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SMUG: Sand Mixing for Unobserved Class Detection in Graph
Few-Shot Learning

Anonymous Author(s)

ABSTRACT
Graph few-shot learning (GFSL) has achieved great success in node
classification tasks with rare labels. However, graph few-shot classi-
fication (GFSC) models often encounter the problem of classifying
test samples with unobserved (or unknown) classes due to the
rareness of labels. We formulate this problem as out-of-distribution
(OOD) sample detection in inductive graph few-shot learning. This
paper presents SMUG, a novel GFSL framework that can detect
unobserved classes. Since we have no ground-truth OOD samples
in a practical training dataset, it is challenging for the GFSC model
to retrieve knowledge about unknown classes from labeled sam-
ples. To address this difficulty, we propose a sand mixing scheme
to introduce observed classes as artificial OOD samples into meta-
tasks. We also develop two unsupervised OOD discriminators to
identify OOD samples. Thus, we can assess the performance of
OOD discriminators since we know the true classes of these ar-
tificial OOD samples. Subsequently, we design a novel training
procedure to optimize the encoder based on the performance of
the OOD discriminators and the GFSC model. It not only enables
the GFSL model to distinguish OOD samples but also promotes the
classification accuracy of normal samples. We conduct extensive
experiments to evaluate the effectiveness of SMUG based on four
benchmark datasets. Experimental results demonstrate that SMUG
achieves superior performance over state-of-the-art approaches in
OOD detection and node classification.

KEYWORDS
graph few-shot learning, out-of-distribution detection, sand mixing
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1 INTRODUCTION
Graph node classification has attracted much attention as an es-
sential task in Web data mining. In practice, many classes have
limited labeled instances, rendering a long-tailed distribution of
class samples. Nevertheless, deep learning models require many
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labeled samples for model training. Therefore, learning with a hand-
ful of labeled samples is a key challenge in translating the research
efforts of deep learning to real-world applications. To tackle this
difficulty, graph few-shot learning (GFSL) has been proposed to
enable a model to learn new tasks from a few labeled samples [1, 2].

Most graph few-shot classification (GFSC) models exploit the
concept of meta-learning [3–5], which comprises a series of meta-
tasks constituted by meta-training and meta-test. Each meta-task
has a support set and a query set. A GFSC model is trained through
meta-training tasks, which know the labels of samples in the sup-
port and query sets. A meta-test task only knows the labels of
samples in the support set. Given a meta-test task, a trained GFSC
model classifies the samples in the query set by transferring the
learned class distributions in the support set [1].

It is generally assumed that samples in the support and query
sets have common classes for a single meta-task [6–8]. However,
some samples in the query set of a meta-test task may actually
not belong to any known classes in the support set in practical
applications [9, 10]. For example, some rare cases never observed
in medicine could be collected in a query set, or papers about a new
research topic could gradually emerge in a citation graph.We define
an out-of-distribution (OOD) sample as one in the query set that
does not belong to any known classes in the support set for a meta-
test task. A conventional GFSC model could mistakenly classify
an OOD sample into an existing category, sometimes resulting
in severe incidents in safety-critical applications. Therefore, it is
desirable to design a GFSC model that can detect OOD samples.

GFSCmodels without the awareness of OOD samples will catego-
rize an unobserved class sample into existing classes. These models
face two dilemmas: i) OOD samples are mistakenly assigned to an
arbitrary category, and ii) the existence of OOD samples harms
the classification of normal samples. Meanwhile, models with the
awareness of OOD samples can better categorize normal samples
into their proper classes if we can identify OOD samples. We de-
fine the problem of identifying OOD samples in GFSC tasks as
Few-shot Classification with Out-of-Distribution Detection (GFSC-
OOD). Conventional OOD detectionmethods have achieved promis-
ing results [11–13]. However, applying these methods directly to
the GFSC-OOD problem is difficult due to the lack of labeled data.
Moreover, it poses more difficulty in learning the distributions of
normal samples in the existence of OOD samples.

Most previous studies employ an independent OOD discrimi-
nator to distinguish OOD samples from normal ones by modeling
it as a binary classification problem [9, 14, 15]. Although training
an OOD discriminator independently distinguishes OOD samples
from normal ones, it pulls different classes of normal samples closer,
degrading the classification accuracy. We observe that GFSC and
OOD detection can benefit from each other. A good GFSC model
should encode an OOD sample far away from normal ones in the
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latent space. On the other hand, the performance of the GFSCmodel
can be promoted if OOD samples are correctly identified.

This paper presents SMUG, a novel GFSC framework to address
the GFSC-OOD problem. SMUG equips existing GFSC models with
the ability of OOD detection and promotes classification perfor-
mance. However, we usually have no ground-truth OOD samples
in a practice dataset. To solve the cold-start problem, we propose a
sand mixing scheme to introduce some known classes as artificial
OOD samples. We mix these artificial OOD samples into the query
sets of meta-training tasks. It allows us to assess the performance
of the OOD discriminators in the training process because the true
labels of artificial OOD samples are known.

