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ABSTRACT

Deep learning models have shown impressive performance across a spectrum of
computer vision applications including medical diagnosis and autonomous driv-
ing. One of the major concerns that these models face is their susceptibility to
adversarial attacks. Realizing the importance of this issue, more researchers are
working towards developing robust models that are less affected by adversarial
attacks. Adversarial training method shows promising results in this direction. In
adversarial training regime, models are trained with mini-batches augmented with
adversarial samples. In order to scale adversarial training to large networks and
datasets, fast and simple methods (e.g., single-step gradient ascent) are used for
generating adversarial samples. It is shown that models trained using single-step
adversarial training method (adversarial samples are generated using non-iterative
method) are pseudo robust. Further, this pseudo robustness of models is attributed
to the gradient masking effect. However, existing works fail to explain when and
why gradient masking effect occurs during single-step adversarial training. In
this work, (i) we show that models trained using single-step adversarial training
method learns to prevent the generation of single-step adversaries, and this is due
to over-fitting of the model during the initial stages of training, and (ii) to miti-
gate this effect, we propose a single-step adversarial training method with dropout
scheduling to learn robust models. Unlike models trained using single-step ad-
versarial training method, models trained using the proposed single-step adversar-
ial training method are robust against both single-step and multi-step adversarial
attacks, and achieve on-par results compared to the computationally expensive
state-of-the-art multi-step adversarial training method, in white-box and black-
box settings.

1 INTRODUCTION

Machine learning models are susceptible to adversarial samples: samples with imperceptible, engi-
neered noise designed to manipulate model’s output (Huang et al., 2011; Biggio et al., 2013; Szegedy
et al., 2013; Biggio et al., 2014; Goodfellow et al., 2015; Papernot et al., 2016). Further, Szegedy
et al. (2013) observed that these adversarial samples are transferable across multiple models i.e.,
adversarial samples generated on one model might mislead other models. Due to which, models de-
ployed in the real world are susceptible to black-box attacks (Liu et al., 2017; Papernot et al., 2017),
where limited or no knowledge of the deployed model is available to the attacker. Various schemes
have been proposed to defend against adversarial attacks (e.g., (Szegedy et al., 2013; Papernot et al.,
2015; Metzen et al., 2017)), in this direction Adversarial Training (AT) procedure (Szegedy et al.,
2013; Tramèr et al., 2018; Madry et al., 2018; Xie et al., 2019) shows promising results.

In adversarial training regime, models are trained with mini-batches containing adversarial samples
typically generated by the model being trained. Adversarial sample generation methods range from
simple methods (Goodfellow et al., 2015) to complex optimization methods (Moosavi-Dezfooli
et al., 2016). In order to scale adversarial training to large datasets, non-iterative methods such
as Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) are typically used for generating
adversarial samples. Further, it has been shown that models trained using single-step adversarial
training methods are pseudo robust (Tramèr et al., 2018):

• Although these models appears to be robust to single-step attacks in white-box setting
(complete knowledge of the deployed model is available to the attacker), they are suscepti-
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ble to single-step attacks (non-iterative methods) in black-box attack setting (Tramèr et al.,
2018).

• Further, these models are susceptible to multi-step attacks (iterative methods) in both white-
box setting (Kurakin et al., 2017) and black-box setting (Dong et al., 2018).

Tramèr et al. (2018) demonstrated that models trained using single-step adversarial training method
exhibit Gradient Masking Effect. Single-step adversarial sample generation methods such as FGSM,
compute adversarial perturbations based on the linear approximation of the model’s loss function
i.e., image is perturbed in the direction of the (sign of) gradient of loss with respect to the input
image. Gradient masking effect causes this linear approximation of loss function to become un-
reliable for generating adversarial samples during single-step adversarial training. Further, Madry
et al. (2018) demonstrated that the adversarially trained model can be made robust against white-box
attacks (both single-step and multi-step attacks), if perturbations crafted while training maximizes
the model’s loss, and this is achieved by generating adversaries using Projected Gradient Descent
(PGD) method. However, PGD method is an iterative method, due to which training time increases
substantially. Therefore, this method is hard to scale for large datasets and networks. Though prior
works have enabled to learn robust models, they fail to answer the following important questions: (i)
Why models trained using single-step adversarial training method exhibit gradient masking effect?
and (ii) At what phase of the single-step adversarial training, the model starts to exhibits gradient
masking effect?
In this work, we attempt to answer these questions and propose a novel single-step adversarial train-
ing method to learn robust models. First, we show that models trained using single-step adversarial
training method learn to prevent the generation of single-step adversaries, and this is due to over-
fitting of the model during the initial stages of training. This over-fitting of the model on single-step
adversaries causes linear approximation of loss function to become unreliable for generating adver-
sarial samples i.e., gradient masking effect. Finally, we propose a single-step adversarial training
method with dropout scheduling to learn robust models. Note that, just adding dropout layer (typical
setting: dropout layer with fixed dropout probability after FC+ReLU layer) does not help the model
trained using single-step adversarial training method to gain robustness. Prior works observed no
significant improvement in the robustness of models (with dropout layers in typical setting), trained
using normal training and single-step adversarial training methods (Szegedy et al., 2013; Kurakin
et al., 2017). Results for these settings are shown in section 3.1. Unlike typical setting, we introduce
dropout layer after each non-linear layer (i.e., dropout-2D after conv2D+ReLU, and dropout-1D af-
ter FC+ReLU) of the model, and further decay its dropout probability during training. Interestingly,
we show that this proposed dropout setting has significant impact on the model’s robustness. The
major contributions of this work can be listed as follows:

• We show that models trained using single-step adversarial training method learns to prevent
the generation of single-step adversaries, and this is due to over-fitting of the model during
the initial stages of training.

