
Workshop track - ICLR 2017

A SMOOTH OPTIMISATION PERSPECTIVE ON
TRAINING FEEDFORWARD NEURAL NETWORKS

Hao Shen
Department of Electrical and Computer Engineering
Technical University of Munich, Germany
hao.shen@tum.de

ABSTRACT

We present a smooth optimisation perspective on training multilayer Feedforward
Neural Networks (FNNs) in the supervised learning setting. By characterising the
critical point conditions of an FNN based optimisation problem, we identify the
conditions to eliminate local optima of the cost function. By studying the Hessian
structure of the cost function at the global minima, we develop an approximate
Newton FNN algorithm, which demonstrates promising convergence properties.

1 INTRODUCTION

Despite the recent great success of deep neural networks in various applications, training a deep
neural network is still among the greatest challenges in the field, cf. (Glorot & Bengio, 2010). In
this abstract, we focus on the study of training the Feedforward Neural Networks (FNNs) to solve
supervised learning problems. One major reason for the difficulty in training an FNN is that their
performance is highly dependent on various factors, such as the architecture of an FNN (Hornik,
1991; Sun et al., 2016), the specific activation function (Mhaskar & Micchelli, 1993), and the choice
of error functions (Falas & Stafylopatis, 1999), in a very complicated way.

The most popular FNN training algorithm is the backpropagation (BP) algorithm, cf. (Widrow &
Lehr, 1990). Although the BP algorithm shares a great convenience of being very simple, early
works argue that problems with the BP algorithm are essentially its nature of being a gradient descent
algorithm, cf. (Sutton, 1986). Since a cost function for training an FNN is often in a large scale
and highly non-convex, BP algorithms often suffer from two major problems, namely, (i) potential
existence of undesired local minima, and (ii) slow convergence speed. Although BP algorithms are
suspected to be sensitive to initialisations, c.f. (Kolen & Pollack, 1990), recent results reported in
(Goodfellow et al., 2015) suggest that modern FNN learning algorithms can overcome the problem
of local optima quite conveniently. Such an observation could be explained by the previous works
in (Yu, 1992; Yu & Chen, 1995; Gori & Tesi, 1992; Kawaguchi, 2016), which developed conditions
on the structure of FNNs to eliminate undesired local minima. On the other hand, to deal with slow
convergence speed, various modified BP algorithms have been developed, such as momentum based
BP algorithm (Vogl et al., 1988), conjugate gradient algorithm (Charalambous, 1992), and BFGS
algorithm (Le et al., 2011). Heuristic approximations of the Hessian matrix, such as a diagonal
approximation structure (Battiti, 1992) and a block diagonal approximation structure (Wang & Lin,
1998), have also been proposed to construct approximate Newton’s method. However, without a
true evaluation of the Hessian, performance of these heuristic approximations is hardly convincing.

2 REVISITING THE BACKPROPAGATION ALGORITHM

We denote by L the number of layers in an FNN structure, and by nl the number of processing units
in the l-th layer with l = 1, . . . , L. Specifically, by letting l = 0, we refer to the input layer. Let
φl−1 ∈ Rml denote the output from the (l−1)-th layer, wl,k ∈ Rml the parameter vector associated
with the (l, k)-th unit function fl,k(wl,k, φl−1) ∈ R in the l-th layer. By stacking all unit functions
tegether, we can define the l-th layer evaluation mapping as

Fl : Rml×nl × Rml → Rnl , (Wl, φl−1) 7→
[
fl,1(wl,1, φl−1), . . . , fl,nl

(wl,nl
,φl−1)]>, (1)

with Wl := [wl,1, . . . , wl,nl
] ∈ Rml×nl being the l-th parameter matrix. Specifically, let us denote

by φ0 ∈ Rn0 the input, then we define φl := Fl(Wl, φl−1) iteratively. By composing all the layer-

