
Updates of Equilibrium Prop Match Gradients of
Backprop Through Time in an RNN with Static Input

Maxence Ernoult1,2, Julie Grollier2, Damien Querlioz1, Yoshua Bengio3,4, Benjamin Scellier3

1Centre de Nanosciences et de Nanotechnologies, Université Paris Sud, Université Paris-Saclay
2Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay

3Mila, Université de Montréal
4Canadian Institute for Advanced Research

Abstract

Equilibrium Propagation (EP) is a biologically inspired learning algorithm for
convergent recurrent neural networks, i.e. RNNs that are fed by a static input x and
settle to a steady state. Training convergent RNNs consists in adjusting the weights
until the steady state of output neurons coincides with a target y. Convergent RNNs
can also be trained with the more conventional Backpropagation Through Time
(BPTT) algorithm. In its original formulation EP was described in the case of
real-time neuronal dynamics, which is computationally costly. In this work, we
introduce a discrete-time version of EP with simplified equations and with reduced
simulation time, bringing EP closer to practical machine learning tasks. We first
prove theoretically, as well as numerically that the neural and weight updates of EP,
computed by forward-time dynamics, are step-by-step equal to the ones obtained by
BPTT, with gradients computed backward in time. The equality is strict when the
transition function of the dynamics derives from a primitive function and the steady
state is maintained long enough. We then show for more standard discrete-time
neural network dynamics that the same property is approximately respected and
we subsequently demonstrate training with EP with equivalent performance to
BPTT. In particular, we define the first convolutional architecture trained with EP
achieving ∼ 1% test error on MNIST, which is the lowest error reported with EP.
These results can guide the development of deep neural networks trained with EP.

1 Introduction

The remarkable development of deep learning over the past years [LeCun et al., 2015] has been
fostered by the use of backpropagation [Rumelhart et al., 1985] which stands as the most powerful
algorithm to train neural networks. In spite of its success, the backpropagation algorithm is not
biologically plausible [Crick, 1989], and its implementation on GPUs is energy-consuming [Editorial,
2018]. Hybrid hardware-software experiments have recently demonstrated how physics and dynamics
can be leveraged to achieve learning with energy efficiency [Romera et al., 2018, Ambrogio et al.,
2018]. Hence the motivation to invent novel learning algorithms where both inference and learning
could fully be achieved out of core physics.

Many biologically inspired learning algorithms have been proposed as alternatives to backpropagation
to train neural networks. Contrastive Hebbian learning (CHL) has been successfully used to train
recurrent neural networks (RNNs) with static input that converge to a steady state (or ‘equilibrium’),
such as Boltzmann machines [Ackley et al., 1985] and real-time Hopfield networks [Movellan,
1991]. CHL proceeds in two phases, each phase converging to a steady state, where the learning rule
accommodates the difference between the two equilibria. Equilibrium Propagation (EP) [Scellier
and Bengio, 2017] also belongs to the family of CHL algorithms to train RNNs with static input.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



In the second phase of EP, the prediction error is encoded as an elastic force nudging the system
towards a second equilibrium closer to the target. Interestingly, EP also shares similar features with
the backpropagation algorithm, and more specifically recurrent backpropagation (RBP) [Almeida,
1987, Pineda, 1987]. It was proved in Scellier and Bengio [2019] that neural computation in the
second phase of EP is equivalent to gradient computation in RBP.

Originally, EP was introduced in the context of leaky-integrate neurons [Scellier and Bengio, 2017,
2019]. Computing their dynamics involves long simulation times, hence limiting EP training
experiments to small neural networks. In this paper, we propose a discrete-time formulation of EP.
This formulation allows demonstrating an equivalence between EP and BPTT in specific conditions,
simplifies equations and speeds up training, and extends EP to standard neural networks including
convolutional ones. Specifically, the contributions of the present work are the following:

• We introduce a discrete-time formulation of EP (Section 3.1) of which the original real-time
formulation can be seen as a particular case (Section 4.2).