• Harnessing on the above observation, we propose a single-step adversarial training method
with dropout probability scheduling. Unlike models trained using existing single-step ad-
versarial training methods, models trained using the proposed method are robust against
both single-step and multi-step attacks.

• The proposed single-step adversarial training method is much faster than multi-step adver-
sarial training method i.e., PGD adversarial training method, and achieves on par results.

2 NOTATIONS

Consider a neural network f trained to perform image classification task, and θ represents parame-
ters of the neural network. Let x represents the image from the dataset and ytrue be its corresponding
ground truth label. The neural network is trained using loss function J (e.g., cross-entropy loss),
and ∇xJ represents the gradient of loss with respect to the input image x. Adversarial image xadv
is generated by adding norm-bounded perturbation δ to the image x. Let, perturbation size (ε) rep-
resents the norm constraint on the generated adversarial perturbation i.e., ||δ||∞ ≤ ε for l∞ norm
constraint. Please refer to A.1 for details on adversarial attack generation methods.
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3 OVER-FITTING AND ITS EFFECT DURING ADVERSARIAL TRAINING

In this section, we show that models trained using single-step adversarial training method learns
to prevent the generation of single-step adversaries, and this is due to over-fitting of the model
during the initial stages of training. First, we discuss the criteria for learning robust models using
adversarial training method, and then we show that this criteria is not satisfied during single-step
adversarial training method. Most importantly, we show the reason for failure to satisfy this criteria
is due to over-fitting.

Madry et al. (2018) demonstrated that it is possible to learn robust models using adversarial train-
ing method, if adversarial perturbations (typically l∞ or l2 norm bounded) crafted while train-
ing maximizes the model’s loss. This training objective is formulated as a minimax optimiza-
tion problem (Eq. 1). Where ψ represents the feasible set e.g., for l∞ norm constraint attacks
ψ = {δ : ||δ||∞ ≤ ε}, and D is the training set.

min
θ

[
E(x,y)∈D

[
max
δ∈ψ

J
(
f(x+ δ; θ), ytrue

)]]
(1) Rε =

lossadv
lossclean

(2)

At each iteration, norm bounded adversarial perturbations that maximizes the training loss should be
generated. Further, the model’s parameters (θ) should be updated, so as to decrease the loss on such
adversarial samples. Madry et al. (2018) solves the maximization step by generating adversarial
samples using an iterative method named Projected Gradient Descent (PGD). In order to quantify
the extent of inner maximization of Eq. (1), we compute loss ratio Rε using Eq. (2). Loss ratio is
defined as the ratio of loss on the adversarial samples to the loss on its corresponding clean samples
for a given perturbation size ε. The metric Rε captures the extent of inner maximization achieved
by the generated adversarial samples i.e., factor by which loss has increased by perturbing the clean
samples.
By definition, adversarial perturbations are those perturbations which manipulate the model’s pre-
dictions. Such manipulations can be achieved by generating perturbations that increase the loss on
samples (Goodfellow et al., 2015). Based on these facts, a perturbation is said to be an adversarial
perturbation only when it causes loss to increase. This implies that the loss on the perturbed samples
should be greater than the loss on the corresponding unperturbed samples i.e., lossadv > lossclean.
With these facts, Rε can be interpreted in the following manner:

• Generated perturbation is said to be an adversarial perturbation if Rε >1 i.e., lossadv >
lossclean
• Rε <1 i.e., lossadv < lossclean, implies that the generated perturbation is not an ad-

versarial perturbation. Further, the generation method is unable to generate adversarial
perturbations for the given model.

We obtain the plot of Rε versus iteration for models trained using single-step adversarial training
method (Goodfellow et al., 2015) and multi-step adversarial training method (Madry et al., 2018).
Column-1 of Fig. 1 and Fig. 2 shows these plots obtained for LeNet+ (refer table 8) trained on
MNIST dataset (LeCun) using single-step and multi-step adversarial training methods respectively.
It can be observed that during single-step adversarial training, Rε initially increases and then starts
to decay rapidly. Further Rε becomes less than one after 20 (×100) iterations. This implies that
single-step adversarial sample generation method is unable to generate adversarial perturbations
for the model, leading to adversarial training without useful adversarial samples.