We design two unsupervised OOD discriminators to identify
OOD samples with distance-based and probability-based criteria,
respectively. Many existing distance-based methods judge OOD
samples based on the minimum distance between a sample and class
prototypes, ignoring the sample distributions of different categories.
We propose a novel distance-based discriminator to determine a test
(or query) sample as OOD based on the support radii of different
classes, which are closely relevant to the distributions of specific
classes. Most existing probability-based approaches set an explicit
threshold for OOD detection. Differently, we assume that the prob-
ability of an OOD sample being classified into any normal class is
small and even. Accordingly, we propose an adaptive thresholding
method for the probability-based discriminator.

We train an inductive graph neural network (GNN)-based en-
coder to map nodes into a low dimensional space. The optimization
of the encoder affects the performance of the GFSC model and the
OOD discriminator. Training the encoder solely based on the per-
formance of the GFSC model will reduce the performance of OOD
detection. Nevertheless, training the encoder solely based on the
performance of the discriminator will lead to the collapse of normal
nodes, i.e., the encoder pulls different classes of normal samples
closely, significantly degrading the classification performance of
normal samples. To address this issue, we design a novel training
procedure to optimize the encoder by integrating the performance
of the OOD discriminator as a weak signal with the performance of
the FSC model. This scheme not only enables the optimized model
to identify OOD samples but also enhances the performance of
the classification task by learning better distributions of normal
samples. The contributions of this work are as follows:

• We propose a novel GFSL framework to equip existing GFSC
models with the ability of OOD detection. Unlike conventional
GFSC models, our method incorporates an unsupervised OOD
discriminator to detect OOD samples.

• We propose a sand mixing scheme to solve the cold-start training
problem caused by the absence of ground-truth OOD samples.
It allows us to assess the performance of OOD discriminators,
which are employed as a weak signal to train the encoder.

• We develop two OOD detection discriminators and design two
corresponding loss functions to optimize the encoder based on
the performance of OOD discriminators.

• We conduct experiments to evaluate the effectiveness of the
proposed method. Experimental results show that our proposed
method outperforms runner-up methods by a margin of 2.2%
and 1.6% in ACC and F1-score.

The rest of this work is organized as follows. Section 2 presents
the related work in graph few-shot learning and out-of-distribution
detection. Section 3 introduces the preliminaries of few-shot clas-
sification and the definition of the GFSC-OOD problem. Section 4
shows the details of our method. Section 5 demonstrates the ex-
periments conducted to evaluate the effectiveness of the proposed
method. Finally, Section 6 concludes the work and discusses possi-
ble research directions in future work.

2 RELATEDWORK
2.1 Graph Few-shot Learning
Few-shot learning (FSL) has received much attention due to its
effectiveness in encoding data with rare labels [1, 2, 16–18]. Gener-
ally, existing FSL models fall into three categories: fine-tune-based,
data augmentation, and transfer learning-based methods. Fine-tune-
based approaches pre-train a model on a large source dataset and
then fine-tune the model based on the target dataset [19, 20]. These
methods suit situations where the target and source datasets have
similar distributions. When the target and source datasets have
different distributions, the trained model usually over-fits the tar-
get dataset because a small amount of data cannot reflect the real
distribution well.

Data augmentation-based methods consider the fundamental
problem of FSL as the low diversity of samples due to small amounts
of samples [21]. These approaches employ data expansion [22]
or feature augmentation [23] to improve sample diversity with
auxiliary information. Data expansion adds new data that contains
unlabeled data [24, 25] or synthetic labeled data [26, 27] to the
original dataset. Feature augmentation improves sample diversity
by enhancing the features with good generalization [28, 29].

Transfer learning-based methods refer to using old knowledge to
assist in learning new knowledge [30]. Data in the source and target
domains should have certain correlations. In general, the stronger
the correlation, the better the effect of transfer learning [31]. These
approaches can be divided into two groups: metric-learning-based
and meta-learning-based. Metric learning [32], also called similarity
learning, classifies samples by calculating the distance between
a sample to be classified and the known classes [33–35]. Meta-
learning is also called learning to learn [36], which learns meta-
knowledge from many prior tasks so that the model can learn faster
in new tasks. Currently, meta-learning methods have transformed
from one-shot learning [27, 33] to few-shot learning [3, 4, 7].

Graph neural networks (GNNs) are essential for learning node
representations of graph data. Common GNNs include graph con-
volutional networks [37], gated graph neural networks [38], and
graph attention networks [39]. Most existing graph few-shot learn-
ing (GFSL) models employ GNNs as an encoder to learn node rep-
resentations and exploit the meta-learning procedure for model
training. However, few models consider the out-of-distribution
(OOD) detection problem, which is common in GFSL due to the
lack of labeled data and the dynamic nature of graph data.

2.2 Out-Of-Distribution Detection
OOD detection refers to detecting samples that do not belong to
any known classes in the training set. Traditional machine learn-
ing methods assume that samples in the training and test datasets

2
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are independent and identically distributed (i.i.d.), i.e., they are
in-distribution (ID) samples. In practice, the test data received by
the model may contain some OOD samples. Existing models often
assign OOD samples to some known classes, leading to the lim-
ited applications of these models to safety-critical fields such as
medicine, finance, and autopilot. Thus, enabling a model to identify
OOD samples is essential to the safety of machine learning models.

