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Abstract— It is difficult for humans to obtain new knowledge,
but we can acquire new knowledge by imitating others behav-
iors. Inspired by such human characteristics, we propose a deep
reinforcement learning method called memory reinforcement
learning. Our approach leverages the technique of experience
replay and a replay buffer architecture. We manually create
stable action transition sequences (prior knowledge) and store
these transitions in the replay buffer at the beginning of
training. These hand-crafted transition sequences enable us
to avoid random action selections and a local optimal policy.
Consequently, our method can acquire stable control efficiently.
Experimental results on a lane-changing task of autonomous
driving indicate that the proposed method can efficiently
acquire stable control.

I. INTRODUCTION

Humans have the ability to obtain new knowledge and
skills by using past experiences and practice with many fail-
ures. For instance, when we practice riding a bike, we fall off
our bikes at the beginning and accumulate experiences. After
leveraging those experiences, we finally acquire the skills to
ride a bike. In the reinforcement learning community, we
aim to model such human ability and embed it into any
autonomous system.

Reinforcement learning has been studied over several
decades. In recent years, thanks to the rapid development of
deep neural networks, various deep reinforcement learning
methods have been proposed [1]–[7]. Unlike conventional
(i.e., non-deep) reinforcement learning methods, deep rein-
forcement learning methods can deal with tasks of higher
dimensional state space, which enables us to solve more
complex tasks such as playing Go [8], controlling au-
tonomous system [9]–[11], and grasping objects by using
hand manipulators [12].

Although deep reinforcement learning methods have ex-
hibited higher performance in various application fields, there
are two major problems making it difficult to acquiring
desirable controls. One problem is the difficulty of updat-
ing network parameters. For example, with a reinforcement
learning method using a neural network such as a deep Q
network (DQN) [1], [2], an agent observes the current state
and inputs this state into a network. As an output of the
network, a control is obtained. In this case, by using a multi-
layered network, practical controls on complex and higher
dimensional environments can be obtained. However, such a
deep network causes learning difficulty due to the increase in
the number of parameters and vanishing/exploding gradients.

The other problem is derived from the characteristics of
reinforcement learning. At the beginning of training, we
randomly initialize parameters in a network and start to train.

This is equivalent to training from random action selections.
When acquiring time series actions, it may be difficult to
acquire stable controls because a current action selection
depends on the past agent’s behavior. Experience replay
[13] has been proposed to address this issue. In experience
replay, experienced action transitions are stored in a replay
buffer. Then, the stored transitions are randomly sampled
and used for training. However, learning from random initial
values accumulates action selections that do not contribute
to learning, so it requires a large amount of time to select an
optimal control. Furthermore, if we apply deep reinforcement
learning on a large-scale state space, a solution easily falls
into a local optimum. Therefore, it is difficult to obtain the
desired action.

To avoid the above two problems and achieve higher
performance, transfer learning is widely used in computer
vision. In transfer learning, a convolutional neural network
(CNN) is trained using a large-scale image dataset for general
object recognition tasks such as ImageNet [14]. Then, we
use the trained parameters as initial parameters and further
update the parameters for another task. Transfer learning
is applied on the assumption that features extracted from
an image should be similar for different tasks. However,
introducing transfer learning into a reinforcement learning
framework is difficult because a state space and input sig-
nificantly differ for each task.

In case of humans, pre-train model can be considered as
knowledges of other persons. There are two ways which a
human obtains new knowledge or skill. One is repeating
trial and error on their own, which would require much
time to acquire knowledges. This is corresponding to the
conventional reinforcement approach. The other is imitating
the behaviors of other persons. In this way, prior knowledges
through other persons would be an important clue to acquire
new knowledges efficiently.

Regarding humans, a pre-train model can be considered as
knowledge of other people. There are two ways that a human
obtains new knowledge or skills. One is through trial and
error, which requires much time to acquire knowledge. This
corresponds to the conventional reinforcement approach. The
other is imitating the behaviors of other people. In this
way, prior knowledge from other people can be important
in acquiring new knowledge efficiently.

We propose a reinforcement learning method, called mem-
ory reinforcement learning, to efficiently acquire stable con-
trols. We introduce the concept of prior knowledge men-
tioned above into a reinforcement learning architecture. Our
approach leverages experience replay and a replay buffer.