We demonstrate this behavior of the model to prevent the inclusion of adversarial samples is due to
over-fitting on the adversarial samples. Typically during normal training, loss on the validation set
is monitored to detect over-fitting effect i.e., validation loss increases when the model starts to over-
fit on the training set. Unlike normal training, during adversarial training we monitor the loss on
the clean and adversarial validation set. A normally trained model is used for generating adversarial
validation set, so as to ensure that the generated adversarial validation samples are independent of the
model being trained. Column-2 and column-3 of Fig. 1 shows the plot of loss versus iteration during
training of LeNet+ on MNIST dataset using single-step adversarial training. It can be observed
that, when Rε starts to decay, loss on the adversarial validation set starts to increase. This increase
in the validation loss indicates over-fitting of the model on the single-step adversaries. Whereas,
during multi-step adversarial training method, Rε initially increases and then saturates (column-1,
Fig. 2). Further, no such over-fitting effect is observed for the entire training duration (column-3,
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Figure 1: Single-step adversarial training: Trend of Rε, training loss, and validation loss during
single-step adversarial training, obtained for LeNet+ trained on MNIST dataset. Column-1: plot of
Rε versus training iteration. Column-2: training loss versus training iteration. Column-3: validation
loss versus training iteration. Note that, when Rε starts to decay, loss on adversarial validation set
starts to increase indicating that the model is over-fitting on the adversarial samples.

Figure 2: Multi-step adversarial training: Trend of Rε, training loss, and validation loss during
multi-step adversarial training, obtained for LeNet+ trained on MNIST dataset. Column-1: plot of
Rε versus training iteration. Column-2: training loss versus training iteration. Column-3: validation
loss versus training iteration. Note that, for the entire training duration Rε does not decay, and no
over-fitting effect can be observed.

Fig. 2). In A.3, we show similar results for models trained on CIFAR-10 dataset. Note that, a
normally trained model was used for generating FGSM (ε=0.3) adversarial validation set, and we
observe similar trend if a normally trained model of different architecture is used for generating
FGSM adversarial validation set, please refer to A.3.

3.1 EFFECT OF DROPOUT LAYER

In the previous section, we showed that models trained using single-step adversarial training, learn
to prevent the generation of single-step adversaries. Further, we demonstrated that this behavior of
models is due to over-fitting. Dropout layer (Srivastava et al., 2014) has been shown to be effective
in mitigating over-fitting during training, and typically dropout-1D layer is added after FC+ReLU
layers in the networks. We refer to this setting as typical setting. Prior work (Kurakin et al., 2017)
which used dropout layer during single-step adversarial training observed no significant improve-
ment in the model’s robustness. This is due to the use of dropout layer in typical setting. Whereas,
we empirically show that it is necessary to introduce dropout layer after every non-linear layer of
the model (proposed dropout setting i.e., dropout-2D after Conv2D+ReLU layer and dropout-1D
after FC+ReLU layer) to mitigate over-fitting during single-step adversarial training, and to en-
able the model to gain robustness against adversarial attacks (single-step and multi-step attacks).
We train LeNet+ with dropout layer in typical setting and in the proposed setting respectively, on
MNIST dataset using single-step adversarial training method for different values of dropout prob-
ability. After training, we obtain the performance of these resultant models against PGD attack
(ε=0.3, εstep=0.01, steps=40). Column-1 of Fig. 3 shows the trend of accuracy of these models for
PGD attack with respect to the dropout probability used while training. It can be observed that the
gain in the robustness of adversarially trained model with dropout layer in the proposed setting is
significantly better compared to the adversarially trained model with dropout layer in typical setting
(FAT-TS). From column-2 of Fig. 3, it can be observed that the robustness of adversarially trained
model with dropout layer in the proposed setting, increases with the increase in the dropout probabil-
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Figure 3: Column-1: Effect of dropout probability of dropout layers in typical setting and in the
proposed setting on the model’s robustness against PGD attack (ε=0.3, εstep=0.01 and steps=40).
Obtained for LeNet+ trained on MNSIT dataset. NT-TS: Normal training with dropout layer in
typical setting. FAT-TS: Single-step adversarial training with dropout layer in typical setting. NT-
PS: Normal training with dropout layer in the proposed setting. Proposed: Single-step adversarial
training with dropout layer in the proposed setting. Column-2: Effect of dropout probability on
the model’s accuracy on clean and PGD adversarial validation set (ε=0.3, εstep=0.01 and steps=40).
Obtained for LeNet+ with dropout layer in the proposed setting, trained using single-step adversarial
training method on MNIST dataset.

ity (p) and reaches a peak value at p=0.4. Further increase in the dropout probability causes decrease
in the accuracy on both clean and adversarial samples. Based on this observation, we propose an
improved single-step adversarial training in the next subsection. Furthermore, we normally train
LeNet+ with dropout layers in typical setting and in the proposed setting, on MNIST dataset. From
column-1 of Fig. 3, it can be observed that there is no significant improvement in the robustness of
these normally trained models.

3.2 SADS: SINGLE-STEP ADVERSARIAL TRAINING WITH DROPOUT SCHEDULING

We have demonstrated that existing single-step adversarial training does not make the model robust
against adversarial attack, instead, the model learns to prevent the generation of single-step adver-
saries. Furthermore, we demonstrated this behavior of model trained using single-step adversaries
is due to over-fitting on the adversarial samples during the initial stages of training. Column-1 of
Fig. 3 indicates that use of dropout layer in typical setting is not sufficient to avoid over-fitting on
adversarial samples, and we need severe dropout regime involving all the layers (i.e., proposed set-
ting: dropout layer after Conv2D+ReLU and FC+ReLU layers) of the network in order to avoid
over-fitting. For the proposed dropout regime, determining exact dropout probability is network de-
pendent and is difficult. Further, having high dropout probability causes under-fitting of the model,
and having low dropout probability causes the model to over-fit on the adversarial samples.