• We show a step-by-step equality between the updates of EP and the gradients of BPTT when
the dynamics converges to a steady state and the transition function of the RNN derives
from a primitive function (Theorem 1, Figure 1). We say that such an RNN has the property
of ‘gradient-descending updates’ (or GDU property).

• We numerically demonstrate the GDU property on a small network, on fully connected
layered and convolutional architectures. We show that the GDU property continues to hold
approximately for more standard – prototypical – neural networks even if these networks do
not exactly meet the requirements of Theorem 1.

• We validate our approach with training experiments on different network architectures using
discrete-time EP, achieving similar performance than BPTT. We show that the number of
iterations in the two phases of discrete-time EP can be reduced by a factor three to five
compared to the original real-time EP, without loss of accuracy. This allows us training the
first convolutional architecture with EP, reaching ∼ 1% test error on MNIST, which is the
lowest test error reported with EP. Our code is available on-line in Pytorch 1.

2 Background

This section introduces the notations and basic concepts used throughout the paper.

2.1 Convergent RNNs With Static Input

We consider the supervised setting where we want to predict a target y given an input x. The model
is a dynamical system - such as a recurrent neural network (RNN) - parametrized by θ and evolving
according to the dynamics:

st+1 = F (x, st, θ) . (1)

We call F the transition function. The input of the RNN at each timestep is static, equal to x.
Assuming convergence of the dynamics before time step T , we have sT = s∗ where s∗ is such that

s∗ = F (x, s∗, θ) . (2)

We call s∗ the steady state (or fixed point, or equilibrium state) of the dynamical system. The number
of timesteps T is a hyperparameter chosen large enough to ensure sT = s∗. The goal of learning is to
optimize the parameter θ to minimize the loss:

L∗ = ` (s∗, y) , (3)

where the scalar function ` is called cost function. Several algorithms have been proposed to
optimize the loss L∗, including Recurrent Backpropagation (RBP) [Almeida, 1987, Pineda, 1987]
and Equilibrium Propagation (EP) [Scellier and Bengio, 2017]. Here, we present Backpropagation
Through Time (BPTT) and Equilibrium Propagation (EP) and some of the inner mechanisms of these
two algorithms, so as to enunciate the main theoretical result of this paper (Theorem 1).

1https://github.com/ernoult/updatesEPgradientsBPTT

2



Figure 1: Illustration of the property of Gradient-Descending Updates (GDU property). Top left.
Forward-time pass (or ‘first phase’) of an RNN with static input x and target y. The final state sT is
the steady state s∗. Bottom left. Backprop through time (BPTT). Bottom right. Second phase of
equilibrium prop (EP). The starting state in the second phase is the final state of the first phase, i.e.
the steady state s∗. GDU Property (Theorem 1). Step by step correspondence between the neural
updates ∆EP

s (t) in the second phase of EP and the gradients ∇BPTT
s (t) of BPTT. Corresponding

computations in EP and BPTT at timestep t = 0 (resp. t = 1, 2, 3) are colored in green (resp. blue,
red, yellow). Forward-time computation in EP corresponds to backward-time computation in BPTT.

2.2 Backpropagation Through Time (BPTT)

With frameworks implementing automatic differentiation, optimization by gradient descent using
Backpropagation Through Time (BPTT) has become the standard method to train RNNs. In particular
BPTT can be used for a convergent RNN such as the one that we study here. To this end, we consider
the loss after T iterations (i.e. the cost of the final state sT ), denoted L = ` (sT , y), and we substitute
L as a proxy 2 for the loss at the steady state L∗. The gradients of L can be computed with BPTT.

