-trained VAEs. Under the first evaluation principle (described in Section
4.2), LEX-GAN and LEX-LSTM outperform all baselines in terms of both macro-f1 and accuracy.
Accuracy is not sufficient when the test data are not balanced, hence macro-f1 is provided for com-
prehensive comparison. Under the first evaluation principle, the robustness and generalization ability
of LEX-GAN and LEX-LSTM are shown by comparing with baselines under PHEME+PHEME’.
LEX-GAN reaches the highest values in both versions of PHEME+PHEME’ and LEX-LSTM fol-
lows as the second best. Under L principle, LEX-GAN and LEX-LSTM achieves highest macro-f1
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scores in all cases. These results confirm the rumor detection ability of the proposed layered struc-
ture under new, out-of-domain data. Adversarial training of baselines improves generalization and
robustness under PHEME+PHEME’, but hurts the performance under clean data as expected. Al-
though LEX-GAN and LEX-LSTM are trained adversarially, they achieve the highest macro-f1
under clean data PHEME. The results confirm that LEX-GAN outperforms the baselines in terms of
addressing accuracy reduction problem.

LEX-GAN’s Dexplain recognizes the modified parts in sequences accurately. Its macro-f1 on
PHEME’v5 and PHEME’v9 are 80.42% and 81.23%, respectively. Examples of Dexplain predict-
ing suspicious parts in rumors are shown in Table 2. In the first rumor, “hostage escape” is the most
important part in the sentence, and if these two words are problematic, then the sentence is highly
likely to be problematic. Given an unverified or even unverifiable rumor, Dexplain provides reason-
able explanation without requiring a previously collected verified news database. Additional results
of LEX-GAN’s comparison with baselines can be found in Appendix B.

Table 2: Examples of Dexplain predicting suspicious words in rumors (marked in bold). Dclassify

outputs probabilities in range [0, 1], where 0 and 1 represents rumor and non-rumor, respectively.
0.0010 breaking update 2 hostages escape lindt café through front door 1 via fire door url sydneysiege url
0.0255 newest putin rumour his girlfriend just gave birth to their child url cdnpoli russia
0.0300 soldier gets cpr after being shot at war memorial in ottawa url
0.0465 sydney’s central business district is under lockdown as gunman takes hostages at a cafe live

stream as it unfolds url
0.2927 so in 5mins mike brown shaved his head and changed his scandals to shoes i think your being

lied too ferguson url

5.2 GENE CLASSIFICATION AND MUTATION DETECTION

In this experiment, all models are trained under NN269+NN269’ to ensure fairness. When test
with NN269+NN269’, there are 8 classes in total: AP , AN , DP , DN from NN269 and AP ′,
AN ′, DP ′, DN ′ from NN269’. If solely clean data from NN269 is accessible during training, then
LEX-GAN and LEX-LSTM are the only models that can recognize if a given sequence is modified
or unmodified. Comparison between LEX-GAN’s (and LEX-LSTM’s) Dclassify and baselines is
shown in Table 3. Under long acceptor data, baselines perform significantly worse than LEX-GAN
and LEX-LSTM. Under short donor data, LEX-GAN and LEX-LSTM achieve highest AURoCs.
This implies that LEX-GAN and LEX-LSTM are stronger when the input are long sequences. The
layered structure and adversarial training under the augmented dataset provide LEX-GAN the ability
of extracting meaningful patterns from long sequences. For short sequences, LEX-GAN and LEX-
LSTM provide highest AURoC, and simpler models such as CNN can also give good classification
results. This is because for short sequences, textural feature mining and understating is relatively
easier then in long sequence. Under NN269’, LEX-GAN’s Dclassify and Dexplain achieve 92.25%
and 72.69% macro-f1, respectively. Additional gene mutation detection experiments can be found
in Appendix B.2.

5.3 LIMITATIONS AND ERROR CASES IN RUMOR DETECTION

Examples of error cases of LEX-GAN in rumor detection task are presented in Table 4. For some
short sentences, Dexplain sometimes fails to predict the suspicious parts. The reason is that the
majority of LEX-GAN’s training data are long sentences, hence for short sentences, Dexplain does
not perform as well as in long sentences. This problem could be solved by feeding more short
sentences to LEX-GAN. In most cases, although Dexplain does not generate predictions, Dclassify

still can provide accurate classification. As shown in Table 4, Dclassify outputs low score, i.e.,
classifies the input as rumor, for four out of five rumors.