Based on these observations, we propose a single-step adversarial training method with dropout
scheduling (Algorithm 1). In the proposed training method, we introduce dropout layer after each
non-linear layer of the model to be trained. We initialize these dropout layers with a high dropout
probability Pd. Further, during training we linearly decay the dropout probability of all the dropout
layers and this decay in the dropout probability is controlled by the hyper-parameter rd. The hyper-
parameter, rd is expressed in terms of maximum training iterations (e.g., rd =1/2 implies that
dropout probability reaches zero when the current training iteration is equal to half of the max-
imum training iterations). In experimental section 4, we show the effectiveness of the proposed
training method. Note that dropout layer is only used while training.

4 EXPERIMENTS

In this section, we show the effectiveness of models trained using the proposed single-step adver-
sarial training method (SADS) in white-box and black-box settings. We perform the tests described
in Athalye et al. (2018), in order to verify that models trained using SADS do not exhibit obfuscated
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Algorithm 1: Single-step Adversarial training with Dropout Scheduling (SADS)
Input:

Training mini-batch size (m)
Maximum training iterations (Maxitertion)
Hyper-parameters: Pd, rd

1 Initialization
Randomly initialize network N
iteration = 0
prob = Pd
Insert dropout layer after each non-linear layer of the network N
Set dropout probability (p) of all the dropout layers with prob
while iteration ≤Maxitertion do

2 Read minibatch B = {x1, .., xm} from training set
3 Compute FGSM adversarial sample {x1adv, ..., xmadv} from corresponding clean samples

{x1, ..., xm} using the current state of the network N
4 Make new minibatch B∗ = {x1adv, ..., xmadv}

/*Forward pass, compute loss, backward pass, and update parameters*/
5 Do one training step of Network N using minibatch B∗

/*Update dropout probability of Dropout-1D and Dropout-2D layers with prob*/
6 prob = max( 0, Pd · (1− iteration

rd·Maxitertion
) )

7 iteration = iteration+ 1
8 end

gradients. (Athalye et al. (2018) demonstrated that models exhibiting obfuscated gradients are not
robust against adversarial attacks). We show results on MNIST (LeCun), Fashion-MNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky et al.) datasets. We use LeNet+ shown in table 8 for both
MNIST and Fashion-MNIST datasets. For CIFAR-10 dataset, ResNet-34 (He et al., 2015) is used.
These models are trained using SGD with momentum. Step-policy is used for learning rate schedul-
ing. For all datasets, images are pre-processed to be in [0,1] range. For CIFAR-10, random crop and
horizontal flip are performed for data-augmentation.

Evaluation: We show the performance of models against adversarial attacks in white-box and black-
box setting. For SADS, we report mean and standard deviation over three runs.
Attacks: For l∞ based attacks, we use Fast Gradient Sign Method (FGSM) (Goodfellow et al.,
2015), Iterative Fast Gradient Sign Method (IFGSM) (Kurakin et al., 2016), Momentum Itera-
tive Fast Gradient Sign Method (MI-FGSM) (Dong et al., 2018) and Projected Gradient Descent
(PGD) (Madry et al., 2018). For l2 based attack, we use DeepFool (Moosavi-Dezfooli et al., 2016)
and Carlini&Wagner (Carlini & Wagner, 2016).
Perturbation size: For l∞ based attacks, we set perturbation size (ε) to the values described
in Madry et al. (2018) i.e., ε=0.3, 0.1 and 8/255 for MNIST, Fashion-MNIST and CIFAR-10 datasets
respectively.
Comparisons: We compare the performance of the proposed single-step adversarial training method
SADS with Normal training (NT), FGSM adversarial training (FAT) (Kurakin et al., 2017), Ensem-
ble adversarial training (EAT) (Tramèr et al., 2018), and PGD adversarial training (PAT) (Madry
et al., 2018). Refer to A.2 in appendix for more details on these training methods. Note that, FAT,
EAT and SADS (ours) are single-step adversarial training methods, whereas PAT is multi-step ad-
versarial training method.

4.1 PERFORMANCE IN WHITE-BOX SETTING

We train models on MNIST, Fashion-MNIST and CIFAR-10 datasets respectively, using NT, FAT,
EAT, PAT and SADS (Algorithm 1) training methods (please refer to A.2 for details on training
methods). These models are trained for 50, 50 and 100 epochs on MNIST, Fashion-MNIST and
CIFAR-10 datasets respectively. For SADS, we set the hyper-parameter Pd and rd to (0.8, 0.5), (0.8,
0.75) and (0.6, 0.6) for MNIST, Fashion-MNIST and CIFAR-10 datasets respectively. Table 1, 2
and 3 shows the performance of these models against single-step and multi-step attacks in white-box
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Table 1: White-Box setting: Classification ac-
curacy (%) of models trained on MNIST dataset
using different training methods. For all attacks
ε=0.3 is used and for PGD attack εstep=0.01 is
used. For both IFGSM and PGD attacks steps is
set to 40.