In order to state our Theorem 1 (Section 3.2), we recall some of the inner working mechanisms
of BPTT. Eq. (1) can be rewritten in the form st+1 = F (x, st, θt+1 = θ), where θt denotes the
parameter of the model at time step t, the value θ being shared across all time steps. This way of
rewriting Eq. (1) enables us to define the partial derivative ∂L

∂θt
as the sensitivity of the loss L with

respect to θt when θ1, . . . θt−1, θt+1, . . . θT remain fixed (set to the value θ). With these notations,
the gradient ∂L∂θ reads as the sum:

∂L
∂θ

=
∂L
∂θ1

+
∂L
∂θ2

+ · · ·+ ∂L
∂θT

. (4)

BPTT computes the ‘full’ gradient ∂L∂θ by computing the partial derivatives ∂L
∂st

and ∂L
∂θt

iteratively
and efficiently, backward in time, using the chain rule of differentiation. Subsequently, we denote the
gradients that BPTT computes:

∀t ∈ [0, T − 1] :


∇BPTT
s (t) =

∂L
∂sT−t

∇BPTT
θ (t) =

∂L
∂θT−t

,
(5)

2The difference between the loss L and the loss L∗ is explained in Appendix B.1.

3



so that
∂L
∂θ

=

T−1∑
t=0

∇BPTT
θ (t). (6)

More details about BPTT are provided in Appendix A.2.

3 Equilibrium Propagation (EP) - Discrete Time Formulation

3.1 Algorithm

In its original formulation, Equilibrium Propagation (EP) was introduced in the case of real-time
dynamics [Scellier and Bengio, 2017, 2019]. The first theoretical contribution of this paper is to adapt
the theory of EP to discrete-time dynamics.3 EP is an alternative algorithm to compute the gradient
of L∗ in the particular case where the transition function F derives from a scalar function Φ, i.e. with
F of the form F (x, s, θ) = ∂Φ

∂s (x, s, θ). In this setting, the dynamics of Eq. (1) rewrites:

∀t ∈ [0, T − 1], st+1 =
∂Φ

∂s
(x, st, θ). (7)

This constitutes the first phase of EP. At the end of the first phase, we have reached steady state, i.e.
sT = s∗. In the second phase of EP, starting from the steady state s∗, an extra term β ∂`

∂s (where β is
a positive scaling factor) is introduced in the dynamics of the neurons and acts as an external force
nudging the system dynamics towards decreasing the cost function `. Denoting sβ0 , s

β
1 , s

β
2 , . . . the

sequence of states in the second phase (which depends on the value of β), the dynamics is defined as

sβ0 = s∗ and ∀t ≥ 0, sβt+1 =
∂Φ

∂s

(
x, sβt , θ

)
− β ∂`

∂s

(
sβt , y

)
. (8)

The network eventually settles to a new steady state sβ∗ . It was shown in Scellier and Bengio [2017]
that the gradient of the loss L∗ can be computed based on the two steady states s∗ and sβ∗ . More
specifically, 4 in the limit β → 0,

1

β

(
∂Φ

∂θ

(
x, sβ∗ , θ

)
− ∂Φ

∂θ
(x, s∗, θ)

)
→ −∂L

∗

∂θ
. (9)

In fact, we can prove a stronger result. For fixed β > 0 we define the neural and weight updates

∀t ≥ 0 :


∆EP
s (β, t) =

1

β

(
sβt+1 − s

β
t

)
,

∆EP
θ (β, t) =

1

β

(
∂Φ

∂θ

(
x, sβt+1, θ

)
− ∂Φ

∂θ

(
x, sβt , θ

))
,

(10)

and note that Eq. (9) rewrites as the following telescoping sum:
∞∑
t=0

∆EP
θ (β, t)→ −∂L

∗

∂θ
as β → 0. (11)

We can now state our main theoretical result (Theorem 1 below).

3.2 Forward-Time Dynamics of EP Compute Backward-Time Gradients of BPTT

BPTT and EP compute the gradient of the loss in very different ways: while the former algorithm
iteratively adds up gradients going backward in time, as in Eq. (6), the latter algorithm adds up weight
updates going forward in time, as in Eq. (11). In fact, under a condition stated below, the sums are
equal term by term: there is a step-by-step correspondence between the two algorithms.

