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ABSTRACT

Strong inductive biases allow children to learn in fast and adaptable ways. Chil-
dren use the mutual exclusivity (ME) bias to help disambiguate how words map to
referents, assuming that if an object has one label then it does not need another. In
this paper, we investigate whether or not standard neural architectures have an ME
bias, demonstrating that they lack this learning assumption. Moreover, we show
that their inductive biases are poorly matched to lifelong learning formulations of
classification and translation. We demonstrate that there is a compelling case for
designing neural networks that reason by mutual exclusivity, which remains an
open challenge.

1 INTRODUCTION

Children are remarkable learners, and thus their inductive biases should interest machine learning re-
searchers. To help learn the meaning of new words efficiently, children use the “mutual exclusivity”
(ME) bias – the assumption that once an object has one name, it does not need another (Markman
& Wachtel, 1988) (Figure 1). In this paper, we examine whether or not standard neural networks
demonstrate the mutual exclusivity bias, either as a built-in assumption or as a bias that develops
through training. Moreover, we examine common benchmarks in machine translation and object
recognition to determine whether or not a maximally efficient learner should use mutual exclusivity.

Figure 1: The mutual
exclusivity task used in
cognitive development
research (Markman &
Wachtel, 1988). Children
tend to associate the
novel word (“dax”) with
the novel object (right).

When children endeavour to learn a new word, they rely on inductive bi-
ases to narrow the space of possible meanings. Children learn an average
of about 10 new words per day from the age of one until the end of high
school (Bloom, 2000), a feat that requires managing a tractable set of can-
didate meanings. A typical word learning scenario has many sources of
ambiguity and uncertainty, including ambiguity in the mapping between
words and referents. Children hear multiple words and see multiple ob-
jects within a single scene, often without clear supervisory signals to indi-
cate which word goes with which object (Smith & Yu, 2008).

The mutual exclusivity assumption helps to resolve ambiguity in how
words maps to their referents. Markman & Wachtel (1988) examined
scenarios like Figure 1 that required children to determine the referent of
a novel word. For instance, children who know the meaning of “cup”
are presented with two objects, one which is familiar (a cup) and another
which is novel (an unusual object). Given these two objects, children are
asked to “Show me a dax,” where “dax” is a novel nonsense word. Mark-
man and Wachtel found that children tend to pick the novel object rather than the familiar object.
Although it is possible that the word “dax” could be another word for referring to cups, children
predict that the novel word refers to the novel object – demonstrating a “mutual exclusivity” bias
that familiar objects do not need another name. This is only a preference; with enough evidence,
children must eventually override this bias to learn hierarchical categories: a Dalmatian can be called
a “Dalmatian,” a “dog”, or a “mammal” (Markman & Wachtel, 1988; Markman, 1989). As an often
useful but sometimes misleading cue, the ME bias guides children when learning the words of their
native language.

It is instructive to compare word learning in children and machines, since word learning is also a
widely studied problem in machine learning and artificial intelligence. There has been substantial
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Figure 2: Evaluating mutual exclusivity in a feedforward (a) and seq2seq (b) neural network. (a) After training
on a set of known objects, a novel label (“dax”) is presented as a one-hot input vector. The network maps this
vector to a one-hot output vector representing the predicted referent, through an intermediate embedding layer
and an optional hidden layer (not shown). A representative output vector produced by a trained network is
shown, placing almost all of the probability mass on known outputs. (b) A similar setup for mapping sequences
of labels to their referents. During the test phase a novel label “dax” is presented and the ME Score at that
output position is computed.

recent progress in object recognition, much of which is attributed to the success of deep neural
networks and the availability of very large datasets (LeCun et al., 2015). But when only one or a few
examples of a novel word are available, deep learning algorithms lack human-like sample efficiency
and flexibility (Lake et al., 2017). Insights from cognitive science and cognitive development can
help bridge this gap, and ME has been suggested as a psychologically-informed assumption relevant
to machine learning (Lake et al., 2019). In this paper, we examine standard neural networks to
understand if they have an ME bias. Moreover, we analyze whether or not ME is a good assumption
in lifelong variants of common translation and object recognition tasks.

2 RELATED WORK

Children utilize a variety of inductive biases like mutual exclusivity when learning the meaning of
words (Bloom, 2000). Previous work comparing children and neural networks has focused on the
shape bias – an assumption that objects with the same name tend to have the same shape, as opposed
to color or texture (Landau et al., 1988). Children acquire a shape bias over the course of language
development (Smith et al., 2002), and neural networks can do so too, as shown in synthetic learning
scenarios (Colunga & Smith, 2005; Feinman & Lake, 2018) and large-scale object recognition tasks
(Ritter et al., 2017) (see also Id et al. (2018) and Brendel & Bethge (2019) for alternative findings).
This bias is related to how quickly children learn the meaning of new words (Smith et al., 2002),
and recent findings also show that guiding neural networks towards the shape bias improves their
performance (Geirhos et al., 2019). In this work, we take initial steps towards a similar investigation
of the ME bias in neural networks. Compared to the shape bias, ME has broader implications for
machine learning systems; as we show in our analyses, the bias is relevant beyond object recognition.