Training Attack Method
Method Clean FGSM IFGSM PGD
NT 99.24 11.65 0.31 0.01
FAT 99.34 89.04 1.19 0.17

EAT

A 99.35 83.48 18.75 10.13
B 99.31 80.16 48.13 37.85
C 99.20 82.48 4.00 1.29
D 97.66 56.85 0.87 0.29

PAT 98.41 95.56 92.64 92.08
SADS 98.89 94.78 89.35 88.51

±0.01 ±0.19 ±0.09 ±0.22

Table 2: White-Box attack: Classification accu-
racy (%) of models trained on Fashion-MNIST
dataset using different training methods. For
all attacks ε=0.1 is used and for PGD attack
εstep=0.01 is used. For both IFGSM and PGD
attacks steps is set to 40.

Training Attack Method
Method Clean FGSM IFGSM PGD
NT 91.42 6.46 1.01 0.16
FAT 90.45 83.43 21.26 16.65

EAT

A 91.17 76.22 9.52 4.92
B 90.18 73.48 7.59 3.56
C 90.18 73.48 7.59 3.56
D 83.81 47.41 24.23 18.26

PAT 84.55 77.30 75.95 75.18
SADS 85.21 75.81 71.14 69.51

±0.08 ±1.31 ±1.01 ±1.43

Figure 4: Plot of accuracy of the model trained using PAT and SADS, on PGD adversarial test set
versus steps of PGD attack with fixed ε. For PGD attack we set (ε,εstep) to (0.3,0.01), (0.1,0.01) and
(8/255,2/255) for MNIST, Fashion-MNIST and CIFAR-10 datasets. Note, x-axis is in logarithmic
scale.

setting, rows represent the training method and columns represent the attack generation method. It
can be observed that models trained using the existing single-step adversarial training methods are
not robust against multi-step attacks. Whereas, models trained using PAT and SADS are robust
against both single-step and multi-step attacks. Unlike PAT, the proposed SADS method is a single-
step adversarial training method.

Engstrom et al. (2018) demonstrated that the performance of models trained using certain adversarial
training methods, degrades significantly with the increase in the number of steps of PGD attack. In
order to verify that such behavior is not observed in models trained using SADS, we obtain the
plot of classification accuracy on PGD test-set versus steps of PGD attack. Fig. 4 shows these
plots obtained for models trained using PAT and SADS on MNIST, Fashion-MNIST and CIFAR-
10 datasets respectively. It can be observed that the accuracy of models on PGD test set initially
decreases slightly and then saturates. Even for PGD attack with step=1000, it can be observed
that there is no significant degradation in the performance of models trained using PAT and SADS
methods. In A.5 we show the effect of hyper-parameters of the proposed training method, and in
A.4 we show the trend of Rε, train and validation loss during training of models using SADS.

4.2 PERFORMANCE IN BLACK-BOX SETTING

In this subsection, we show the performance of models trained using different training methods
against adversarial attacks in black-box setting. Typically, a substitute model (source model) is
trained on the same task using normal training method, and this trained substitute model is used for
generating adversarial samples. The generated adversarial samples are transferred to the deployed
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Table 3: White-Box attack: Classification accuracy (%) of
models trained on CIFAR-10 dataset using different train-
ing methods. For all attacks ε=8/255 is used and for PGD
attack εstep=2/255 is used. For both IFGSM and PGD at-
tacks steps is set to 7.

Training Attack Method
Method Clean FGSM IFGSM PGD
NT 91.52 14.00 0.00 0.00
FAT 92.42 98.58 0.09 0.05

EAT

A 90.80 82.14 10.56 4.69
B 90.43 60.59 32.76 28.90
C 90.28 66.49 36.49 29.41

PAT 79.44 53.25 50.53 50.08
SADS 75.93 48.16 44.29 43.48

±0.28 ±0.63 ±0.53 ±0.49

Table 4: Comparison of training time
per epoch of models trained on MNIST
and CIFAR-10 datasets respectively,
obtained for different training meth-
ods. For PAT, steps=40 is used for
MNIST dataset and steps=7 is used for
CIFAR-10 dataset. † For EAT, training
time of pre-trained source models are
not considered.

Method Training time per epoch (sec.)
MNIST CIFAR-10

NT ∼ 2.7 ∼ 31
FAT ∼ 4.1 ∼ 53
EAT† ∼ 5.5 ∼ 59
PAT ∼ 53.0 ∼ 238
SADS ∼ 4.3 ∼ 56

Table 5: Black-box setting: Performance of models trained on MNIST, Fashion MNIST and CIFAR-
10 datasets using different training method, against adversarial attacks in black-box setting. Source
models are used for generating adversarial samples, and the target models are tested on these gener-
ated adversarial samples.