We manually create action transitions representing stable
human-like behaviors, which we call prior knowledge. We
store prior knowledge into a replay buffer before the be-
ginning of training. During the training, prior knowledge
is randomly used for training by using experience replay.
Consequently, our method enables us to acquire stable con-
trols from the early stage of training. To seek an effective
way to acquire stable controls, we introduce two approaches
for storing hand-crafted transitions. Experimental results by
using an autonomous driving simulator for lane-changing
tasks demonstrated that our method can efficiently acquire
stable vehicle controls.

II. RELATED WORK

Deep reinforcement learning methods to efficiently acquire
stable controls have been proposed. Peng et al. [15] pro-
posed a hierarchical reinforcement learning method to obtain
bipedal locomotion skills. They defined two control systems:
high- and low-level controllers. A high-level controller finds
long-term controls to reach a destination and a low-level
controller controls local walking motions. In contrast, our
method leverages hand-crafted action transitions at the be-
ginning of training and acquires stable controls.

A memory network [16] has been introduced in deep
reinforcement learning architecture to deal with a higher-
dimensional state space and leverage past behaviors of an
agent efficiently. Parisotto et al. [17] proposed Neural Map,
which is a structured memory designed for reinforcement
learning agents in 3D environments. The adaptive write
operation and a bias for the writing operation suppress
the computational cost for writing past behaviors into an
external memory and required the external memory size.
Thanks to the external memory, this method enables us to
store past long-term agent behaviors in a three-dimensional
environment. However, our method stores hand-crafted stable
action transitions instead of past behaviors.

Price et al. [18] introduced imitation learning [19] as a
policy obtained in advance. They roughly estimate desirable
behaviors (i.e., a policy) from human motions by using an
imitation learning framework then integrate with a standard
reinforcement learning framework. This improves perfor-
mance and convergence. However, obtaining stable behavior
of an agent through imitation learning is also challenging. If
we cannot obtain desirable agent behavior in the imitation
learning step, the next reinforcement learning step will be
difficult. Our method involves stable action transition as
prior knowledge and enables us to avoid unstable action
acquisition.

III. PROPOSED METHOD

Deep learning has attracted attention for various tasks
of automatic driving. For instance, semantic segmentation
recognizes traffic lanes by considering the context in the
image, and object detection determines the possibility of
understanding the position of the pedestrian and other ve-
hicles. A mechanism for determining the action of the
vehicle is also necessary to move in a complex environment

Fig. 1. Example of our autonomous driving simulator. In this environment,
an agent tries to change lane from left lane to right lane.

without any traffic accidents. A classical approach is a rule-
based method that is based on human knowledge, but it
is difficult to describe controls for all possible cases in a
complicated environment where other vehicles are driving.
Therefore, we assume a lane-changing task in an environ-
ment in which several other vehicles are running and use
our deep reinforcement learning method to acquire stable
control efficiently. Deep reinforcement learning makes it
possible to acquire an action even when it is difficult to
define complex environments and number of states that are
difficult to describe in rules. To use the results of the afore-
mentioned computer vision techniques in a reinforcement
learning framework, we adopt a bird’s-eye view image to
describe the surrounding environment as an input (see Figure
1). Bird’s-eye view images can be obtained using semantic
segmentation, distance estimation, and object detection for
on-vehicle camera images and Lidar.

A deep reinforcement learning approach based on Q-
learning [20] inputs an image and outputs the value of each
selectable action in that scene. By taking the highest value
action, an agent should be close to a goal. To select better
actions to reach a goal, a reward is an important cue, and
we train an agent to obtain a higher reward. An action-value
function (i.e., Q-function) is approximated as operations of
a CNN, which can be defined as Q(s, a; θi), where s is a
state (i.e., an observation), a is an action, and θi are network
parameters at the ith training iteration. During training, the
θi are updated using a loss function. Let r be a reward value
to be obtained by the selected a and s′ be the next state
of s. In the case of a DQN [1], given an action transition
e = (s, a, r, s′), the loss function Li (θi) is defined using a
temporal-difference error [21] as

Li(θi) = E
[
1

2

(
r+γmax

a′
Q (s′, a′; θi−1)−Q (s, a; θi)

)2]
,

(1)
where a′ is an action at s′ and γ is a discount factor. The θi
are updated using the following gradient of the loss function:

∇θiLi(θi) =

E
[(
r+γmax

a′
Q (s′, a′; θi−1)−Q (s, a; θi)

)
∇θiQ(s, a; θi)

]
.