Closer to the present research, Cohn-Gordon & Goodman (2019) analyzed an ME-like effect in
neural machine translation systems at the sentence level, rather than the word level considered in
developmental studies and our analyses here. Cohn-Gordon & Goodman (2019) showed that neural
machine translation systems often learn many-to-one sentence mappings that result in meaning loss,
such that two different sentences (meanings) in the source language are mapped to the same sentence
(meaning) in the target language. Using a trained network, they show how a probabilistic pragmatics
model (Frank & Goodman, 2012) can be used as a post-processor to preserve meaning and encourage
one-to-one mappings. These sentence-level biases do not necessarily indicate how models behave
at the word level, and we are interested in the role of ME during learning rather than as a post-
processing step. Nevertheless, Cohn-Gordon and Goodman’s results are important and encouraging,
raising the possibility that ME could aid in training deep learning systems.
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3 DO NEURAL NETWORKS REASON BY MUTUAL EXCLUSIVITY?

In this section, we investigate whether or not standard neural network models have a mutual exclu-
sivity bias. Paralleling the developmental paradigm (Markman & Wachtel, 1988), ME is analyzed
by presenting a novel stimulus (“Show me the dax”) and asking models to predict which outputs
(meanings) are most likely. The strength of the bias is operationalized as the aggregate probability
mass placed on the novel rather than the familiar meanings.

Our analyses relate to classic experiments by Marcus on whether neural networks can generalize
outside their training space (Marcus, 1998; 2003). Marcus showed that a feedforward autoencoder
trained on arbitrary binary patterns fails to generalize to an output unit that was never activated dur-
ing training. Our aim is to study whether standard architectures can recognize and learn a more
abstract pattern – a perfect one-to-one mapping between input symbols and output symbols. Specif-
ically, we are interested in model predictions regarding unseen meanings given a novel input. We
also test for ME using modern neural networks in two settings using synthetic data: classification
(feedforward classifiers) and translation (sequence-to-sequence models; as reported in Appendix A).

3.1 CLASSIFICATION

Synthetic data. We consider a simple one-to-one mapping task inspired by Markman & Wachtel
(1988). Translating this into a synthetic experiment, input units denote words and output units
denote objects. Thus, the dataset consists of 100 pairs of input and output patterns, each of which
is a one-hot vector of length 100. Each input vector represents a label (e.g., ‘hat’, ‘cup’, ‘dax’)
and each output vector represents a possible referent object (meaning). Figure 2a shows the input
and output patterns for the ‘dax’ case, and similar patterns are defined for the other 99 input and
output symbols. A one-to-one correspondence between each input symbol and each output symbol
is generated through a random permutation, and there is no structure to the data beyond the arbitrary
one-to-one relationship.

Models are trained on 90 name-referent pairs and evaluated on the remaining 10 test pairs. No
model can be expected to know the correct meaning of each test name – there is no way to know
from the training data – but several salient patterns are discoverable. First, there is a precise one-to-
one relationship exemplified by the 90 training items; the 10 test items can be reasonably assumed
to follow the same one-to-one pattern, especially if the network architecture has exactly 10 unused
input symbols and 10 unused output symbols. Second, the perfect one-to-one relationship ensures
a perfect ME bias in the structure of the data. Although the learner does not know precisely which
new output symbol a new input symbol refers to, it should predict that the novel input symbol will
correspond to one of the novel output symbols. An ideal learner should discover that an output unit
with a known label does not need another – in other words, it should utilize ME to make predictions.

Mutual exclusivity. We ask the neural network to “Show me the dax” by activating the “dax”
input unit and asking it to select amongst possible referents (similar to Figure 1). The network
produces a probability distribution over candidate referents (see Figure 2a), and can make relative
(two object) comparisons by isolating the two relevant scores. To quantify the overall propensity
toward ME, we define an “ME score” that measures the aggregate probability assigned to all of
the novel output symbols as opposed to familiar outputs, corresponding to better performance on
the classic forced choice ME task. Let us denote the training symbol by Y , drawn from the data
distribution (X ,Y) ∼ D and the held out symbols Y ′ drawn from (X ′,Y ′) ∼ D′. The mutual
exclusivity score is the sum probability assigned to unseen output symbols Y ′ when shown a novel
input symbol x ∈ X ′

ME Score =
1

|D′|
∑

(xi,yi)∈D′

∑
y∈Y ′

P (fnet(x) = y|xi), (1)

averaged over each of the test items. An ideal learner that has discovered the one-to-one relationship
in the synthetic data should have a perfect ME score of 1.0. In Figure 2a, the probability assigned to
the novel output symbol is 0.01 and thus the corresponding ME Score is 0.01. The challenge is to
get a high ME score for novel (test) items while also correctly classifying known (training) items.