3We explain in Appendix B.2 the relationship between the discrete-time setting (resp. the primitive function
Φ) of this paper and the real-time setting (resp. the energy function E) of Scellier and Bengio [2017, 2019].

4The EP learning rule is a form of contrastive Hebbian learning similar to that of Boltzmann machines
[Ackley et al., 1985] and similar to the one presented in Movellan [1991].

4



Theorem 1 (Gradient-Descending Updates, GDU). Consider the setting with a transition function
of the form F (x, s, θ) = ∂Φ

∂s (x, s, θ). Let s0, s1, . . . , sT be the convergent sequence of states and
denote s∗ = sT the steady state. If we further assume that there exists some stepK where 0 < K ≤ T
such that s∗ = sT = sT−1 = . . . sT−K , then, in the limit β → 0, the first K updates in the second
phase of EP are equal to the negatives of the first K gradients of BPTT, i.e.

∀t = 0, 1, . . . ,K :

{
∆EP
s (β, t)→ −∇BPTT

s (t),
∆EP
θ (β, t)→ −∇BPTT

θ (t).
(12)

We give here a short outline of the proof of Theorem 1 (A complete proof together with a detailed
sketch of the proof are provided in Appendix A). The convergence requirement enables to derive the
equations satisfied by the neural and weight updates (Lemma 3). Then, the existence of a primitive
function ensures that these equations are equal to those satisfied by the gradients of BPTT (Lemma
2), with same initial conditions, yielding the desired equality (Theorem 1).

Note that other algorithms such as RTRL [Williams and Zipser, 1989] and UORO [Tallec and Ollivier,
2017] also compute the gradients by forward-time dynamics.

4 Experiments

This section uses Theorem 1 as a tool to design neural networks that are trainable with EP: if
a model satisfies the GDU property of Eq. 12, then we expect EP to perform as well as BPTT
on this model. After introducing our protocol (Section 4.1), we define the energy-based setting
and prototypical setting where the conditions of Theorem 1 are exactly and approximately met
respectively (Section 4.2). We show the GDU property on a toy model (Fig. 2) and on fully connected
layered architectures in the two settings (Section 4.3). We define a convolutional architecture in the
prototypical setting (Section 4.4) which also satisfies the GDU property. Finally, we validate our
approach by training 5 these models with EP and BPTT (Table 1).

Figure 2: Demonstrating the property of gradient-descending updates in the energy-based setting
on a toy model with dummy data x and a target y elastically nudging the output neurons s0 (right).
Dashed and solid lines represent ∆EP and −∇BPTT processes respectively and perfectly coincide
for 5 randomly selected neurons (left) and synapses (middle). Each randomly selected neuron or
synapse corresponds to one color. Details can be found in Appendix C.2.

4.1 Demonstrating the Property of Gradient-Descending Updates (GDU Property)

Property of Gradient-Descending Updates. We say that a convergent RNN model fed with a
fixed input has the GDU property if during the second phase, the updates it computes by EP (∆EP)
on the one hand and the gradients it computes by BPTT (−∇BPTT) on the other hand are ‘equal’ - or
‘approximately equal’, as measured per the RelMSE (Relative Mean Squared Error) metric.

Relative Mean Squared Error (RelMSE). In order to quantitatively measure how well the GDU
property is satisfied, we introduce a metric which we call Relative Mean Squared Error (RelMSE)

5For training, the effective weight update is performed at the end of the second phase.

5



such that RelMSE(∆EP, -∇BPTT) measures the distance between ∆EP and −∇BPTT processes,
averaged over time, over neurons or synapses (layer-wise) and over a mini-batch of samples - see
Appendix C.1 for the details.