There are three kinds of OOD detection methods: classification-
based methods, probability-based approaches, and distance-based
schemes. Classification-based methods use the maximum softmax
probability as an indicator score of OOD-ness [40]. Most models
focus on deriving an OOD score based on deep neural networks [41–
43]. Probability-based approaches characterize ID samples with
probabilistic models and identify samples in low-density regions as
OOD. A class-conditional Gaussian distribution explicitly models ID
samples and identifies OOD samples based on their likelihoods [44].
However, some works find that probabilistic models sometimes
assign higher likelihoods for OOD samples [45, 46]. Several re-
searchers attempt to solve the problem using likelihood regret [47]
and density models [45]. However, these probabilistic models are
prohibitively hard to train and optimize. Distance-based methods
assume that OOD samples are relatively far from the prototypes of
ID classes [48]. Therefore, they identify OOD samples based on the
distances to the prototypes of ID classes [49].

With the rapid development of FSL models, some OOD detec-
tion methods have been studied for FSL [11, 15, 50]. Most of these
methods aim to design an OOD detection model independent of
the FSC model, ignoring the promotion of OOD detection for FSC
models. Unlike these approaches, we employ the performance of
OOD discriminators as a weak signal to supervise the training of
the FSL model.

3 PRELIMINARIES
3.1 Graph Few-shot Classification
Denote a graph as G = {X, E,X′}, where X is the set of nodes, E is
the set of edges, andX′ is the raw feature matrix of nodes. The node
set X = X𝐿 ∪ X𝑈 constitutes two kinds of nodes: a labeled set X𝐿
with ground-truth labels y𝐿 = [𝑦1, 𝑦2, ...𝑦 |X𝐿 | ] and an unlabeled set
X𝑈 . The classification problem is to learn a classifier 𝑔Θ′ : X → y
based on the patterns learned fromX𝐿 , andΘ′ represents the model
parameters. The classifier then categorizes the nodes in X𝑈 .

A general solution is to learn an encoder 𝑓Θ : X → X𝑛×𝑑 , where
𝑛 is the number of samples,Θ represents the model parameters, and
𝑑 represents the embedding dimensionality. The encoder 𝑓Θ trans-
forms nodes into a latent vector space, preserving the structural
and attributive information of G. The learned representations X are
then used to train a classifier 𝑔Θ′ such as support vector machine
(SVM), logistic regression, and multi-layer perceptron (MLP). This
approach requires a mass of labeled samples for model training and
fails to handle scenarios with rare labels.

Graph few-shot learning (GFSL) addresses the above problem
by decomposing the classification task into multiple meta-tasks
T = T 𝑡𝑟𝑎𝑖𝑛 ∪ T 𝑡𝑒𝑠𝑡 , where T 𝑡𝑟𝑎𝑖𝑛 = {T1,T2, ...,T𝑇 }𝑡𝑟𝑎𝑖𝑛 is the
set of meta-training tasks, 𝑇 is the number of tasks, and T 𝑡𝑒𝑠𝑡 is
the set of meta-test tasks. Each meta-task T𝑡 = (S𝑡 ,Q𝑡 ) contains
two sampled mini-sets, including a support set S𝑡 and a query

set Q𝑡 . A support set S𝑡 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑁×𝐾 , 𝑦𝑁×𝐾 )} is
generated by randomly selecting 𝑁 classes from the class set C and
uniformly picking 𝐾 samples for each category of the 𝑁 classes
from X𝐿 . A query set Q𝑡 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑁×𝑀 , 𝑦𝑁×𝑀 )}
also contains the same 𝑁 classes, and each class is composed of𝑀
samples extracted from the remaining samples. The model learns an
encoder 𝑓Θ based on the meta-training tasks. It minimizes the loss
of the predictions for samples in the query sets by contrasting them
with those in the support sets. Given a meta-task T𝑡 , a common loss
is usually formulated as follows:

𝐿𝑡 =

𝑁 ×𝑀∑︁
𝑘=1

𝐿𝑘𝑡 , (1)

where 𝐿𝑘𝑡 = −∑𝑁
𝑖=1 log exp (−𝑑𝑖𝑠𝑡 (𝑓Θ (𝑥𝑘 ),x̄𝑖 ))∑𝑁

𝑗=1 exp (−𝑑𝑖𝑠𝑡 (𝑓Θ (𝑥𝑘 ),x̄𝑗 ) )
is the loss of the

𝑘-th sample, x̄𝑖 =
∑

(𝑥,𝑦=𝑖 ) ∈S𝑡 𝑓Θ (𝑥)/𝐾 and x̄𝑗 are the prototypes
of the 𝑖-th and 𝑗-th classes in the support set, respectively; and
𝑑𝑖𝑠𝑡 (x𝑘 , x̄𝑖 ) is the distance from x𝑘 to x̄𝑖 .