Neural network architectures. A wide range of standard neural networks are evaluated on the
mutual exclusivity test. We use an embedding layer to map the input symbols to vectors of size 20
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Figure 3: Evaluating mutual exclusivity on synthetic categorization tasks. ME Score (solid blue) and the cross-
entropy loss (solid red) are plotted against the epochs of training. The configurations in the settings shown
were: (a) Results for a model with an embedding, hidden, and classification layers, (b) Results for a model with
embedding and classification layers trained with a weight decay factor of 0.001, and (c) Results for a model
with an embedding and classification layer trained with an entropy regularizer.

or 100, followed optionally by a hidden layer, and then by a 100-way softmax output layer. The
networks are trained with different activation functions (ReLUs (Nair & Hinton, 2010), TanH, Sig-
moid), optimizers (Adam (Kingma & Ba, 2015), Momentum, SGD), learning rates (0.1, 0.01, 0.001)
and regularizers (weight decay, batch-normalisation (Ioffe & Szegedy, 2015), dropout (Srivastava
et al., 2014b), and entropy regularization (see Appendix B.1)). The models are trained to maximize
log-likelihood. All together, we evaluated over 400 different models on the synthetic ME task.

Figure 4: Ideal and untrained ME
scores compared with the ME scores of
a few learned models.

Results. Several representative training runs with different ar-
chitectures are shown in Figure 3. An ideal learner that has
discovered the one-to-one pattern should have a mutual exclu-
sivity of 1; for a novel input, the network would assign all the
probability mass to the unseen output symbols. In contrast,
none of the configurations and architectures tested behave in
this way. As training progresses, the mutual exclusivity score
(solid blue line; Figure 3) tends to fall along with the training
loss (red line). In fact, almost all of the networks acquire a
strong anti-mutual exclusivity bias, transitioning from a initial
neutral bias to placing most or all of the probability mass on
familiar outputs (seen in Figure 4). An exception to this pat-
tern is the entropy regularized model, which maintains a score
equivalent to an untrained network. In general, trained models
strongly predict that a novel input symbol will correspond to a
known rather than unknown output symbol, in contradiction to ME and the organizing structure of
the synthetic data.

Further informal experiments suggest our results cannot be reduced to simply not enough data: these
architectures do not learn this one-to-one regularity regardless of how many input/output symbols
are provided in the training set. Even with thousands of training examples demonstrating a one-to-
one pattern, the networks do not learn this abstract principle and fail to capture this defining pattern
in the data. Other tweaks were tried in an attempt to induce ME, including eliminating the bias units
or normalizing the weights, yet we were unable to find an architecture that reliably demonstrated the
ME effect.

3.2 DISCUSSION

The results show that standard neural networks fail to reason by mutual exclusivity when trained in
a variety of typical settings. The models fail to capture the perfect one-to-one mapping (ME bias)
seen in the synthetic data, predicting that new symbols map to familiar outputs in a many-to-many
fashion.

Although our focus is on neural networks, this characteristic is not unique to this model class. We
posit it more generally affects flexible models trained to maximize log-likelihood. In a trained
network, the optimal activation value for an unused output node is zero: for any given training
example, increasing value of an unused output simply reduces the available probability mass for the
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Name Languages Sentence Pairs Vocabulary Size

IWSLT’14 (Freitag et al., 2014) Eng.-Vietnamese ∼133K 17K(en), 7K(vi)
WMT’14 (Luong et al., 2015) Eng.-German ∼4.5M 50K(en), 50K(de)

WMT’15 (Luong & Manning, 2016) Eng.-Czech ∼15.8M 50K(en), 50K(cs)

Table 1: Datasets used to analyze ME in machine translation.

target output. Using other loss functions could result in different outcomes, but we also did not find
that weight decay and entropy regularization of reasonable values could fundamentally alter the use
of novel outputs. In the next section, we investigate if the lack of ME could hurt performance on
common learning tasks such as machine translation and image classification.

4 SHOULD NEURAL NETWORKS REASON BY MUTUAL EXCLUSIVITY?

Mutual exclusivity has implications for a variety of common learning settings. Mutual exclusivity
arises naturally in lifelong learning settings, which more realistically reflect the “open world” char-
acteristics of human cognitive development. Unlike epoch-based learning, a lifelong learning agent
does not assume a fixed set of concepts and categories. Instead, new concepts can be introduced at
any point during learning. An intelligent learner should be sensitive to this possibility, and ME is
one means of intelligently reasoning about the meaning of novel stimuli.