MNIST

Source Model Target Model
NT FAT PAT SADS

Model-A FGSM (ε=0.3) 29.09 79.49 96.01 95.06±0.055
MI-FGSM (ε=0.3, steps=40) 10.69 72.44 95.83 94.80±0.160

Model-B FGSM (ε=0.3) 28.13 72.39 96.15 95.11±0.060
MI-FGSM (ε=0.3, steps=40) 12.32 70.79 95.97 94.81±0.105

Fashion-MNIST

Model-A FGSM (ε=0.1) 36.66 88.26 81.32 80.86±0.303
MI-FGSM (ε=0.1, steps=40) 33.04 88.36 81.20 80.68±0.375

Model-B FGSM (ε=0.1) 39.03 85.40 80.01 78.94±0.514
MI-FGSM (ε=0.1, steps=40) 38.01 84.72 79.84 78.59±0.546

CIFAR-10

VGG-19 FGSM (ε=8/255) 36.49 75.92 77.24 75.06±0.257
MI-FGSM (ε=8/255, steps=7) 14.33 72.47 77.63 75.31±0.313

ResNet-18 FGSM (ε=8/255) 30.77 74.07 77.66 75.19±0.210
MI-FGSM (ε=8/255, steps=7) 4.65 68.14 77.62 75.36±0.325

model (target model). We use FGSM and MI-FGSM methods for generating adversarial samples,
since samples generated using these methods show good transfer rates (Dong et al., 2018). Table 5
shows the performance of models trained using different methods, in black-box setting. It can be
observed that the performance of models trained using PAT and SADS in black-box setting is better
than that in white-box setting. Further, it can be observed that the performance of models trained on
MNIST and CIFAR-10 datasets using FAT is worse in black-box setting when compared to white-
box setting.

4.3 PERFORMANCE AGAINST DEEPFOOL AND C&W ATTACKS

DeepFool (Moosavi-Dezfooli et al., 2016) and C&W (Carlini & Wagner, 2016) attacks generates
adversarial perturbations with minimum l2 norm, that is required to fool the classifier. These meth-
ods measure the robustness of the model in terms of the average l2 norm of the generated adversarial
perturbations for the test set. For an undefended model, adversarial perturbation with small l2 norm
is enough to fool the classifier. Whereas for robust models, adversarial perturbation with relatively
large l2 norm is required to fool the classifier. Table 6, shows the performance of models trained us-
ing NT, FAT, PAT and SADS methods, against DeepFool and C&W attacks. It can be observed that
for models trained using PAT and SADS methods have relatively large average l2 norm. Whereas,
for models trained using NT and FAT have small average l2 norm.
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Table 6: Performance of models trained using different training methods against DeepFool and
C&W attacks. These attack methods measure the robustness of the model based on the average l2
norm of the generated perturbations, higher the better. Success defines the percentage of samples of
test set that has been misclassified. Note that, for models trained using PAT and SADS, perturbations
with relatively large l2 norm is required to fool the classifier.

Method
MNIST F-MNIST CIFAR-10

DeepFool CW DeepFool CW DeepFool CW
Success Mean l2 Success Mean l2 Success Mean l2 Success Mean l2 Success Mean l2 Success Mean l2

NT 99.35 1.837 100 1.659 93.73 0.796 100 0.709 94.11 0.162 100 0.102
FAT 99.37 1.455 100 0.798 93.11 1.514 100 1.167 94.66 0.168 100 0.058
PAT 85.68 4.633 99 2.779 90.29 2.635 100 1.572 88.72 1.156 100 0.710
SADS 95.89 3.692 100 2.321 90.68 2.305 100 1.308 87.85 1.089 100 0.682

±0.06 ±0.033 0± ±0.027 ±0.26 ±0.102 ±0 ±0.188 ±0.22 ±0.033 ±0 ±0.006

Figure 5: Plot of accuracy versus perturbation size of PGD attack, obtained for models trained
using SADS. It can be observed that the accuracy of the model is zero for PGD attack with large
perturbation size.

4.4 TESTS TO RULE OUT OBFUSCATED GRADIENTS

Athalye et al. (2018) showed that models exhibiting obfuscated gradients are not robust against
adversarial attacks. Following are the tests to detect obfuscated gradients:

7 One-step attacks perform better than iterative attacks
7 Black-box attacks are better than white-box attacks
7 Unbounded attacks do not reach 100% success
7 Increasing distortion bound does not increase success

We do not observe any of the above trends in models trained using SADS. From table 1, 2 and 3,
it can be observed that iterative attacks (IFGSM and PGD) are stronger than non-iterative attack
(FGSM) for models trained using SADS. Comparing results in Tables 1, 2 and 3 with results in
Table 5, it can be observed that white-box attacks are stronger than black-box attacks for models
trained using SADS. Fig. 5 shows the plot of accuracy of the model on test set versus perturbation
size of PGD attack, obtained for models trained using SADS. It can be observed that the model’s
accuracy falls to zero for large perturbation size (ε). Fig. 6 shows the plot of attack success rate
(% of test set images that are misclassified by the model) versus perturbation size (ε) of PGD at-
tack, obtained for models trained using SADS. It can be observed that attack success rate increases
monotonically with increase in the attack perturbation size.

4.5 TIME COMPLEXITY

In order to quantify the complexity of different training methods, we measure training time per
epoch (seconds) for models trained using different training methods. Table 4 shows the training
time per epoch for models trained on MNIST and CIFAR-10 datasets respectively. Note that the
training time of SADS and FAT is of the same order. The increase in the training time for PAT is due
to its iterative nature of generating adversarial samples. We ran this timing experiment on a machine
with NVIDIA Titan Xp GPU, with no other jobs on this GPU.
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Figure 6: Plot of attack success rate versus perturbation size of PGD attack, obtained for models
trained using SADS. Note that, the attack success rate increases monotonically with the increase in
the attack perturbation size.