Protocol. In order to measure numerically if a given model satisfies the GDU property, we proceed
as follows. Considering an input x and associated target y, we perform the first phase for T steps.
Then we perform on the one hand BPTT for K steps (to compute the gradients∇BPTT), on the other
hand EP for K steps (to compute the neural updates ∆EP) and compare the gradients and neural
updates provided by the two algorithms, either qualitatively by looking at the plots of the curves (as
in Figs. 2 and 4), or quantitatively by computing their RelMSE (as in Fig. 3).

4.2 Energy-Based Setting and Prototypical Setting

Energy-based setting. The system is defined in terms of a primitive function of the form:

Φε(s,W ) = (1− ε)1

2
‖s‖2 + ε σ(s)> ·W · σ(s), (13)

where ε is a discretization parameter, σ is an activation function and W is a symmetric weight matrix.
In this setting, we consider ∆EP(βε, t) instead of ∆EP(β, t) and write ∆EP(t) for simplicity, so that:

∆EP
s (t) =

sβεt+1 − s
βε
t

βε
, ∆EP

W (t) =
1

β

(
σ
(
sβεt+1

)>
· σ
(
sβεt+1

)
− σ

(
sβεt

)>
· σ
(
sβεt

))
. (14)

With Φε as a primitive function and with the hyperparameter β rescaled by a factor ε, we recover the
discretized version of the real-time setting of Scellier and Bengio [2017], i.e. the Euler scheme of
ds
dt = −∂E∂s − β

∂`
∂s with E = 1

2‖s‖
2 − σ(s)> ·W · σ(s) – see Appendix B.2, where the link between

discrete-time dynamics and real-time dynamics is explained. Fig. 2 qualitatively demonstrates
Theorem 1 in this setting on a toy model.

Prototypical setting. In this case, the dynamics of the system does not derive from a primitive
function Φ. Instead, the dynamics is directly defined as:

st+1 = σ (W · st) . (15)

Again, W is assumed to be a symmetric matrix. The dynamics of Eq. (15) is a standard and simple
neural network dynamics. Although the model is not defined in terms of a primitive function, note that
st+1 ≈ ∂Φ

∂s (st,W ) with Φ(s,W ) = 1
2s
> ·W · s if we ignore the activation function σ. Following

Eq. (10), we define:

∆EP
s (t) =

1

β

(
sβt+1 − s

β
t

)
, ∆EP

W (t) =
1

β

(
sβ
>

t+1 · s
β
t+1 − s

β>

t · s
β
t

)
. (16)

4.3 Effect of Depth and Approximation

We consider a fully connected layered architecture where layers sn are labelled in a backward
fashion: s0 denotes the output layer, s1 the last hidden layer, and so forth. Two consecutive layers
are reciprocally connected with tied weights with the convention that Wn,n+1 connects sn+1 to sn.
We study this architecture in the energy-based and prototypical setting as described per Equations
(13) and (15) respectively, with corresponding weight updates (14) and (16) - see details in Appendix
C.3 and C.4. We study the GDU property layer-wise, e.g. RelMSE(∆EP

sn , -∇BPTT
sn ) measures the

distance between the ∆EP
sn and −∇BPTT

sn processes, averaged over all elements of layer sn.

We display in Fig. 3 the RelMSE, layer-wise for one, two and three hidden layered architecture (from
left to right), in the energy-based (upper panels) and prototypical (lower panels) settings, so that each
architecture in a given setting is displayed in one panel - see Appendix C.3 and C.4 for a detailed
description of the hyperparameters and curve samples. In terms of RelMSE, we can see that the
GDU property is best satisfied in the energy-based setting with one hidden layer where RelMSE is
around ∼ 10−2 (top left). When adding more hidden layers in the energy-based setting (top middle
and top right), the RelMSE increases to ∼ 10−1, with a greater RelMSE when going away from the
output layer. The same is observed in the prototypical setting when we add more hidden layers (lower