Children and adults learn in an open world with some probability of encountering a new class at
any point, resembling the first epoch of training a neural net only. Moreover, the distribution of
categories is neither uniformly distributed nor randomly shuffled (Smith & Slone, 2017). To sim-
ulate these characteristics, we construct lifelong learning scenarios using standard benchmarks as
described below.

4.1 MACHINE TRANSLATION

In this section, we investigate if mutual exclusivity could be a helpful bias when training machine
translation models in a lifelong learning paradigm. From the previous experiments, we know that
the type of sequence-to-sequence (seq2seq) models used for translation acquire an anti-ME bias over
the course of training (see Appendix A). Would a translation system benefit from assuming that a
single word in the source sentence maps to a single word in the target sentence, and vice-versa? This
assumption is not always correct since synonymy and polysemy are prevalent in natural languages,
and thus the answer to whether or not ME holds is not absolute. Instead, we seek to measure the
degree to which this bias holds in lifelong learning on real datasets, and compare this bias to the
inductive biases of models trained on these datasets. The data for translation provides a somewhat
natural distribution over the frequency at which different words are observed (there are words that
appear much more frequently than the others). This allows us to use a single pass through the dataset
as a proxy for lifelong translation learning.

Datasets. We analyze three common datasets for machine translation, each consisting of pairs of
sentences in two languages (Table 1). The vocabularies are truncated based on word frequency in
accordance with the standard practices for training neural machine translation models (Freitag et al.,
2014; Luong et al., 2015; Luong & Manning, 2016).

Mutual exclusivity. There are several ways to operationalize mutual exclusivity in a machine trans-
lation setting. Mutual exclusivity could be interpreted as whether a new word in the source sentence
(“Xylophone” in English) is likely to be translated to a new word in the target sentence (“Xylophon”
in German), as opposed to a familiar word. Since the word alignments are difficult to determine and
not provided with the datasets, we instead measure a reasonable proxy: if a new word is encoun-
tered in the source sequence, is a new word also encountered in the target sentence? For a source
sentence S and an arbitrary novel word NS , and a target sentence T and a novel word NT , we
measure a dataset’s ME Score as the conditional probability P (NT ∈ T |NS ∈ S). A hypothetical
translation model could compute whether or not NS ∈ S by checking if the present word is ab-
sent from the vocabulary-so-far during the training process. Thus this conditional probability is an
easily-computable cue for determining whether or not a model should expect a novel output word.
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For the three datasets, we consider both forward and backward translation to get six scenarios for
analysis. The probability P (NT ∈ T |NS ∈ S) is estimated for a sample of 100 randomly shuffled
sequences of the dataset sentence pairs. See Appendix B.3 for details on calculating the base rate
P (NT ∈ T ).

Figure 5: Analysis of mutual exclusivity in machine translation datasets. The plots show the conditional proba-
bility of encountering a new word in the target sentence, if a new word is present in the source sentence (y-axis;
red line). Also plotted is the base rate of encountering a new target word (blue line). These quantities are
measured as at different points during training (x-axis). Errors bars are standard deviations.

Score En-Vi Vi-En En-De De-En En-Cs Cs-En

0.9 0.3K 2K 4K 3K 4K 3K
0.5 3K 40K 37K 30K 40K 30K
0.1 90K 120K 120K 140K 130 150K

Table 2: Number of sentences after which the ME Score P (NT ∈
T |NS ∈ S) falls below threshold.

Results and Discussion. The mea-
sures of conditional probability in
the six scenarios are shown in Ta-
ble 2. There is a consistent pat-
tern through the trajectory of early
learning: the conditional probability
P (NT ∈ T |NS ∈ S) is high initially
for thousands of initial sentence pre-
sentations, but then wanes as the net-
work encounters more samples from
the dataset. For a large part of the initial training, a seq2seq model would benefit from predicting
that previously unseen words in the source language are more likely to map to unseen words in the
target language. Moreover, this conditional probability is always higher than the base rate of en-
countering a new word, indicating that conditioning on the novelty of the input provides substantial
additional signal for predicting novelty in the output. Nevertheless, even the base rate suggests that
a model should expect novel words with some regularity in our settings. This is in stark contrast to
the synthetic results showing that seq2seq models quickly acquire an anti-ME assumption (see Ap-
pendix A), and their expectation of mapping novel inputs to novel outputs decays rapidly as training
progresses (Appendix Figure 7).

4.2 IMAGE CLASSIFICATION

Similar to translation, we examine if object classifiers would benefit from reasoning by mutual
exclusivity during training processes that mirror lifelong learning. To study this, when selecting an
image for training, we sample the class from a power law distribution (see Appendix B.2) such that
the model is more likely to see certain classes (Smith & Slone, 2017).
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Ideally, we would model the probability that an object belongs to a novel class based on its similarity
to previous samples seen by the model (e.g., outlier detection). Identifying that an image belongs to
a novel class is non-trivial, and instead we calculate the base rate for classifying an image as “new”
while a learner progresses through the dataset. The set of classes not seen by the model are referred
to as “new” here. This measure can be seen as a lower bound on the usefulness of ME through
the standard training process, since this calculation assumes a blind learner that is unaware of any
novelty signal present in the raw image.