5 RELATED WORKS

Following the findings of Szegedy et al. (2013), various attacks (e.g., Goodfellow et al. (2015);
Moosavi-Dezfooli et al. (2016); Carlini & Wagner (2016); Mopuri et al. (2017); Dong et al. (2018)
have been proposed. Further, in order to defend against adversarial attacks, various schemes such as
adversarial training (e.g., Goodfellow et al. (2015); Kurakin et al. (2017); Madry et al. (2018)) and
input pre-processing (e.g., Guo et al. (2018); Samangouei et al. (2018)) have been proposed. Athalye
et al. (2018) showed that obfuscated gradients give a false of robustness, and broke seven out of nine
defense papers (Buckman et al., 2018; Ma et al., 2018; Guo et al., 2018; Xie et al., 2018; Song et al.,
2018; Samangouei et al., 2018; Madry et al., 2018; Ma et al., 2018; Dhillon et al., 2018) accepted
to ICLR 2018. In this direction, adversarial training method (Madry et al., 2018), shows promis-
ing results for learning robust deep learning models. Kurakin et al. (2017) observed that models
trained using single-step adversarial training methods are susceptible to multi-step attacks. Further,
Tramèr et al. (2018) demonstrated that these models exhibits gradient masking effect, and proposed
Ensemble Adversarial Training (EAT) method. During EAT, adversarial samples are generated by
the model being trained or by one of the models from the fixed set of pre-trained models. Madry
et al. (2018) demonstrated that adversarially trained model can be made robust against white-box
attacks, if perturbation computed during training maximizes the loss. On the other hand, works such
as Raghunathan et al. (2018) and Wong & Kolter (2017) propose a method to learn models that are
provably robust against norm bounded adversarial attacks. However, scaling these methods to deep
networks and large perturbation sizes is difficult. Whereas, in this work we show that it is possible
to learn robust models using single-step adversarial training method, if over-fitting of the model on
adversarial samples is prevented during training. We achieve this by introducing dropout layer after
each non-linear layer of the model with a dropout schedule.

6 CONCLUSION

In this work, we have demonstrated that models trained using single-step adversarial training meth-
ods learn to prevent the generation of adversaries due to over-fitting of the model during the initial
stages of training. In order to overcome this over-fitting, we have proposed a novel single-step adver-
sarial training method with dropout scheduling to learn robust models. Unlike existing single-step
adversarial training methods, models trained using the proposed method achieve robustness not only
against single-step attacks but also against multi-step attacks. Further, the performance of models
trained using the proposed method is on par with models trained using multi-step adversarial training
method, and is much faster than multi-step adversarial training method.
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A APPENDIX

A.1 ADVERSARIAL SAMPLE GENERATION METHODS

In this subsection, we discuss the formulation of adversarial attacks.
Fast Gradient Sign Method (FGSM): Non-iterative attack method proposed by Goodfellow et al.
(2015). This method generates l∞ norm bounded adversarial perturbation based on the linear ap-
proximation of loss function.

x∗ = x+ ε.sign(∇xJ(f(x; θ), ytrue)) (3)

Iterative Fast Gradient Sign Method (IFGSM): Iterative version of FGSM attack. At each itera-
tion, adversarial perturbation of small step size (α) is added to the image. In our experiments, we
set α = ε/steps.

x0 = x (4)
xN+1 = xN + α.sign

(
∇xNJ(f(xN ; θ), ytrue)

)
(5)

Projected Gradient Descent (PGD): Iterative attack method proposed by Madry et al. (2018).
Initially, a small random noise is added to the image. Then at each iteration, perturbation of small
step size (εstep) is added to the image, followed by re-projection.

x0 = x+ U
(
− εstep, εstep, shape(x)

)
(6)

xN+1 = xN + εstep.sign
(
∇xNJ(f(xN ; θ), ytrue)

)
(7)

xN+1 = clip
(
xN+1,min = x− ε,max = x+ ε

)
(8)

A.2 ADVERSARIAL TRAINING METHODS

In this subsection we explain the existing adversarial training methods.
FGSM Adversarial Training Methods: During training, at each iteration a portion of clean sam-
ples in the mini-batch are replaced with its corresponding adversarial samples generated using the
model being trained. Fast Gradient Sign Method (FGSM) is used for generating these adversarial
samples.
Ensemble Adversarial Training (EAT): Proposed by Tramèr et al. (2018). At each iteration a
portion of clean samples in the mini-batch are replaced with its corresponding adversarial samples.
These adversarial samples are generated by the model being trained or by one of the model from the
fixed set of pre-trained models. Table 7 shows the setup used for EAT method.
PGD Adversarial Training Method: Proposed by Madry et al. (2018). At each iteration all the
clean samples in the mini-batch are replaced with its corresponding adversarial samples generated
using the model being trained. Projected Gradient Descent (PGD) method is used for generating
these samples.

Table 7: Setup used for Ensemble Adversarial Training. For MNIST and Fashion-MNIST networks
refer table 8.