6



Figure 3: RelMSE analysis in the energy-based (top) and prototypical (bottom) setting. For one given
architecture, each bar is labelled by a layer or synapses connecting two layers, e.g. the orange bar
above s1 represents RelMSE(∆EP

s1 ,−∇BPTT
s1 ). For each architecture, the recurrent hyperparameters

T , K and β have been tuned to make the ∆EP and −∇BPTT processes match best.

panels). Compared to the energy-based setting, although the RelMSEs associated with neurons are
significantly higher in the prototypical setting, the RelMSEs associated with synapses are similar
or lower. On average, the weight updates provided by EP match well the gradients of BPTT, in the
energy-based setting as well as in the prototypical setting.

4.4 Convolutional Architecture

Figure 4: Demonstrating the GDU property with the convolutional architecture on MNIST. Dashed
and continuous lines represent ∆EP and −∇BPTT processes respectively, for 5 randomly selected
neurons (top) and synapses (bottom) in each layer. Each randomly selected neuron or synapse
corresponds to one color. Dashed and continuous lines mostly coincide. Some ∆EP processes
collapse to zero as an effect of the non-linearity, see Appendix D for details. Interestingly, the ∆EP

s
and −∇BPTT

s processes are saw-teeth-shaped ; Appendix C.6 accounts for this phenomenon.

In our convolutional architecture, hn and sn denote convolutional and fully connected layers respec-
tively. W fc

n,n+1 and W conv
n,n+1 denote the fully connected weights connecting sn+1 to sn and the filters

connecting hn+1 to hn, respectively. We define the dynamics as: snt+1 = σ
(
W fc
nn+1 · sn+1

t +W fc>

n−1n · sn−1
t

)
hnt+1 = σ

(
P
(
W conv
n,n+1 ∗ hn+1

t

)
+ W̃ conv

n−1,n ∗ P−1
(
hn−1
t

))
,

(17)

where ∗ andP denote convolution and pooling, respectively. Transpose convolution is defined through
the convolution by the flipped kernel W̃ conv and P−1 denotes inverse pooling - see Appendix D for a

7



Table 1: Training results on MNIST with EP benchmarked against BPTT, in the energy-based and
prototypical settings. "EB" and "P" respectively denote "energy-based" and "prototypical", "-#h"
stands for the number of hidden layers and WCT for "Wall-clock time" in hours : minutes. We
indicate over five trials the mean and standard deviation for the test error, the mean error in parenthesis
for the train error. T (resp. K) is the number of iterations in the first (resp. second) phase.

EP (error %) BPTT (error %) T K Epochs WCT

Test Train Test Train

EB-1h 2.06± 0.17 (0.13) 2.11± 0.09 (0.46) 100 12 30 1 : 33
EB-2h 2.01± 0.21 (0.11) 2.02± 0.12 (0.29) 500 40 50 16 : 04
P-1h 2.00± 0.13 (0.20) 2.00± 0.12 (0.55) 30 10 30 0 : 17
P-2h 1.95± 0.10 (0.14) 2.09± 0.12 (0.37) 100 20 50 1 : 56
P-3h 2.01± 0.18 (0.10) 2.30± 0.17 (0.32) 180 20 100 8 : 27
P-conv 1.02± 0.04 (0.54) 0.88± 0.06 (0.12) 200 10 40 8 : 58

Table 2: Best training results on MNIST with EP reported in the literature.