Datasets. This section examines the Omniglot dataset (Lake et al., 2015) and the ImageNet dataset
(Deng et al., 2009). The Omniglot dataset has been widely used to study few-shot learning, con-
sisting of 1623 classes of handwritten characters with 20 images per class. The ImageNet dataset
consists of about 1.2 million images from 1000 different classes.

Mutual exclusivity. To measure ME throughout the training process, we examine if an image
encountered for the first time while training belongs to a class that has not been seen before. This
is operationalized as the probability of encountering an image from a new class N as a function of
the number of images seen so far t, P (N |t) (see Appendix B.5). This analysis is agnostic to the
content of the image and whether or not it is a repeated item; it only matters whether or not the class
is novel. As before, the analysis is performed using ten random runs through the dataset.

We contrast the statistics of the datasets by comparing them to the ME Score (Equation 1) of neural
network classifiers trained on the datasets. See Appendix B.4 for details about the models and their
training procedures. The probability mass assigned to the unseen classes by the network is recorded
after each optimizer step, as computed using Equation 1.

Score Omniglot Omniglot Imagenet Imagenet
Classifier Classifier

0.2 24,304 2,144 1,280 2,048
0.1 99,248 22,912 8,448 3,072

0.05 160,608 43,328 111,872 8,960

Table 3: Number of images after which the ME Score falls below
threshold.

Results and Discussion. The results
are summarized in Figure 6 and Table
3. The probability that a new image
belongs to an unseen class P (N |t)
is higher than the ME score of the
classifier through most of the learning
phase. Comparing the statistics of the
datasets to the inductive biases in the
classifiers, the ME score for the clas-
sifiers is substantially lower than the
baseline ME measure in the dataset,
P (N |t) (Table 3). For instance, the ImageNet classifier drops its ME score below 0.05 after about
8,960 images, while the approximate ME measure for the dataset shows that new classes are en-
countered at above this rate until at least 111,000 images. We found that higher learning rates can
force the probabilities assigned to unseen classes to zero on ImageNet after just a single gradient
step.

These results suggest that neural classifiers, with their bias favoring frequent rather than infrequent
outputs for novel stimuli, are not well-suited to lifelong learning challenges where such inferences
are critical. Although we examined classifiers trained in an online fashion, we would expect similar
results when we train them using replay or epoch-based training setups, where repeated presentation
of past examples would only strengthen the anti-ME bias. These classifiers are hurt by their lack of
ME and their failure to consider that new stimuli likely map to new classes. Ideally, a learning algo-
rithm should be capable of leveraging the image content, combined with its own learning maturity,
to decide how strongly it should reason by ME. Instead, standard models and training procedures do
not provide these capabilities and do not utilize this important inductive bias observed in cognitive
development.

5 GENERAL DISCUSSION

Children use the mutual exclusivity (ME) bias to learn the meaning of new words efficiently, yet
standard neural networks learn very differently. Our results show that standard deep learning algo-
rithms lack the ability to reason with ME, including feedforward networks and recurrent sequence-
to-sequence models trained to maximize log-likelihood with common regularizers. Beyond simply
lacking this bias, these networks learn an anti-ME bias, preferring to map novel inputs to familiar
and frequent (rather than unfamiliar) output classes. Our results also show that these characteristics
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(a) Omniglot (b) Imagenet

Figure 6: Analysis of mu-
tual exclusivity in classification
datasets. The plots show the
probability that a new input im-
age belongs to an unseen class
P (N |t), as a function of the
number of images t seen so far
during training (blue), with its
standard deviation. This mea-
sure is contrasted with the ME
score of a neural network classi-
fier trained through a similar run
of the dataset (orange).

are poorly matched to more realistic lifelong learning scenarios where novel classes can appear at
any point, as demonstrated in the translation and classification experiments presented here. Neural
nets may be currently stymied by their lack of ME bias, ignoring a powerful assumption about the
structure of learning tasks.

Mutual exclusivity is relevant elsewhere in machine learning. Recent work has contrasted the ability
of humans and neural networks to learn compositional instructions from just one or a few examples,
finding that neural networks lack the ability to generalize systematically (Lake & Baroni, 2018; Lake
et al., 2019). The authors suggest that people rely on ME in these learning situations (Lake et al.,
2019), and thus few-shot learning approaches could be improved by utilizing this bias as well.