6 DISCUSSION

In this work, we proposed LEX-GAN, a layered explainable text-level rumor detector based on
GAN. We used the policy gradient method to effectively train the layered generators. LEX-GAN
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Table 3: Comparison between LEX-GAN and baselines on the gene classification and mutation
detection task. * indicates the best result from the corresponding paper. 2-class refers to AP , AN
for acceptor, and DP , DN for donor. 4-class refers to AP , AN , AP ′, AN ′ for acceptor, and DP ,
DN , DP ′, DN ′ for donor. A and D indicate acceptor and donor.

NN269 (2-class) NN269+NN269’ (2-class) NN269+NN269’ (4-class)
Macro-f1 Accuracy AURoC Macro-f1 Accuracy AURoC Macro-f1 Accuracy AURoC

LSTM (A) 0.8120 0.8870 0.9305 0.7794 0.8580 0.9036 0.7800 0.8580 0.9715
CNN (A) 0.5663 0.7933 0.6324 0.5594 0.7808 0.6131 0.5593 0.7808 0.8875
VAE-LSTM (A) 0.7664 0.8566 0.8451 0.6781 0.8323 0.7780 0.6531 0.8342 0.8806
VAE-CNN (A) 0.5657 0.7539 0.6135 0.5744 0.7651 0.6219 0.5379 0.7470 0.8411
EFFECT (A) - - 0.9770∗ - - - - - -
LEX-LSTM (A) 0.9131 0.9458 0.9781 0.8794 0.9243 0.9658 0.8758 0.9223 0.9879
LEX-GAN (A) 0.9175 0.9494 0.9807 0.8831 0.9301 0.9691 0.8839 0.9311 0.9894
LSTM (D) 0.8336 0.8214 0.9003 0.8148 0.7998 0.8802 0.7648 0.7530 0.9246
CNN (D) 0.9131 0.9393 0.9795 0.9025 0.9323 0.9746 0.8336 0.8583 0.9596
VAE-LSTM (D) 0.8011 0.8515 0.9218 0.7336 0.8329 0.8217 0.5774 0.7692 0.9194
VAE-CNN (D) 0.8386 0.8772 0.9554 0.7909 0.8593 0.8528 0.5585 0.7415 0.9190
EFFECT (D) - - 0.9820∗ - - - - - -
LEX-LSTM (D) 0.9272 0.9484 0.9822 0.8802 0.9140 0.9766 0.8113 0.8580 0.9541
LEX-GAN (D) 0.9274 0.9494 0.9810 0.8988 0.9296 0.9635 0.8119 0.8470 0.9776

Table 4: Examples of Dexplain failing to predict suspicious words in some short rumors. Dclassify

outputs probabilities in range [0, 1], where 0 and 1 represents rumor and non-rumor, respectively.
0.0112 ottawa police report a third shooting at rideau centre no reports of injuries
0.0118 breaking swiss art museum accepts artworks bequeathed by late art dealer gurlitt url
0.0361 breaking germanwings co pilot was muslim convert url
0.5771 the woman injured last night ferguson url
0.4451 germanwings passenger plane crashes in france url

outperforms the baseline models in mitigating the accuracy reduction problem, that exists in case of
only clean data. We demonstrate the classification ability and generalization power of LEX-GAN
by applying it to two applications: rumor detection and gene classification and mutation detection.

On average, in the rumor detection task, LEX-GAN outperforms the baselines on clean dataset
PHEME and enhanced dataset PHEME+PHEME’ by 26.85% and 17.04% in terms of macro-f1,
respectively. LEX-GAN provides reasonable explanation without a previously constructed verified
news database, and achieves significantly high performance. In the gene classification and mutation
detection task, LEX-GAN identifies the mutated gene sequence with high precision. On average,
LEX-GAN outperforms baselines in both NN269 and NN269+NN269’ (2-class) by 10.71% and
16.06% in terms of AURoC, respectively. In both rumor detection and gene mutation detection tasks,
LEX-GAN’s explainability is demonstrated by identifying the mutations accurately (above 70%
macro-f1). We find that using two discriminators to perform classification and explanation separately
achieves higher performance than using one discriminator to realize both functions. We also found
the pre-train of Dclassify and varying Nreplace contribute to the high accuracy of Dexplain. As
part of our future work, we would like to explore the application of hierarchical attention network
(Yang et al., 2016) to improve the performance of our generative model. We will also investigate the
dependencies between the discriminators of LEX-GAN.
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A BASELINES ARCHITECTURE SETUP

The architectures of baselines LSTM, CNN, VAE-LSTM, and VAE-CNN used in both tasks are
defined as in Table 5. VAE-LSTM and VAE-CNN use a pre-trained VAE followed by LSTM and
CNN with the architectures we defined in Table 5. The VAE we pre-trained is a LSTM-based
encoder-decoder. The encoder with architecture EM-32-32-32-OUT has two LSTM layers followed
by a dense layer. The decoder has the architecture IN-32-32-OUT, where IN stands for input layer.