In this way, the model learns meta-knowledge gradually from
the training set and transfers them to the meta-test tasks T 𝑡𝑒𝑠𝑡 =
(S𝑡𝑒𝑠𝑡 ,Q𝑡𝑒𝑠𝑡 ), where the support set S𝑡𝑒𝑠𝑡 contains a small num-
ber of labeled samples. Besides, samples in S𝑡𝑒𝑠𝑡 and Q𝑡𝑒𝑠𝑡 are
unnecessary to belong to any classes in C. The obtained model is
then used to predict the labels of samples in the query set Q𝑡𝑒𝑠𝑡 by
contrasting them with those in the support set S𝑡𝑒𝑠𝑡 . This problem
is named the 𝑁 -way 𝐾-shot classification problem.

3.2 Problem Definition
It is generally assumed that samples in the support set S𝑡 and the
query set Q𝑡 share common classes so that samples in Q𝑡 can be
correctly predicted by learning the distributions of the samples in
S𝑡 . Besides, samples in the training and test sets are supposed to be
independent and identically distributed (i.i.d.), and all samples in
X obey a common distribution 𝑥 ∼ 𝑃 . In practice, the sample set X
may contain some nodes that do not belong to any known classes,
e.g., a few recently published papers about an emerging topic, and
some rare disease cases that have never been observed in medicine.
We call these samples as out-of-distribution (OOD) samples and
redefine X as X′

= ID ∪ OOD. In GFSC models, the query set of
a meta-test task is likely to contain some OOD samples.

This paper aims to train a graph encoder to distinguish OOD
samples from normal ones in a meta-task and improve the classifi-
cation performance of a GFSC model. Particularly, we would like to
optimize the encoder based on the performance of both the OOD
discriminator and the GFSC model, i.e., the encoder maps OOD
samples far away from normal ones while improving the distinction
of normal samples.

4 THE PROPOSED METHOD
This section introduces SMUG, which powers graph few-shot learn-
ing models with the ability to identify samples with unobserved
classes and improves the performance of GFSC models.

4.1 An Overview
Fig. 1 presents an overview of SMUG, which comprises two training
phases. The first phase involves a common training process of a
GFSCmodel. A series of meta-tasks are generated by sampling from
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the training set. For eachmeta-task, nodes in a support and query set
pair are fed into an encoder 𝑓Θ to learn their low-dimensional rep-
resentations. This paper employs an inductive graph convolutional
network (GCN) encoder [51] for graph representation learning.
Then, the obtained embeddings are fed into a multi-layer percep-
tron (MLP) as the classifier 𝑔Θ′ . The cross-entropy loss is computed
according to the classification results of query nodes, and gradient
descent is employed to update the parameters.

The second phase is our key contribution. The main idea is to
mix the query sets of meta-training tasks with artificial OOD sam-
ples (sand mixing), which are then identified before being fed into
the MLP classifier. Specifically, we randomly select some known
classes in the training set as OOD samples. Then, a proportion 𝜑
of meta-training tasks are randomly selected, and sand mixing is
performed by adding artificial OOD samples to the query sets of
these meta-tasks. The mixed and clean meta-tasks are fed into the
encoder for representation learning. Unlike conventional FSC mod-
els, an unsupervised OOD discriminator is employed to identify
OOD samples. The challenge lies in finding an effective criterion
to distinguish OOD samples from normal ones. In this paper, we
propose two discriminators to identify OOD samples. The identified
OOD samples are then filtered out and no longer involved in subse-
quent classification tasks. We also design two corresponding OOD
losses for the two discriminators and feed them back to the encoder.
The graph encoder is optimized based on a combination loss of the
OOD loss and the classification loss. It enables the encoder to learn
the distributions of both normal and OOD samples.

4.2 Graph Convolutional Network Encoders
In order to handle dynamic graphs, we employ an inductive graph
convolutional network (GCN) as the encoder [51]. The GCN en-
coder follows a neighborhood aggregation scheme, where a node
aggregates information from its local neighborhood at each layer
to update its representation. A GCN layer is formulated as follows:

h𝑙𝑣 = 𝜎
(
W𝑙 ·

(
h𝑙−1
𝑣 ⊕ AGGR

({
h𝑙−1
𝑢 ,∀𝑢 ∈ N(𝑣)

})))
, (2)

where 𝑙 ∈ {1, 2, . . . , 𝐿} is the layer indicator, 𝐿 is the number of
layers, 𝜎 is an activation function, ⊕ represents the concatenation
function that combines the aggregated neighborhood vectors at
the 𝑙-th layer with the node vector of 𝑣 at the (𝑙 − 1)-th layer, h𝑙𝑣
denotes the node representation of node 𝑣 at the 𝑙-th layer, h0

𝑣 is
the raw feature of node 𝑣 , N(𝑣) denotes the set of 𝑣 ’s neighbors,
AGGR is a function aggregating the neighbor vectors, and a set of
trainable weight matrices𝑊 𝑙 is the core for message propagation.