1



Workshop track - ICLR 2017

wise mappings together, the overall network mapping is defined as

F : W × Rn0 → RnL , (W, φ0) 7→ FL(WL, ·) ◦ . . . ◦ F2(W2, ·) ◦ F1(W1, φ0), (2)

where W := (W1, . . . ,WL) ∈ W := Rm1×n1 × . . . × RmL×nL . For a specific learning task, one
often deploys a suitable error function E : RnL → R, which is assumed to be differentiable in this
abstract. For supervised learning tasks, given a dataset with T samples, denoted by (xi, yi)

T
i=1, we

define the overall FNN learning cost function as

J : W → R, J (W) :=

T∑
i=0

(E ◦ F ) (W, xi), (3)

which is by construction differentiable in FNN parameters W.

We apply the chain rule of multivariable derivative to compute the first derivation of (E ◦ F ) w.r.t.
the l-th parameter matrix Wl in direction Hl ∈ Rml×nl evaluated at sample (xi, yi) as

D(E◦F )(Wl)Hl =DE(φ
(i)
L )·D2FL(WL, φ

(i)
L−1)·. . .·D2Fl+1(Wl+1, φ

(i)
l )·D1Fl(Wl, φ

(i)
l−1)Hl, (4)

where D1Fl(Wl, φ
(i)
l−1) and D2Fl(Wl, φ

(i)
l−1) refer to the derivative of Fl w.r.t. the first and second

argument, respectively. Let φ′l ∈ Rnl be the vector of the derivative of the activation function in the
l-th layer, and we define diagonal matrices Σ

′(i)
l := diag(φ

′(i)
l ) for all l = 1, . . . , L. Then we can

write the gradient of (E ◦ F ) with respect the l-th parameter matrix Wl ∈ Rml×nl as

∇(E◦F )(Wl) = φ
(i)
l−1
(

Σ
′(i)
l Wl+1 . . .Σ

′(i)
L−1WLΣ

′(i)
L ∇E(φ

(i)
L )︸ ︷︷ ︸

=:ω
(i)
l ∈R

nl

)>
, (5)

which is a rank-one matrix update. By exploring the layer-wise structure of the FNN, the correspond-
ing vector ω(i)

l can be computed iteratively backwards from the output layer L. Such a backward
mechanism in computing the gradient∇(E◦F )(Wl) is referred to as the classic BP algorithm.

3 MAIN RESULTS

With the gradient computed explicitly as in (5), the critical points of the FNN learning cost J are
characterised by simply setting it to zero, namely, ∇J (W) = 0. More explicitly, by constructing a
sequence of matrices as, with Ψ

(i)
L = Σ

′(i)
L ∈ RnL×nL and for all l = L− 1, . . . , 1 as

Ψ
(i)
l := Σ

(i)
l Wl+1Ψ

(i)
l+1 ∈ Rml×nL , (6)

we can write the critical point condition explicitly as an equation system in∇E(φ
(i)
L ) as

∇J (W) =

Ψ
(1)
L ⊗ φ

(1)
L−1 . . . Ψ

(T )
L ⊗ φ(T )

L−l
...

. . .
...

Ψ
(1)
1 ⊗ φ

(1)
0 . . . Ψ

(T )
1 ⊗ φ(T )

0


︸ ︷︷ ︸

=:P∈RNnet×(T ·nL)

∇E(φ
(1)
L )

...
∇E(φ

(T )
L )

= 0, (7)

where⊗ denotes the Kronecker product of matrices, andNnet =
∑L

l=1ml ·nl is the total number of
variables in an FNN. Obviously, if the rank of matrix P is equal to T ·nL, then the trivial solution of
∇E(φ

(i)
L ) = 0 for all i = 1, . . . , T is the only solution of the parameterised linear system (7). If the

error function E is chosen to be strictly convex, then such a trivial zero solution is corresponding to
the global minimum of E. Hence, we present the following theorem.
Theorem 1 (Local minima free condition). Let the error function E : RnL → R be strictly convex,
and a global minimum W∗ of the FNN learning cost be reachable. If the rank of matrix P as
constructed in (7) is equal to T ·nL, i.e., rank(P) = T ·nL, then the FNN learning cost function J
is free of local minima.
Remark 1 (Choice of the number of NN variables). Given the number of rows of P being Nnet, the
theorem suggests that the total number of variables in an FNN, i.e., Nnet, needs to be greater than
or equal to T · nL.