Table 5: Baselines’ architecture.
Model Gene mutation detection task Rumor detection task
LSTM EM-LSTM(64)-LSTM(32)-DENSE(8)-OUT EM-LSTM(32)-LSTM(16)-DENSE(8)-OUT
CNN EM-CONV(32)-CONV(64)-DENSE(16)-OUT EM-CONV(32)-CONV(16)-DENSE(8)-OUT
VAE-LSTM LSTM(32)-LSTM(32)-DENSE(8)-OUT LSTM(32)-LSTM(16)-DENSE(8)-OUT
VAE-CNN CONV(32)-CONV(64)-DENSE(16)-OUT CONV(32)-CONV(64)-DENSE(16)-OUT

B ADDITIONAL SAMPLES

B.1 RUMOR DETECTION TASK

Additional results for the rumor detection task are shown in Table 6. Dexplain provides reasonable
explanation in most rumors. Here we also provide two examples to demonstrate the rumor detection
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Table 6: Examples of Dexplain’s prediction on rumors.

twin hostage situations erupt in paris two victims have been killed our updated story url
pilots of crashed germanwings flight declared emergency at 10 47 a m as plane fell rapidly url
doomed germanwings co pilot ’suffered burnout or depression’ years before crash url url
sky news australia a sixth hostage has escaped from the lindt cafe in sydney sydneysiege
approximately 50 hostages may be held captive at lindt café – local reports url sydneysiege url

Table 7: Examples of Dexplain and Dclassify’s prediction on rumor (first) and non-rumor (second).
The suspicious words in the rumor predicted by Dexplain are marked in bold. Dclassify provides a
score ranges from 0 to 1. 0 and 1 represent rumor and non-rumor, respectively.
0.1579 who’s your pick for worst contribution to sydneysiege mamamia uber or the daily tele
0.8558 glad to hear the sydneysiege is over but saddened that it even happened to begin with

my heart goes out to all those affected

power of LEX-GAN compared to baselines. Two examples that are correctly detected by LEX-GAN
but incorrectly detected by other baselines is shown in Table 7.

For the first rumor, baselines CNN, LSTM, VAE-CNN, and VAE-LSTM provide scores 0.9802,
0.9863, 0.4917, and 0.5138, respectively. LEX-GAN provides a very low score for a rumor, while
other baselines all generated relatively high scores, and even detect it as non-rumor. This is a very
difficult example since from the sentence itself, we as human rumor detection agents even cannot
pick the suspicious parts confidently. However, LEX-GAN gives a reasonable prediction and shows
that it has the ability to understand and analyze complicated rumors. For the second non-rumor,
baselines CNN, LSTM, VAE-CNN, and VAE-LSTM provide scores 0.0029, 0.1316, 0.6150, and
0.4768, respectively. In this case, a non-rumor sentence gains a high score from LEX-GAN, but
several relatively low scores from the baselines. This example again confirms that our proposed
LEX-GAN indeed captures the complicated nature of rumors and non-rumors.

B.2 GENE CLASSIFICATION AND MUTATION DETECTION TASK ON GENE DATASET

We evaluate LEX-GAN on a molecular biology splice-junction gene sequences dataset (GENE)
(Dua & Graff, 2017). GENE dataset contains 3109 splice junction gene sequences, and each se-
quence has 60 characters. Splice junctions are points on a DNA sequence at which superfluous
DNA is removed during the process of protein creation in higher organisms (Dua & Graff, 2017).
They are labeled as exon/intron boundaries (EI sites), intron/exon boundaries (IE sites), or neither
(N ).

For the gene classification and mutation detection task, LEX-GAN generates a dataset GENE’ by
replacing five characters in each sequence. We compare LEX-GAN with five models: RNN with
LSTM cells, CNN, VAE-LSTM, VAE-CNN, and a DNA classifier (DNAC) from (Deshpande &
Karypis, 2002). The first four baselines are trained under GENE+GENE’, and tested on both
GENE+GENE’ and clean data GENE. We import DNAC’s results from (Deshpande & Karypis,
2002). To evaluate LEX-GAN’s generalization ability, we label the generated sequences by the fol-
lowing rule: if the input sequence x has label Y , then the output sequence xreplace is labeled as
Y ′, indicating that xreplace is from class Y but with modification. The final classification output
of LEX-GAN is three-fold: EI , IE, or N . We merge the generated classes EI ′, IE′, N ′ with
original classes to evaluate the generalization ability of LEX-GAN. Given a sequence, LEX-GAN
can classify it into one of the three known classes, although the sequence could be either clean or
modified.