Node representations X are obtained by stacking the outputs of
every layer in the GCN encoder:

X = [H0,H1, . . . ,H𝐿], (3)

where H𝑙 is the outputs of the 𝑙-th layer for all nodes. We use 𝑓Θ (·)
to denote the GCN encoder, where Θ =

{
W𝑙 , 𝑙 ∈ {0, 1, . . . , 𝐿}

}
are

the set of trainable parameters.

4.3 Meta-task Settings
Generally, a GFSC model learns over diverse meta-training tasks
and transfers learned knowledge to the target meta-test tasks. In

each training episode, an 𝑁 -way𝐾-shot meta-task T is constructed
as follows: 

T = (S, Q)
S = {𝑠1, 𝑠2, ..., 𝑠𝑁 ×𝐾 } = ⋃𝑁

𝑐=1 S𝑐
Q = {𝑞1, 𝑞2, ...𝑞𝑁 ×𝑀 }

, (4)

where 𝑠 and 𝑞 are samples in the support and query sets, respec-
tively; S𝑐 = {𝑠𝑐1, 𝑠

𝑐
2, ..., 𝑠

𝑐
𝐾
} is the set of samples belonging to class 𝑐 ,

and 𝑠𝑐
𝑖
represents the 𝑖-th sample of the 𝑐-th class in the support

set. We assume that S𝑐 contains no OOD samples because samples
in the support set are usually labeled manually according to strict
rules. To address the cold-start problem, we randomly select some
labeled classes as artificial OOD samples. We add these OOD sam-
ples to the query sets of meta-training tasks with a probability of
𝜑 to simulate OOD samples in real applications. We name such a
process sand mixing. The new meta-task after sand mixing is:{

T′ = (S, Q′ )
Q′ = Q ∪ Q𝑂𝑂𝐷

, (5)

where Q𝑂𝑂𝐷 = {𝑞𝑂𝑂𝐷1 , 𝑞𝑂𝑂𝐷2 , ...𝑞𝑂𝑂𝐷Ω }, and Ω is an adjustable
parameter representing the number of OOD samples. It is worth
noting that we know the labels of these OOD samples.

4.4 OOD Discriminator
The encoder 𝑓Θ maps both nodes in S and Q′ into a latent vec-
tor space. For an 𝑁 -way 𝐾-shot support set S, the encoder 𝑓Θ is
expected to map intra-class samples with close distances while
pushing inter-class samples far away. A key challenge is to find
a criterion for distinguishing OOD samples from normal ones be-
cause the model knows nothing about the distributions of OOD
samples except for their existence.

We propose two discriminators to determine whether a test
sample 𝑞 is an OOD sample, including a distance-based and a
probability-based criterion. Fig. 2 illustrates the criteria of the two
discriminators. We use a prototype vector to represent the cluster
embedding of samples in S𝑐 for each category. For the distance-
based discriminator, a test (or query) sample is identified as OOD
if its distances to the class prototypes are much greater than the
support radii of all known classes. The support radius of a class is
defined as the maximum distance from intra-class samples to the
prototype. The probability-based approach identifies a sample as
OOD if its probabilities of being any support classes are small.

4.4.1 Distance-based Discriminator. The prototype x̄𝑐 for class 𝑐 ∈
C in the support set is calculated as follows [35]:

x̄𝑐 =
1
𝐾

𝐾∑︁
𝑖=1

𝑓Θ (𝑠𝑐𝑖 ), (6)

where 𝑠𝑐
𝑖
∈ S𝑐 is a sample with a ground-truth label in the support

set. Since intra-class samples are supposed to be clustered in the
latent space, a normal sample in the query set will be close to the
prototype of its proper category, while an OOD sample will be
far away from all clusters. We define the radius of class 𝑐 as the
maximum distance from any samples in class 𝑐 to x̄𝑐 :

𝛾𝑐 := max
𝑖

{𝑑𝑖𝑠𝑡
(
x̄𝑐 , 𝑓Θ (𝑠𝑐𝑖 )

)
}, 𝑖 = 1, . . . , 𝐾, (7)

where 𝑑𝑖𝑠𝑡 (x̄𝑐 , 𝑓Θ (𝑠𝑐𝑖 )) is the distance between x̄𝑐 and 𝑓Θ (𝑠𝑐𝑖 ). A
query sample is supposed to be an OOD sample if its distance to x̄𝑐
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Figure 1: An overview of the SMUG framework.
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Figure 2: Illustrations of the OOD detection criteria.

is much larger than 𝛾𝑐 . We calculate the distances between 𝑓Θ (𝑞)
and the prototypes of every class in a support set:

dist𝑞 :=
[
𝑑𝑖𝑠𝑡1

𝑞, 𝑑𝑖𝑠𝑡
2
𝑞, . . . , 𝑑𝑖𝑠𝑡

𝑁
𝑞

]
, (8)

where 𝑑𝑖𝑠𝑡𝑐𝑞 = 𝑑𝑖𝑠𝑡 (x̄𝑐 , 𝑓Θ (𝑞)) is the distance from 𝑓Θ (𝑞) to x̄𝑐 .
Formally, we identify the test sample 𝑞 as an OOD sample if