In our analyses, we show that neural networks tend to learn the opposite bias, preferring to map
novel inputs to familiar outputs. More generally, ME can be generalized from applying to “novel
versus familiar” stimuli to instead handling “rare versus frequent” stimuli (e.g., in translation, rare
source words may map to rare target words). The utility of reasoning by ME could be extended to
early stages of epoch based learning too. For example, during epoch-based learning, neural networks
take longer to acquire rare stimuli and patterns of exceptions (McClelland & Rogers, 2003), often
mishandling these items for many epochs by mapping them to familiar responses. Another direction
for future work is studying how the ME bias should interact with hierarchical categorization tasks.
We posit that the ME assumption will be increasingly important as learners tackle more continual,
lifelong, and large-scale learning challenges (Mitchell et al., 2018).

Mutual exclusivity is an open challenge for deep neural networks, but there are promising avenues
for progress. The ME bias will not be helpful for every problem, but it is equally clear that the status
quo is sub-optimal: models should not have a strong anti-ME bias regardless of the task and dataset
demands. Ideally, a model would decide autonomously how strongly to use ME (or not) based on
the demands of the task. For instance, in our synthetic example, an ideal learner would discover
the one-to-one correspondence and use this perfect ME bias as a meta-strategy. If the dataset has
more many-to-one correspondences, it would adopt another meta-strategy. This meta-strategy could
even change depending on the stage of learning, yet such an approach is not currently available for
training models. Previous cognitive models of word learning have found ways to incorporate the
ME bias (Kachergis et al., 2012; McMurray et al., 2012; Frank et al., 2009; Lambert et al., 2005),
although in ways that do not generalize to training deep neural networks. While successful in some
domains, these models are highly simplified or require built-in mechanisms for implementing ME,
making them so far impractical for use in realistic settings. As outlined above, it would be ideal to
acquire a ME bias via meta learning or learning to learn (Allen et al., 2019; Snell et al., 2017), with
the advantage of calibrating the bias to the dataset itself rather than assuming its strength a priori.
For example, the meta learning model of Santoro et al. (2016) seems capable of learning an ME
bias, although it was not specifically probed in this way. Recent work by Lake (2019) demonstrated
that neural nets can learn to reason by ME if trained explicitly to do so, showing these abilities
are within the repertoire of modern tools. However acquiring ME is just one step toward the goal
proposed here: using ME to facilitate efficient lifelong learning or large-scale classification and
translation.

In conclusion, standard deep neural networks do not naturally reason by mutual exclusivity, but
designing them to do so could lead to faster and more flexible learners. There is a compelling case
for building models that learn through mutual exclusivity.

8



Under review as a conference paper at ICLR 2019

REFERENCES

Kelsey R Allen, Evan Shelhamer, Hanul Shin, and Joshua B Tenenbaum. Infinite mixture prototypes
for few-shot learning. arXiv preprint arXiv:1902.04552, 2019.

P Bloom. How Children Learn the Meanings of Words. MIT Press, Cambridge, MA, 2000.
Wieland Brendel and Matthias Bethge. Approximating CNNs with bag-of-local-features models

works suprisinlgy well on ImaeNet. arXiv preprint, pp. 1–15, 2019.
Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties

of neural machine translation: Encoder-decoder approaches. In Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation (SSST-8), 2014.

Reuben Cohn-Gordon and Noah Goodman. Lost in machine translation: A method to reduce mean-
ing loss. arXiv preprint arXiv:1902.09514, 2019.

Eliana Colunga and Linda B Smith. From the lexicon to expectations about kinds: a role for asso-
ciative learning. Psychological Review, 112(2):347–82, 2005.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Reuben Feinman and Brenden M Lake. Learning inductive biases with simple neural networks. In
Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci), 2018.

Michael C Frank and Noah D Goodman. Predicting pragmatic reasoning in language games. Sci-
ence, 336:998, 2012.

Michael C Frank, Noah D Goodman, and Joshua B Tenenbaum. Using speakers’ referential inten-
tions to model early cross-situational word learning: Research article. Psychological Science, 20
(5):578–585, 2009. ISSN 09567976. doi: 10.1111/j.1467-9280.2009.02335.x.

Markus Freitag, Joern Wuebker, Stephan Peitz, Hermann Ney, Matthias Huck, Alexandra Birch,
Nadir Durrani, Philipp Koehn, Mohammed Mediani, Isabel Slawik, et al. Combined spoken
language translation. In Proc. of the Int. Workshop on Spoken Language Translation (IWSLT),
South Lake Tahoe, CA, USA, pp. 61, 2014.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and
Wieland Brendel. ImageNet-Trained CNNs are biased toward texture; increasing shape bias im-
proves accuracy and robustness. International Conference on Learning Representations (ICLR),
2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Nicholas Baker Id, Hongjing Lu, Gennady Erlikhman Id, and Philip J Kellman. Deep convolutional
networks do not classify based on global object shape. PLoS Computational Biology, pp. 1–43,
2018.