(2)
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Fig. 2. The structure of a replay buffer with prior knowledge A. Blue cells in a replay buffer are stable action transitions manually created by human
(i.e., prior knowledge) and red cells are action transitions obtained from past agent behaviors. In prior knowledge A, we store the hand-crafted transitions
in part of replay buffer and the experienced transitions are stored in the remaining buffer. Because there stored transitions are randomly selected during
training and suppress random action selections, an agent can introduce prior knowledge to improve controls throughout training.
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Fig. 3. The structure of a replay buffer with prior knowledge B. Blue cells in a replay buffer are stable action transitions manually created by human
(i.e., prior knowledge) and red cells are action transitions obtained from past agent behaviors. Training with prior knowledge B consists of two steps. At
the first step, we fill a replay buffer with the hand-crafted transitions and train an agent with the replay buffer. At the second step, we use the network
parameters obtained in the first step as initial parameters and we further trains the agent with a regular deep reinforcement learning. This approach acquires
the same vehicle control as human and improves the controls.

For a stable gradient update, experience replay is fre-
quently used. In experience replay, a set of action transitions
D = {e1, . . . , en} is stored into a replay buffer. Then,
transitions are randomly selected from the replay buffer
and used for training. A replay buffer is empty at the
beginning of training, and we first store action transitions in
the replay buffer then start training. Because most of these
stored transitions contain random actions in the early state
of training, they require a large amount of time to select
behaviors that would contribute to obtaining stable controls.

We, therefore, our method uses prior knowledge acquired
by humans, and call the method memory reinforcement learn-
ing. With the proposed method, we create action transitions
that represent human behaviors. Specifically, we record the
states and actions when people control an agent vehicle.

These manually created action transitions implicitly contain
knowledge and skills that humans have acquired. Hence, we
call such a transition prior knowledge. Such prior knowledge
is stored in a replay buffer and used for training. The
behaviors of prior knowledge are more stable than those
of an agent at the beginning of training. Moreover, prior
knowledge might be ideal behaviors that we want an agent
to acquire. Because such desirable behaviors are used for
training, it enables us to learn agents by suppressing random
action selections. To use prior knowledge efficiently, we use
the two approaches introduced in the previous section.

A. Prior knowledge A

Figure 2 shows the structure of a replay buffer with
prior knowledge A. This approach constantly stores prior



knowledge in 10% of a replay buffer. In the remaining replay
buffer, we store past behaviors of an agent, as with conven-
tional experience replay. In this approach, prior knowledge
stored in a replay buffer is constantly used during training.
The prior knowledge suppresses random action selection
that does not contribute to obtaining stable controls. Action
transitions of the past agent behaviors are also randomly used
for training. These explores new actions to acquire better
controls.

B. Prior knowledge B

Figure 3 shows the structure of a replay buffer with prior
knowledge B. This approach consists of two training steps.
At the first step, we store prior knowledge in the entire replay
buffer and train a network with the filled replay buffer until
the behaviors approximately converge into stable controls.
Then, we use the network parameters obtained in the first
training step as initial network parameters of the second
training step. At the second step, we apply conventional
training.

In this approach, we obtain the same controls as prior
knowledge at the first training step. Then, at the second
training step, we further improve the network parameters to
obtain more stable controls.

IV. EXPERIMENTAL RESULTS

To evaluate our method, we adopted a lane-changing task
of an autonomous driving simulator. In this task, an agent
(i.e., an autonomous car) moves from the current traffic lane
to the neighboring traffic lane. Because other cars exist in
this environment, the agent needs to change the lane while
avoiding collisions. Moreover, there is no clear goal location
in this task, and it is necessary to acquire long-term controls.
Consequently, in this lane-changing task, it is difficult to
acquire optimal and stable vehicle controls without prior
knowledge.