𝑑𝑖𝑠𝑡𝑐𝑞 > 𝜆 · 𝛾𝑐 , (9)

for ∀𝑐 ∈ C, where 𝜆 is an adjustable parameter.
Conventional GFSC models are designed to maximize the dis-

tances between inter-class samples and minimize the distances of
intra-class samples. In this work, we develop a novel loss function to
enable the encoder to distinguish OOD samples from normal ones.
The motivation of our method is to feed the results of the OOD
discriminator back to the encoder. Specifically, we set up a reward 𝑟

to assess the performance of the discriminator, which represents the
accuracy of identifying OOD samples in the current meta-task T .
Moreover, the encoder is expected to push OOD samples far away
from normal ones. Therefore, the loss of the OOD discriminator
with the distance-based criterion is defined as follows:

𝐿𝑂𝑂𝐷−𝑑𝑖𝑠𝑡 = −𝑟 × 𝑑𝑖𝑠𝑡, (10)

where 𝑟 = 𝑇𝑃/Ω is the detection accuracy of the OOD discrimi-
nator, 𝑇𝑃 is the number of OOD samples in Q𝑂𝑂𝐷 being correctly
identified by the discriminator, Ω is the number of artificial OOD
samples, 𝑑𝑖𝑠𝑡 = 1

𝑁×Ω
∑𝑁
𝑐=1

∑Ω
𝑖=1 (𝑑𝑖𝑠𝑡𝑐𝑖 − 𝛾𝑐 ) is the average differ-

ence between 𝑑𝑖𝑠𝑡𝑐
𝑖
and 𝛾𝑐 of all classes, and 𝑑𝑖𝑠𝑡𝑐𝑖 is the distance

between x̄𝑐 and 𝑓Θ (𝑞𝑂𝑂𝐷𝑖
). Minimizing 𝐿𝑂𝑂𝐷−𝑑𝑖𝑠𝑡 forces OOD

samples to be far away from normal samples and increases the
performance of the OOD discriminator.

4.4.2 Probability-based Criterion. The distance-based discrimina-
tor identifies an OOD sample by considering the absolute distances
of a sample to the prototypes of every class. It ignores the relative
positions of the clusters in the support set. We propose a probability-
based scheme to address this difficulty. The primary motivation is
that the probability of an OOD sample being classified into any nor-
mal class will be small and even. In this scheme, we use the distance
between the query sample 𝑞 and the prototype x̄𝑐 to deduce the
probability of being divided into a class 𝑐 . Specifically, we calculate
the distances between 𝑓Θ (𝑞) and the prototypes x̄𝑐 for each class 𝑐
according to Equ. (8). Then, the probabilities of 𝑞 being classified
into these classes are calculated as follows:

p𝑞 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (dist𝑞 ) = [𝑝1
𝑞, 𝑝

2
𝑞, . . . , 𝑝

𝑁
𝑞 ], (11)

where 𝑝𝑖𝑞 =
exp (−𝑑𝑖𝑠𝑡𝑖𝑞 )∑𝑁
𝑗=1 exp (−𝑑𝑖𝑠𝑡 𝑗𝑞 )

. Then, the maximum probability of 𝑞

being classified into a normal class is calculated as follows:
𝑝𝑚𝑎𝑥𝑞 = max

𝑖
{𝑝𝑖𝑞 } . (12)
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A query sample 𝑞 is supposed to be an OOD sample if

𝑝𝑚𝑎𝑥𝑞 < 1/𝑁 + 𝛼, (13)

where 𝑁 is the number of classes in the query set, and 𝛼 is an
adjustable parameter. An adaptive threshold is adopted in this cri-
terion. Accordingly, the probability-based loss of the OOD discrim-
inator is formulated by:

𝐿𝑂𝑂𝐷−𝑝𝑟𝑜𝑏 = − 1
Ω

∑︁
𝑞∈Q𝑂𝑂𝐷

exp
(
1 − 𝑝𝑚𝑎𝑥𝑞

)
. (14)

where Ω is the number of OOD samples in a meta-training task.
Minimizing the loss forces the maximum probability of dividing an
OOD sample into any known classes to be small.

4.4.3 Model Training. We first train the encoder 𝑓Θ and the clas-
sifier 𝑔Θ′ with meta-tasks without sand mixing, i.e., only normal
samples are used for the GFSC model training. We use the cross-
entropy loss as 𝐿𝐹𝑆𝐶 for model training in this phase. This phase
consists of 1000 training episodes, and each episode performs a
meta-training task. We perform 50 meta-validation and meta-test
tasks every ten episodes.