Network to be trained Pre-trained Models
ResNet-34(Ensemble A) ResNet-34, ResNet-18

CIFAR-10 ResNet-34(Ensemble B) ResNet-34, VGG-16
ResNet-34(Ensemble C) ResNet-18, VGG-16

A(Ensemble A) A,B,C
MNIST B(Ensemble B) B, C ,D

and C(Ensemble C) C, D, A
F-MNIST D(Ensemble D) D, A ,B

A.3 SINGLE-STEP ADVERSARIAL TRAINING: TREND OF VALIDATION LOSS

In the main paper, we showed over-fitting effect during the training of LeNet+ on MNIST dataset
using single-step adversarial training method. Fig. 7 shows the plot of validation loss, obtained for
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Table 8: Architecture of networks used for Ensemble Adversarial Training on MNIST and Fashion-
MNIST datasets.

LeNet+ A B C D
conv(32,5,5) + ReLU Conv(64,5,5) + ReLU Dropout(0.2) Conv(128,3,3) + Tanh { FC(300) +ReLU }× 4MaxPool(2,2) Conv(64,5,5) + ReLU Conv(64,8,8) + ReLU MaxPool(2,2) Dropout(0.5)
conv(64,5,5) + ReLU Dropout(0.25) Conv(128,6,6) + ReLU Conv(64,3,3) + Tanh FC + Softmax

MaxPool(2,2) FC(128) + ReLU Conv(128,5,5) + ReLU MaxPool(2,2)
FC(1024) + ReLU Dropout(0.5) Dropout(0.5) FC(128) + ReLU

FC + Softmax FC + Softmax FC + Softmax FC + Softmax

ResNet-34 trained on CIFAR-10 dataset using SADS. We observe this over-fitting effect even when
model with different architecture is used for generating adversarial validation set. Fig. 8 shows the
validation loss obtained for LeNet+ trained on MNIST dataset using single-step adversarial train-
ing method. Normally trained models with different architecture is used for generating adversarial
validataion set.

Figure 7: Single-step adversarial training: Trend of validation loss during SADS training method,
obtained for ResNet-34 trained on CIFAR-10 dataset using SADS. Adversarial validations set is
generated using column-1: ResNet-34, column-2: ResNet-18, column-3: VGG-16 and column-4:
VGG-19.

Figure 8: Single-step adversarial training: Trend of validation loss during SADS training method,
obtained for LeNet+ trained on MNIST dataset using SADS. Adversarial validations set is generated
using column-1: Model-A, column-2: Model-B, column-3: Model-C and column-4: Model-D.

A.4 SADS: TREND OF Rε , TRAINING AND VALIDATION LOSS

Fig. 9, 10 and 11 shows the trend of Rε, training and validation loss, obtained for models trained on
MNIST, Fashion-MNIST and CIFAR-10 datasets using SADS. It can be observed that for the entire
training duration Rε does not decay and no over-fitting effect can be observed.

A.5 EFFECT OF HYPER-PARAMETERS

In order to show the effect of hyper-parameters, we train LeNet+ shown in table 8 on MNIST dataset,
using SADS method with different hyper-parameter settings. Validation set accuracy of the model
for PGD attack with ε = 0.3 and steps = 40, is obtained for each setting with one of them being
fixed and the other being varied.
Effect of hyper-parameter Pd: The hyper-parameter Pd defines the initial dropout probability
applied to all dropout layers. We train LeNet+ on MNIST dataset, using the proposed method
for different initial dropout probability Pd. Row-1 of Fig. 12 shows the effect of varying dropout
probability from 0.3 to 0.9. It can be observed that the robustness of the model to multi-step attack
initially increases with the increase in the value of Pd (Pd < 0.8), and further increase in Pd causes
model’s robustness to decrease, this is due to under-fitting.
Effect of hyper-parameter rd: The hyper-parameter rd decides the iteration at which dropout
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Figure 9: MNIST: Trend of Rε, training loss, and validation loss during SADS training method,
obtained for LeNet+ trained on MNIST dataset using SADS. Column-1: plot of Rε versus training
iteration. Column-2: training loss versus training iteration. Column-3: validation loss versus train-
ing iteration. Note that, for the entire training duration Rε does not decay, and no over-fitting effect
can be observed.

Figure 10: Fashion-MNIST: Trend of Rε, training loss, and validation loss during SADS training
method, obtained for LeNet+ trained on Fashion-MNIST dataset using SADS. Column-1: plot of
Rε versus training iteration. Column-2: training loss versus training iteration. Column-3: validation
loss versus training iteration. Note that, for the entire training duration Rε does not decay, and no
over-fitting effect can be observed.

Figure 11: CIFAR-10: Trend ofRε, training loss, and validation loss during SADS training method,
obtained for ResNet-34 trained on CIFAR-10 dataset using SADS. Column-1: plot of Rε versus
training iteration. Column-2: training loss versus training iteration. Column-3: validation loss
versus training iteration. Note that, for the entire training duration Rε does not decay, and no over-
fitting effect can be observed.

probability reaches zero and is expressed in terms of maximum training iteration. Row-2 of Fig. 12
shows the effect varying rd from 1/4 to 1. It can be observed that for rd < 0.5, there is degradation
of model’s robustness against multi-step attacks. During the initial stages of training learning rate is
high and the model can easily over-fit to adversaries generated by single-step method.
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Figure 12: Effect of hyper-parameter Pd and rd of proposed training method (Algorithm 1)
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