A. Experimental settings

Figure 1 shows an example of a driving simulator of a
lane-changing task. During training, the number of other cars
is set as 5. In the experiment, we randomly set the number
of other cars from 0 to 5. We defined two behaviors for the
other cars. One was going straight ahead at constant speed,
which is shown with the green car in Figure 1. The other is
copying the past trained agents behaviors, which is shown
with the light blue car in the figure. The reason we used two
types of cars is that using only constant-speed cars might be
too easy. In a practical environment, the behaviors of cars
differ depending on their drivers driving skills. Our simulator
takes into account such a realistic environment and uses the
past trained agents behaviors.

As an input for a network, we trimmed 84 × 84 pixels
centering at the agent and converted the trimmed patches to
grayscale. We inputted four successive gray scale patches
by channel-wise concatenation, as shown in Figure 4, to
consider the continuous movement of an agent. Actions that
an agent can take consist of combinations of speed and
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Fig. 4. Examples of input data. 84 × 84 pixels centered at an agent
are trimmed from the autonomous driving simulator shown in Figure 1.
Then, the trimmed patches are converted to grayscale patches. In our
experiments, we use the grayscale patches of the last four frames as inputs
by concatenating channel-wisely.

TABLE I
THE DETAILED ARCHITECTURE OF CNN.

processing details
input size 84× 84× 4
conv1 activation func. ReLU

filter size 3× 3× 16
maxpooling 2× 2

conv2 activation func. ReLU
filter size 3× 3× 16

maxpooling 2× 2
conv3 activation func. ReLU

filter size 3× 3× 16
maxpooling 2× 2

fc activation func. ReLU
size 256

output size 9

TABLE II
REWARD SETTING AND LEARNING DETAILS

Reward collision with other cars or wall: -5
center of a lane: +1
stop: -1
target lane: +1
non-target lane: -2

Termination criterion collision or 300 action steps
# of training episodes 100,000 episodes
Discount factor γ 0.95
Exploration Linear decay epsilon greedy
Replay buffer size 1e+ 5

curvature. We define speed as ±0, +0.1, and −0.1 m/s and
define curvature as 0, +0.01, −0.01 rad/m. Hence, an agent
takes nine different actions. These are controllable values for
actual cars in the real world.

As a deep reinforcement learning architecture, we adopted
a double DQN [3]. Table I lists the detailed network archi-
tecture of the CNN we used and Table II shows the reward
setting and learning details.

B. Baselines and evaluation metrics

We compared our method (with prior knowledge A and B)
with the following two baselines. One was Default, which
trained an agent by using a naı̈ve double DQN. For fair
comparison, we used the same network architecture as for the
proposed method (see Table I). The other was Human, which
involved several people manually controlling an agent car. In
this experiment, six people controlled an agent to change the
lane. Each person controlled an agent 100 times.

We used the following two scores as evaluation metrics.
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Fig. 5. Mean return and survival steps at each training episode. Horizontal axis shows the number of training episodes and vertical axis shows (a) mean
return value and (b) mean survival steps.

TABLE III
SURVIVAL AND GOAL SCORES

initial lane survival score goal score
default random 53 50

non-goal 33 29
prior knowledge A random 49 37

non-goal 37 10
prior knowledge B random 67 66

non-goal 51 48
human random 50.7 50.3

The first was survival score, which is the number of episodes
in which an agent did not collide with other cars or obstacles
during 300 action steps. The second was goal score, which is
the number of episodes an agent successfully changed into
the target lane within 300 action steps. Each method was
tested for 100 episodes, that is, 100 is the best score and
0 is the worst score. Because each person controlled 100
episodes with regards to Human, the scores were averages
over all six people.

C. Results

Figure 5 shows the mean returns and mean survival steps
during training. Here, survival steps are the action steps
until collision with other cars or obstacles. Note that the
survival step is different to the survival score introduced in
the previous section. For our method with prior knowledge
A, both the mean return and mean survival steps decreased
from 50,000 episodes. At the end of training (i.e., 100,000
episode), our method with prior knowledge A had the lowest
values compared with the other methods. Our method with
prior knowledge B successfully trained without decreasing
those values. However, Default, which does not use prior
knowledge, achieved the highest return and number of sur-
vival steps.