The second phase fine-tunes the trained encoder 𝑓Θ based on
meta-tasks with mixed OOD samples. This phase comprises 500
episodes, and each episode performs one meta-training task. We
execute 100 meta-test tasks every 50 episodes. Moreover, this phase
only trains the encoder 𝑓Θ and freezes the parameters of the classi-
fier 𝑔Θ′ . The encoder is trained with a combination loss as follows:

𝐿 = 𝐿𝐹𝑆𝐶 + 𝛽𝐿𝑂𝑂𝐷−∗, (15)

where 𝛽 is an adjustable hyper-parameter to trade-off between the
two kinds of losses, 𝐿𝐹𝑆𝐶 is the FSC loss function as presented in
Equ. (1), and 𝐿𝑂𝑂𝐷−∗ represents the loss based on the feedback
from the OOD discriminator, ∗ ∈ {𝑑𝑖𝑠𝑡, 𝑝𝑟𝑜𝑏} indicates different dis-
criminators. Additionally, this work employs the Euclidean distance
to calculate the distances of samples in the latent space. We use the
Adam gradient descent method to update the model parameters.

5 EXPERIMENTS
This section presents the experiments conducted to evaluate the
effectiveness of ourmethod. All experiments are implemented based
on the Pytorch framework. The source code of this paper is available
at https://anonymous.4open.science/r/SMUG-89E1.

5.1 Experimental Settings
5.1.1 Datasets. We adopt four graph datasets to evaluate the per-
formance of the proposed method. Table 1 presents a summary of
the datasets. The detailed descriptions of the datasets are as follows:
Amazon-Clothing (Ama-C) [52] is a product graph built with

the products in “Clothing, Shoes, and Jewelry” on Amazon.
Each product is considered a node, and its description is used
to construct the node attributes. The substitutable relationship
(“also viewed”) creates links between products.

Amazon-Electronics (Ama-E) [52] is another Amazon product
graph containing products in “Electronics”. Similar to Ama-C,
each node denotes a product, and its attributes are retrieved
from the product description. The complementary relationship
(“bought together”) between products creates the edges.

Cora [53] is a citation graph where nodes are scientific papers.
Each paper cites or is cited by at least one paper. That is, there
is at least one connection for a node. Each node is associated
with a one-hot word vector to indicate its topics.

DBLP [54] is also a citation graph where each node represents a
paper, and the edges represent their citation relations. Paper
abstracts are used to construct node attributes. The published
venue defines the label of a node.

Table 1: A summary of the datasets.

Datasets # samples # edges # attrs # labels

Ama-C 24,919 91,680 9,034 77
Ama-E 42,318 43,556 8,669 167
Cora 2,708 5,429 1,433 7
DBLP 40,672 288,270 7,202 137

We randomly select a proportion 𝜂 of classes as unobserved
since the above datasets do not contain any ground-truth OOD
samples. Then, we use 50% of the selected samples as artificial
OOD samples for sand mixing. The remaining 50% of the selected
samples are used as test samples to evaluate the accuracy of the
OOD discriminators. These selected OOD samples are isolated from
the original datasets, and the remaining classes are used to evaluate
the classifier’s performance. We evaluate the performance of node
classification tasks based on two few-shot settings: 5-way 5-shot
(5, 5) and 10-way 5-shot (10, 5). Due to the category limitation of
Cora (it has only seven categories), we adjust the settings to 3-way
5-shot (3, 5) and 3-way 3-shot (3, 3). The query size is the same
as the support size in all experiments. We adopt two widely used
metrics, including Accuracy (ACC) and Micro-F1 (F1), to evaluate
the performance of the classification task. The conventional metric
Area Under the Receiver Operating Characteristic curve (AUROC)
is used to evaluate the accuracy of OOD discriminators. We repeat
each experiment 20 times and report the average of the results.

5.1.2 Baseline Methods. We compare SMUG with several state-of-
the-art methods for few-shot learning in attribute graphs, including
GCN [37], Meta-GNN [55], AMM-GNN [6] and GPN [3]. To evalu-
ate the performance of OOD detection, we compare SMUG with
EGM [11], GOOD [12], OEC [9], and GROOS [14]. The detailed
descriptions of these methods are as follows:
• Methods for node classification of attribute graphs

GCN [37] learns node representations based on the recursive
aggregation of neighbors’ features.

Meta-GNN [55] obtains the prior knowledge of classifiers by
training on many similar few-shot learning tasks to tackle
the few-shot node classification problem in graph meta-
learning settings.

AMM-GNN [6] leverages an attribute-level attention mecha-
nism to learn more effective transferable knowledge for
meta-learning.

GPN [3] derives a generalized model based on meta-learning
for attribute node classification tasks.

• Methods for OOD detection
EGM [11] detects OOD samples by identifying inconsistencies

between activity patterns and predicted classes.
6
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GOOD [12] uses the interval bound propagation (IBP) to derive
a provable upper bound on the confidence of a classifier for
OOD detection.

OEC [9] solves the OOD detection problem in few-shot learn-
ing by adapting conventional OOD methods for standard
classification settings.

GROOS [14] uses a generic vector to represent OOD samples
and identifies an OOD sample by its distance to the vector.

5.1.3 Hyper-parameters Settings. We set the proportion 𝜑 of meta-
training tasks in our experiments to 0.2. We set 𝜂 = 10% to select
artificial OOD samples for the best OOD sample detection. In the
distance-based discriminator, we set the effects of the distance
coefficient 𝜆 = 1.2. Similarly, we set 𝛼 = 0.35 in the probability-
based discriminator, and 𝛽 = 0.25 to balance 𝐿𝐹𝑆𝐶 and 𝐿𝑂𝑂𝐷−∗.
Default parameters are used for baseline methods.