The analysis of the Hessian is critically important for designing efficient numerical algorithms. The
Hessian form of the FNN learning cost function J is a bilinear operator HJ : RNnet ×RNnet → R,
computed by computing the second derivative of J . Specifically, if a global minimum W∗ is
reachable, the Hessian form HJ evaluated at W∗ in direction H ∈ W is computed by

2



Workshop track - ICLR 2017

HJ (W∗) = d2

dt2J (W + tH)
∣∣
t=0

=

T∑
i=1

Ψ∗(i) �Φ∗(i) ∈ RNnet×Nnet , (8)

where� is the Khatri-Rao product of two identically partitioned (L×L) matrices Ψ∗(i) and Φ∗(i)

Ψ∗(i) :=

Ψ
(i)
L
...

Ψ
(i)
1

HE(φ
∗(i)
L )

Ψ
(i)
L
...

Ψ
(i)
1


>

, and Φ∗(i) :=

φ
∗(i)
L−1
...

φ
∗(i)
0


φ
∗(i)
L−1
...

φ
∗(i)
0


>

. (9)

It is obvious that rank(Ψ∗(i)) ≤ nL and rank(Φ∗(i)) = 1. Since both matrices Ψ∗(i) and Φ∗(i) are
positive semi-definite, the Hessian matrix HJ (W∗) is simply a sum of T low rank (≤ nL) positive
semi-definite matrices. We can conclude the following result.
Theorem 2. If a global minimum W∗ of the FNN learning cost is reachable, then the rank of the
Hessian matrix of J is bounded from above by

rank(HJ (W∗)) ≤ T · nL. (10)

Remark 2. According to the result in Theorem 1, it is easy to that rank(HJ (W∗)) ≤ T ·nL ≤ Nnet.
In other words, the rank of the Hessian at the global minima have the largest possible rank of
T ·nL. When a specific FNN is constructed from scratch without insightful knowledge regarding the
data, then it is very likely that the Hessian is degenerate, i.e., gradient based algorithms can suffer
significantly from slow convergence speed.
It is important to notice that the Hessian HJ (W∗) is neither diagonal nor block diagonal, which
demotivates the existing approximate strategies of the Hessian in (Battiti, 1992; Wang & Lin, 1998).
With our explicit characterisation of the Hessian at global minima, we propose to approximate the
Hessian of J at arbitrary point W with the structure as shown in Eq. (8).

4 NUMERICAL EXPERIMENTS

We investigate performance of our proposed approximate Newton’s (AN) algorithm on the four
regions classification benchmark, as originally proposed in (Singhal & Wu, 1989). In R2 around
the origin, we have a square area (−4, 4)× (−4, 4), and three concentric circles with their radiuses
being 1, 2, and 3. Four regions/classes are interlocked, nonconvex, as shown in Figure 1 (left). We
draw randomly T = 1000 samples in the box for training, and specify the corresponding output
to be the i-th basis vector in R4. We deploy an FNN architecture with two hidden layers, i.e.,
L = 3. In both hidden layer, there are 10 units each. Hence, we have n0 = 2, n1 = n2 = 10,
and n3 = 4. All activation functions are chosen to be Sigmoid. Finally, the error function is an
smooth approximation of the `1 norm as E(x) :=

√
‖x− y‖22 + β where we set β = 10−6. We test

both the classic BP algorithm and the AN algorithm. For running 1000 iterations, the BP algorithm
took 61.1 sec., while the AN algorithm spent 1314.1 sec. On average, the running time for each
iteration of AN was about 21.4 times as required for an iteration of BP. With the same data and the
same random initialisation, we ran BP for 20760 iterations, which took the same amount of time
as required for 1000 iterations of AN. As in Figure 1 (right), the first 1000 iterations of BP was
highlighted in red with the remaining iterations being coloured in blue. The AN went up at the
beginning, then smoothly decreased to the global minimal value, while the BP demonstrated strong
oscillation towards the end. It is worth noticing that the prediction of the trained neural network
matches exactly the label in the four region problem as the global minimum was reached.