EP (error %)

Test Train

[Scellier and Bengio, 2017] ∼ 2.2 (∼ 0)
[O’Connor et al., 2018] 2.37 (0.15)
[O’Connor et al., 2019] 2.19

precise definition of these operations and their inverse. Noting Nfc and Nconv the number of fully
connected and convolutional layers respectively, we can define the function:

Φ(x, {sn}, {hn}) =

Nconv−1∑
n=0

hn • P
(
W conv
n,n+1 ∗ hn+1

)
+

Nfc−1∑
n=0

sn> ·W fc
n,n+1 · sn+1, (18)

with • denoting generalized scalar product. We note that snt+1 ≈ ∂Φ
∂s (t) and hnt+1 ≈ ∂Φ

∂h (t) if we
ignore the activation function σ. We define ∆EP

sn , ∆EP
hn and ∆EP

W fc as in Eq. 16. As for ∆EP
W conv , we

follow the definition of Eq. (10):

∆EP
W conv
nn+1

(t) =
1

β

(
P−1(hn,βt+1) ∗ hn+1,β

t+1 − P−1(hn,βt ) ∗ hn+1,β
t

)
(19)

As can be seen in Fig. 4, the GDU property is qualitatively very well satisfied: Eq. (19) can thus be
safely used as a learning rule. More precisely however, some ∆EP

sn and ∆EP
hn processes collapse to

zero as an effect of the non-linearity used (see Appendix C for greater details): the EP error signals
cannot be transmitted through saturated neurons, resulting in a RelMSE of ∼ 10−1 for the network
parameters - see Fig. 15 in Appendix D.

5 Discussion

Table 1 shows the accuracy results on MNIST of several variations of our approach and of the
literature. First, EP overall performs as well or practically as well as BPTT in terms of test accuracy
in all situations. Second, no degradation of accuracy is seen between using the prototypical (P) rather
than the energy-based (EB) setting, although the prototypical setting requires three to five times less
time steps in the first phase (T) and cuts the simulation time by a factor five to eight. Finally, the
best EP result, ∼ 1% test error, is obtained with our convolutional architecture. This is also the best
performance reported in the literature on MNIST training with EP. BPTT achieves 0.90% test error
using the same architecture. This slight degradation is due to saturated neurons which do no route
error signals (as reported in the previous section). The prototypical situation allows using highly
reduced number of time steps in the first phase than Scellier and Bengio [2017] and O’Connor et al.
[2018]. On the other hand, O’Connor et al. [2019] manages to cut this number even more. This
comes at the cost of using an extra network to learn proper initial states for the EP network, which is
not needed in our approach.

8



Overall, our work broadens the scope of EP from its original formulation for biologically motivated
real-time dynamics and sheds new light on its practical understanding. We first extended EP to a
discrete-time setting, which reduces its computational cost and allows addressing situations closer
to conventional machine learning. 6 Theorem 1 demonstrated that the gradients provided by EP are
strictly equal to the gradients computed with BPTT in specific conditions. Our numerical experiments
confirmed the theorem and showed that its range of applicability extends well beyond the original
formulation of EP to prototypical neural networks widely used today. These results highlight that, in
principle, EP can reach the same performance as BPTT on benchmark tasks, for RNN models with
fixed input. One limitation of our theory however is that it has yet to be adapted to sequential data:
such an extension would require to capture and learn correlations between successive equilibrium
states corresponding to different inputs.
Layer-wise analysis of the gradients computed by EP and BPTT show that the deeper the layer, the
more difficult it becomes to ensure the GDU property. On top of non-linearity effects, this is mainly
due to the fact that the deeper the network, the longer it takes to reach equilibrium.

While this may be a conundrum for current processors, it should not be an issue for alternative
computing schemes. Physics research is now looking at neuromorphic computing approaches that
leverage the transient dynamics of physical devices for computation [Torrejon et al., 2017, Romera
et al., 2018, Feldmann et al., 2019]. In such systems, based on magnetism or optics, dynamical
equations are solved directly by the physical circuits and components, in parallel and at speed much
higher than processors. On the other hand, in such systems, the nonlocality of backprop is a major
concern [Ambrogio et al., 2018]. In this context, EP appears as a powerful approach as computing
gradients only requires measuring the system at the end of each phase, and going backward in time
is not needed. In a longer term, interfacing the algorithmics of EP with device physics could help
cutting drastically the cost of inference and learning of conventional computers, and thereby address
one of the biggest technological limitations of deep learning.