In this experiment, all models are trained under GENE+GENE’ to ensure fairness. When test with
GENE+GENE’, there are 6 classes in total: EI , IE,N from GENE andEI ′, IE′,N ′ from GENE’.
If solely clean data from GENE are accessible during training, then LEX-GAN is the only model that
can recognize if a given sequence is modified or unmodified. LEX-GAN can endue the baselines
with this ability by generating GENE’. Comparison between LEX-GAN’s Dclassify and baselines
is shown in Table 8. Baselines perform significantly worse than LEX-GAN in 6-class classification.
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This implies that the baselines can only roughly classify a modified sequence into a known class as
shown in 3-class experiment, but their fine-grained classification ability is significantly lower than
LEX-GAN. On GENE’,Dclassify andDexplain achieve 91.80% and 89.49% macro-f1, respectively.
An example ofDexplain’s prediction is shown in Table 9. This suggests that LEX-GAN can not only
identify whether a gene-sequence is modified from which known class, but also provide an accurate
prediction that explains which part of the sequence is modified.

Table 8: Comparison between LEX-GAN and baselines on the gene classification and mutation
detection task. * indicates the best result from the corresponding paper. Note that DNAC does binary
classification between EI and IE, hence its result is relatively higher than 3-class classification. 3-
class refers to EI , IE, N . 6-class refers to EI , IE, N , EI ′, IE′, N ′.

GENE (3-class) GENE+GENE’ (3-class) GENE+GENE’ (6-class)
Precision Recall Macro-f1 Precision Recall Macro-f1 Precision Recall Macro-f1

LSTM 0.7894 0.7930 0.7911 0.7971 0.7978 0.7972 0.7931 0.7990 0.7953
CNN 0.7233 0.7306 0.7265 0.7270 0.7301 0.7280 0.7146 0.7207 0.7165
VAE-LSTM 0.4733 0.3835 0.3494 0.5184 0.4899 0.4806 0.2851 0.3583 0.3086
VAE-CNN 0.8360 0.8583 0.8441 0.8210 0.8321 0.8236 0.3571 0.4605 0.3870
DNAC - - 0.9390∗ - - - - - -
LEX-GAN 0.9510 0.9642 0.9571 0.9391 0.9418 0.9403 0.9266 0.9336 0.9297

Table 9: Examples of the generative model modifies gene sequences and the discriminative model
detects the modifications (marked in bold).

Original GGGCCCTGGCCCTGACCCAGACCTGGGCGCGTGAGTGCAGGGTCTGCAGGGAAATGGTCG
Modified GGGCCCTGGCCCTGACCCAGACCTGGGCGCGTGAGTGCAGGGTCTGCAGGGAAATGGTAS
Prediction GGGCCCTGGCCCTGACCCAGACCTGGGCGCGTGAGTGCAGGGTCTGCAGGGAAATGGTAS
Original CCCAGGAGGGGTGGACCCACAGCCCAGGGAGGCCGAAAGCGCGGGCGGGCAGGCAGAGGC
Modified ACCAGGAGGGGTGGACCCACNGCCCAGGGAGGCCGAAAGCGCGGGCGGGCAGGCAGAGGC
Prediction ACCAGGAGGGGTGGACCCACNGCCCAGGGAGGCCGAAAGCGCGGGCGGGCAGGCAGAGGC
Original TAATCGTTGATTCCCTTCCCTCCCTCACAGAAAGCATCCCTGGAGAACAGCCTGGAGGAG
Modified TAATCGTGGSGDTCCCTTCCCTCCCTCACAGAAAGCATCCCTGGAGAACAGCCTGGAGGAG
Predicted TAATCGTGGSGDTCCCTTCCCTCCCTCACAGAAAGCATCCCTGGAGAACAGCCTGGAGGAG
Original CCCAGGAGGGGTGGACCCACAGCCCAGGGAGGCCGAAAGCGCGGGCGGGCAGGCAGAGGC
Modified ACCAGGAGGGGTGGACCCACGGCCCAGGGAGGCCGAAAGCGCGGGCGGGCAGGCAGAGGC
Prediction ACCAGGAGGGGTGGACCCACGGCCCAGGGAGGCCGAAAGCGCGGGCGGGCAGGCAGAGGC
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