0 131.4 262.8 394.2 525.6 657.0 788.4 919.8 1051.2 1182.6 1314

Time (s)

0

200

400

600

800

1000

1200

J
(W

t)

Approximate Newton (1000 iterations)

Classic BP (1000 iterations)

Classic BP (19760 iterations)

Figure 1: Comparison of convergence in terms of cost function value (step size α = 0.01).

3



Workshop track - ICLR 2017

REFERENCES

R. Battiti. First- and second-order methods for learning: Between steepest descent and newton’s
method. Neural Computation, 4(2):141–166, 1992.

C. Charalambous. Conjugate gradient algorithm for efficient training of artificial neural networks.
IEE Proceedings G - Circuits, Devices and Systems, 139(3):301–310, 1992.

T. Falas and A. G. Stafylopatis. The impact of the error function selection in neural network-based
classifiers. In Proceedings of the International Joint Conference on Neural Networks (IJCNN),
volume 3, pp. 1799–1804, 1999.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
(AISTATS-10), volume 9, pp. 249–256, 2010.

I. J. Goodfellow, O. Vinyals, and A. M. Saxe. Qualitatively characterizing neural network opti-
mization problems. Published at the 5th International Conference on Learning Representations
(ICLR). arXiv:1412.6544., 2015.

M. Gori and A. Tesi. On the problem of local minima in backpropagation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 14(1):76–86, 1992.

K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2):
251–257, 1991.

K. Kawaguchi. Deep learning without poor local minima. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems
29, pp. 586–594. 2016.

J. F. Kolen and J. B. Pollack. Backpropagation is sensitive to initial conditions. Complex Systems, 4
(3):269–280, 1990.

Q. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Ng. On optimization methods for deep
learning. Proceedings of international conference on Machine Learning, 2011.

H. N. Mhaskar and C. A. Micchelli. How to choose an activation function. In Proceedings of the
6th International Conference on Neural Information Processing Systems, pp. 319–326, 1993.

S. Singhal and L. Wu. Training multilayer perceptrons with the extended Kalman algorithm. In
Advances in Neural Information Processing Systems, pp. 133–140, 1989.

S. Sun, W. Chen, L. Wang, X. Liu, and T.-Y. Liu. On the depth of deep neural networks: A theoretical
view. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, pp. 2066–2072, 2016.

R. S. Sutton. Two problems with backpropagation and other steepest-descent learning procedures
for networks. In Proceedings of the 8-th Annual Conference of the Cognitive Science Society, pp.
823–831, 1986.

T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon. Accelerating the convergence
of the back-propagation method. Biological Cybernetics, 59(4):257–263, 1988.

Y.-J. Wang and C.-T. Lin. A second-order learning algorithm for multilayer networks based on block
Hessian matrix. Neural Networks, 11(9):1607–1622, 1998.

B. Widrow and M. A. Lehr. 30 years of adaptive neural networks: perceptron, madaline, and back-
propagation. Proceedings of the IEEE, 78(9):1415–1442, 1990.

X.-H. Yu. Can backpropagation error surface not have local minima. IEEE Transactions on Neural
Networks, 3(6):1019–1021, 1992.

X.-H. Yu and Guo-An Chen. On the local minima free condition of backpropagation learning. IEEE
Transactions on Neural Networks, 6(5):1300–1303, 1995.

4


	Introduction
	Revisiting the backpropagation algorithm
	Main Results
	Numerical experiments