6We also expect that our discrete-time formulation would accelerate simulations in the setting of Scellier
et al. [2018] where the weights are not tied.

9



Acknowledgments

The authors would like to thank Joao Sacramento for feedback and discussions, as well as NSERC,
CIFAR, Samsung and Canada Research Chairs for funding. Julie Grollier and Damien Querlioz
acknowledge funding from the European Research Council, respectively under grants bioSPINspired
(682955) and NANOINFER (715872).

References
D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for boltzmann machines.

Cognitive science, 9(1):147–169, 1985.

L. B. Almeida. A learning rule for asynchronous perceptrons with feedback in a combinatorial
environment. volume 2, pages 609–618, San Diego 1987, 1987. IEEE, New York.

S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. Nolfo, S. Sidler, M. Giordano,
M. Bodini, N. C. Farinha, et al. Equivalent-accuracy accelerated neural-network training using
analogue memory. Nature, 558(7708):60, 2018.

F. Crick. The recent excitement about neural networks. Nature, 337(6203):129–132, 1989.

Editorial. Big data needs a hardware revolution. Nature, 554(7691):145, Feb. 2018. doi: 10.1038/
d41586-018-01683-1.

J. Feldmann, N. Youngblood, C. Wright, H. Bhaskaran, and W. Pernice. All-optical spiking neurosy-
naptic networks with self-learning capabilities. Nature, 569(7755):208, 2019.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436, 2015.

J. R. Movellan. Contrastive hebbian learning in the continuous hopfield model. In Connectionist
models, pages 10–17. Elsevier, 1991.

P. O’Connor, E. Gavves, and M. Welling. Initialized equilibrium propagation for backprop-free
training. In International Conference on Machine Learning, Workshop on Credit Assignment in
Deep Learning and Deep Reinforcement Learning, 2018. URL https://ivi.fnwi.uva.nl/
isis/publications/2018/OConnorICML2018.

P. O’Connor, E. Gavves, and M. Welling. Training a spiking neural network with equilibrium
propagation. In K. Chaudhuri and M. Sugiyama, editors, Proceedings of Machine Learning
Research, volume 89 of Proceedings of Machine Learning Research, pages 1516–1523. PMLR,
16–18 Apr 2019. URL http://proceedings.mlr.press/v89/o-connor19a.html.

F. J. Pineda. Generalization of back-propagation to recurrent neural networks. 59:2229–2232, 1987.

M. Romera, P. Talatchian, S. Tsunegi, F. A. Araujo, V. Cros, P. Bortolotti, J. Trastoy, K. Yakushiji,
A. Fukushima, H. Kubota, et al. Vowel recognition with four coupled spin-torque nano-oscillators.
Nature, 563(7730):230, 2018.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error
propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science,
1985.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network
model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

B. Scellier and Y. Bengio. Towards a biologically plausible backprop. arXiv preprint
arXiv:1602.05179v2, 914, 2016.

B. Scellier and Y. Bengio. Equilibrium propagation: Bridging the gap between energy-based models
and backpropagation. Frontiers in computational neuroscience, 11, 2017.

B. Scellier and Y. Bengio. Equivalence of equilibrium propagation and recurrent backpropagation.
Neural computation, 31(2):312–329, 2019.

10



B. Scellier, A. Goyal, J. Binas, T. Mesnard, and Y. Bengio. Generalization of equilibrium propagation
to vector field dynamics. arXiv preprint arXiv:1808.04873, 2018.

C. Tallec and Y. Ollivier. Unbiased online recurrent optimization. arXiv preprint arXiv:1702.05043,
2017.

J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioz, P. Bortolotti, V. Cros,
K. Yakushiji, A. Fukushima, et al. Neuromorphic computing with nanoscale spintronic oscillators.
Nature, 547(7664):428, 2017.

R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent neural
networks. Neural computation, 1(2):270–280, 1989.

11