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. arXiv preprint, 2015. URL http://arxiv.org/abs/
1502.03167.

George Kachergis, Chen Yu, and Richard M. Shiffrin. An associative model of adaptive inference
for learning word-referent mappings. Psychonomic Bulletin and Review, 19(2):317–324, 2012.
ISSN 10699384. doi: 10.3758/s13423-011-0194-6.

Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic gradient descent. In
International Conference on Learning Representations (ICLR), 2015.

Brenden M Lake. Compositional generalization through meta sequence-to-sequence learning. arXiv
preprint, 2019. URL http://arxiv.org/abs/1906.05381.

Brenden M Lake and Marco Baroni. Generalization without Systematicity: On the Compositional
Skills of Sequence-to-Sequence Recurrent Networks. In International Conference on Machine
Learning (ICML), 2018.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and Brain Sciences, 40:E253, 2017.

Brenden M Lake, Tal Linzen, and Marco Baroni. Human few-shot learning of compositional in-
structions. In Proceedings of the 41st Annual Conference of the Cognitive Science Society, 2019.

Patrik Lambert, Adrià De Gispert, Rafael Banchs, and José B Mariño. Guidelines for word align-
ment evaluation and manual alignment. Language Resources and Evaluation, 39(4):267–285,

9

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1906.05381


Under review as a conference paper at ICLR 2019

2005.
Barbara Landau, Linda B. Smith, and Susan S. Jones. The importance of shape in early lexical

learning. Cognitive Development, 3(3):299–321, 1988.
Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–444, 2015.
Minh-Thang Luong and Christopher D Manning. Achieving open vocabulary neural machine trans-

lation with hybrid word-character models. In ACL, 2016.
Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective Approaches to Attention-

based Neural Machine Translation. In Empirical Methods in Natural Language Processing
(EMNLP), 2015.

Gary F. Marcus. Rethinking Eliminative Connectionism. Cognitive Psychology, 1998. ISSN
00100285. doi: 10.1006/cogp.1998.0694.

Gary F Marcus. The Algebraic Mind: Integrating Connectionism and Cognitive Science. MIT Press,
Cambridge, MA, 2003.

Ellen M Markman. Categorization and Naming in Children. MIT Press, Cambridge, MA, 1989.
Ellen M. Markman and Gwyn F. Wachtel. Children’s use of mutual exclusivity to constrain the

meanings of words. Cognitive Psychology, 20(2):121–157, 1988. ISSN 00100285. doi: 10.1016/
0010-0285(88)90017-5.

J L McClelland and T T Rogers. The parallel distributed processing approach to semantic cognition.
Nature Reviews Neuroscience, 4:310–322, 2003.

Bob McMurray, Jessica S Horst, and Larissa K Samuelson. Word learning emerges from the inter-
action of online referent selection and slow associative learning. Psychological review, 119(4):
831, 2012.

Tom Mitchell, William W. Cohen, E Hruschka, Partha Talukdar, B Yang, Justin Betteridge, Andrew
Carlson, B Dalvi, Matt Gardner, Bryan Kisiel, J Krishnamurthy, Ni Lao, K Mazaitis, T Mohamed,
N Nakashole, E Platanios, A Ritter, M Samadi, B Settles, R Wang, D Wijaya, A Gupta, X Chen,
A Saparov, M Greaves, and J Welling. Never-Ending Learning. Communications of the Acm, 61
(5):2302–2310, 2018.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference on machine learning (ICML), pp. 807–814,
2010.

Samuel Ritter, David GT Barrett, Adam Santoro, and Matt M Botvinick. Cognitive psychology
for deep neural networks: A shape bias case study. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 2940–2949. JMLR. org, 2017.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
Learning with Memory-Augmented Neural Networks. In International Conference on Machine
Learning (ICML), 2016.

Linda Smith and Chen Yu. Infants rapidly learn word-referent mappings via cross-situational statis-
tics. Cognition, 106(3):1558–68, 2008.

Linda B Smith and Lauren K Slone. A developmental approach to machine learning? Frontiers in
psychology, 8:2124, 2017.

Linda B Smith, Susan S Jones, Barbara Landau, Lisa Gershkoff-Stowe, and Larissa Samuelson.
Object name learning provides on-the-job training for attention. Psychological science, 13(1):
13–9, 2002. ISSN 0956-7976. doi: 10.1111/1467-9280.00403. URL http://www.ncbi.
nlm.nih.gov/pubmed/11892773.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems, pp. 4077–4087, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research (JMLR), 15:1929–1958, 2014a.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014b.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to Sequence Learning with Neural Net-
works. In Advances in Neural Information Processing Systems (NIPS), 2014.