Table III shows the evaluation scores for each training
method. Initial lane in this table shows the location of an
agent at the beginning of an episode. Random means that
we randomly set the initial lane as the target or non-target
lane. Non-goal means that we set an agent to a non-target

lane for all episodes. Although Default achieved better results
during training, as shown in Figure 5, its evaluation scores
were lower than those of our method with prior knowledge
B. This means that training without prior knowledge plunges
into local optimum solution, and Default acquired unstable
controls. The survival scores of prior knowledge A is at
the same level as default, while the goal score becomes
lower than default. In prior knowledge A, the hand-crafted
transitions are always stored in the part of a replay buffer
and these transitions are constantly used during the training.
Therefore, the training relies on the prior knowledges and an
agent does not explore new actions. The scores of our method
with prior knowledge B were the highest. For our method
with prior knowledge B, we first trained a network with
only the hand-crafted transitions and found a more optimal
solution by using action transitions obtained from past agent
behaviors. Hence, agent behavior that should be learned from
prior knowledge is already acquired in the first training step.
At the second training step, apart from the controls acquired
from prior knowledge, exploring new actions enables us to
acquire better vehicle controls. Moreover, our method with
prior knowledge B outperformed Human. Consequently, our
method acquired stable controls from prior knowledge and
acquired better actions suitable for the lane-changing task.
Our method with prior knowledge B was especially efficient
for leveraging human prior knowledge.

D. Operation result in a real environment

We conducted a running test using an actual vehicle in
the real world. The action of a vehicle is determined by a
trained agent with prior knowledge B. Given the speed and
curvature of a vehicle in a driving simulator, the degrees
of accelerator and steering of an actual vehicle are deter-
mined by Proportional-Integral-Differential (PID) control to
reproduce the same vehicle control as the driving simulator.
The parameters of PID control were experimentally set as
P = 2000, I = 100, and D = 0. We set them in a
real environment so that the distance between cars and lane
distance correspond to those in the simulator environment.



(a) Example of lane change in simulator by agent

(b) Example of lane change in real world by agent

Fig. 6. Snapshots of running test using actual vehicle in real world

Figure 6 shows snapshots of the running test. In this running
test, there are no other cars to avoid accidents. However, we
assumed that there are several cars in the target lane and that
an agent moves from the non-target lane to the target lane.
As a result, the vehicle successfully changed lanes without
any collisions or overshooting of the target lane.

E. Discussion

We give examples of lane-changing results for our method
with prior knowledge B in Figure 7 for qualitative evaluation.
As shown in Figure 7(a), an agent changed the lane from
right to left in an environment with three other cars. In this
situation, the agent did not accelerate and followed the car in
front of it from initial to step 30. After the other car changed
the lane at step 65, the agent smoothly moved to the large
space between other cars at step 95. As shown in Figure 7(b),
there were three other cars in the target lane from initial to
step 70. After the agent passed the other cars and ensured
the safety margins, the agent changed the lane. These results
indicate that an agent trained with the proposed method takes
the same actions as a human and that the proposed method
can obtain stable controls with prior knowledge.

V. CONCLUSION

We proposed a deep reinforcement learning method, called
memory reinforcement learning, to acquire stable controls
efficiently. Our method manually creates action transitions,
i.e., prior knowledge, that represent actual human behaviors,
which we store into a replay buffer. Using the stored prior

Initial step 30 step 65 step 95 step

(a) An example to change lane after following another car

Initial step 70 step 175 step 230 step

(b) An example to change lane with passing another car

Fig. 7. Examples of lane-changing results for our method with prior
knowledge B. Details of colored objects are given in Figure 1. Each row
shows one trial of lane changing. The number of action steps corresponding
to each image is shown under that image.

knowledge suppresses random action selection and enables
us to acquire stable controls from the early stage of train-
ing. To acquire more stable controls, we introduced two
approaches to use the prior knowledge. In the experiments
involving a lane-changing task of an autonomous driving
simulator, our method outperformed conventional deep rein-
forcement learning methods without prior knowledge. More-
over, the proposed method, with which we train a network
with only prior knowledge then use the trained parameters
for regular reinforcement learning, performed the best. In a
running test using an actual vehicle in the real world, the
vehicle successfully changed lanes with our method.

Our future work includes seeking more effective ap-
proaches to use prior knowledge and a reward design by
considering such knowledge.
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