10

http://www.ncbi.nlm.nih.gov/pubmed/11892773
http://www.ncbi.nlm.nih.gov/pubmed/11892773


Under review as a conference paper at ICLR 2019

APPENDIX

A DO SEQUENCE-TO-SEQUENCE MODELS REASON BY MUTUAL EXCLUSIVITY?

Synthetic data. We evaluate if a different class of models, sequence-to-sequence (seq2seq) neural
networks (Sutskever et al., 2014), take better advantage of ME structure in the data. This popular
class of models is used in machine translation and other natural language processing tasks, and thus
the nature of their inductive biases is critical for many applications. As in the previous section, we
create a synthetic dataset that has a perfect ME bias: each symbol in the source maps to exactly one
symbol in the target. We also have a perfect alignment in the dataset, so that each token in the source
corresponds to the token at the same position in the target. The task is illustrated in Figure 2b. We
consider translation from sequences of words to sequences of referent symbols.

The dataset consists of 20 label-referent pairings. Ten pairs are used to train the model and famil-
iarize the learning algorithm with the task. The remaining ten pairs were used in the test phase. To
train the model, we generate 1000 sequences of words whose lengths range from 1 to 5. To generate
sequences for the test phase, words in the training sequences are replaced with new words with a
probability of 0.2. Thus, 1000 sequences are used to test for ME. The ME score is evaluated using
Equation 1 at positions in the output sequence where the corresponding input is new. As shown in
Figure 2b, the ME score is evaluated in the second position which corresponds to the novel word
“dax," using the probability mass assigned to the unseen output symbols.

Neural network architectures. We probe a seq2seq model that has a recurrent encoder using Gated
Recurrent Units (GRUs) (Cho et al., 2014) and a GRU decoder. Both the encoder and decoder had
embedding and hidden sizes of 256. Dropout (Srivastava et al., 2014a) with a probability of 0.5 was
used during training. The networks are trained using an Adam (Kingma & Ba, 2015) optimizer with
a learning rate of 0.001 and a log-likelihood loss. Two versions of the network were trained with
and without attention (Luong et al., 2015).

Results. Results are shown in Figure 7 and confirm our findings from the feedforward network.
The ME score falls to zero within a few training iterations, and the networks fail to assign any
substantial probability to the unseen classes. The networks achieve a perfect score on the training
set, but cannot extrapolate the one-to-one mappings to unseen symbols. Again, not only do seq2seq
models fail to show a mutual exclusivity bias, they acquire a anti-mutual exclusivity bias that goes
against the structure of the dataset.

(a) (b)

Figure 7: Results for the syn-
thetic seq2seq task. The config-
urations shown in the setting are
(a) Results for a seq2seq GRU
without attention (b) Results for
a seq2seq GRU with attention.

B ADDITIONAL DETAILS

B.1 ENTROPY REGULARIZER

The entropy regularizer is operationalized by subtracting the entropy of prediction from the loss.
Thus, the model is penalized for being overly confident about its prediction. We found that the
entropy regularizer produces an ME score that stays constant across training, at the cost of the
model being less confident about predictions made for seen classes.

B.2 SAMPLING USING A POWER LAW TO SIMULATE LIFELONG LEARNING

To simulate a naturalistic lifelong learning scenario, we try to sample a few classes more frequently
than the others. To do this, we sample the classes for training using a power law distribution. Weights
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are assigned to the classes using the following formula,

W (c) =
1

c1.5

where c is the index of the class. After the class for training is chosen, we uniformly sample from
the images of that class for training.

B.3 BASE RATE FOR MACHINE TRANSLATION

The base rate for machine translation is defined as the probability of observing a new word in the
target at a particular time t in training. We go through the unseen sentences in the corpus from the
target language at time t to compute the probability of sampling a sentence with at least one new
word. Thus, the base rate at time t in training is defined as:

P (new in target at t) =
# of unseen sentences in target with new words

# of unseen sentences

B.4 EXPERIMENT DETAILS FOR CLASSIFICATION

For Omniglot, a convolutional neural network was trained on 1623-way classification. The architec-
ture consists of 3 convolutional layers (each consisting of 5×5 kernels and 64 feature maps), a fully
connected layer (576×128) and a softmax classification layer. It was trained with a batch size of 16
using an Adam optimizer and a learning rate of 0.001. For Imagenet, a Resnet18 model (He et al.,
2016) was trained on 1000-way classification with a batch size of 256, using an Adam optimizer and
a learning rate of 0.001.

B.5 CALCULATION OF P (N |t) IN CLASSIFICATION

For classification, we calculate the score P (N |t) for the model by adding the probabilities the model
assigns to all the “new” (unseen) classes when iterating through the remaining corpus (similar to
Equation 1). For the dataset, we compute P (N |t) by sampling all unseen images in the corpus and
compute the proportion from “new” classes given their ground truth labels.
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