5.2 Effectiveness Evaluation
This section evaluates the performance of SMUG in node classifica-
tion and OOD detection tasks.

5.2.1 Node Classification. Table 2 shows the classification per-
formance of different methods, with the best performance high-
lighted in bold. SMUGd uses the distance-based discriminator, while
SMUGp employs the probability-based discriminator.

The results show that GFSL-basedmethods such as SMUG, AMM-
GNN, and GPN have much higher classification performance than
the other approaches, indicating the effectiveness of GFSL models.
Moreover, SMUGd and SMUGp achieve higher performance than
GPN, verifying that introducing OOD detection improves the per-
formance of node classification tasks. In particular, SMUG achieves
82.3% ACC and 81.4% F1 on DBLP for the 5-way 5-shot setting,
making an improvement of 2.2% and 1.6% over GPN, respectively.
Besides, SMUGp obtains slightly higher accuracy than SMUGd, indi-
cating that the probability-based discriminator performs better than
the distance-based one. An interpretation is that the probability-
based discriminator employs an adaptive threshold to determine
the OOD samples.

5.2.2 Out-of-distribution Detection. This section evaluates the per-
formance of SMUG in detecting OOD samples versus 𝜂, which is
the proportion of classes selected for artificial OOD samples. Fig. 3
shows the results based on DBLP. Similar results are obtained for
other datasets and omitted for space concerns. SMUG performs
best in all OOD detection tasks and achieves the highest AUROC
(83.7%) when 𝜂=10%. AUROCs of the baseline methods decrease
gradually as 𝜂 increases, while the performance of SMUG increases
first and then decreases slightly. This is because SMUG can learn
the distributions of OOD samples based on the feedback from the
discriminators. Adding more OOD samples can benefit the training
of the encoder. However, a large proportion of OOD samples will
degrade the performance of the discriminators because fewer nor-
mal samples in a meta-task are used for model training, reducing
the effectiveness of the encoder.

5.3 Parameters Sensitivity
We also conduct experiments to explore the effects of the distance
coefficient 𝜆 in the distance-based discriminator, the probability
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Figure 3: Performance of OOD detection.

coefficient 𝛼 in the probability-based discriminator, the coefficient
𝛽 of SMUG, and the proportion 𝜑 of meta-training tasks based
on DBLP. Fig. 4(a) shows that AUROC first increases with the
increase of 𝜆 and peaks at 𝜆 = 1.2. This finding is reasonable because
the radius of a class is approximately fixed for a given dataset.
A smaller 𝜆 will lead to many normal samples being mistakenly
identified as OOD, while a larger 𝜆 will lead to many OOD samples
mistakenly classified as normal. This conclusion is also applicable
to the behavior of 𝛼 and 𝛽 , as shown in Fig. 4(b) and (c). If the OOD
loss has a larger weight with the increase of 𝛽 , the encoder has
a higher priority to distinguish OOD samples from normal ones.
On the other hand, large values of 𝛽 will harm the classification of
normal samples, leading to the peaking behaviors of AUROC and
F1 for node classification. The similar effect acts on the proportion
𝜑 . Overall, ACC and F1 scores have similar behaviors versus the
changes in the four parameters. The peaking behavior of both
metrics verifies the mutual benefit between OOD detection and
node classification. We obtain similar results for SMUGd on other
datasets, which are omitted for space concerns.

5.4 Ablation Experiments
We investigate the effects of the OOD discriminator based on
DBLP. We implement five variants of SMUG, including SMUG-SM,
SMUG+EDC, SMUG+MDC, SMUG+CDC, and SMUG+PC. SMUG-
SM is a version of SMUG without sand mixing. It is a normal graph
few-shot learning model trained with clean meta-training tasks.
SMUG+EDC is a version of SMUG with a distance-based discrim-
inator that employs the Euclidean distance. SMUG+MDC adopts
the Mahalanobis distance, and SMUG+CDC uses Cosine Similarity
for distance assessment. SMUG+PC refers to the version of SMUG
using the probability-based discriminator.

Fig. 5 demonstrates that SMUG-SM achieves the lowest OOD de-
tection accuracy and node classification accuracy. An interpretation
is that the graph encoder only learns prior knowledge about normal
samples if sand mixing is not performed. This finding verifies the
effectiveness of sand mixing because it enables the model to learn
prior distributions of OOD samples. SMUG+EDC, SMUG+MDC,
and SMUG+CDC achieve much higher performance than SMUG-
SM, verifying the effectiveness of the distance-based discriminator
in OOD detection. These three versions have comparable OOD
detection and node classification performance, indicating limited
impacts of distance functions on the performance of OOD detection.
SMUG+PC obtains the best performance in both OOD detection

7
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Table 2: Classification performance of different methods.

Method
Ama-C Ama-E Cora DBLP

(5, 5) (10, 5) (5, 5) (10, 5) (3, 5) (3, 3) (5, 5) (10, 5)

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

GCN 59.3 56.6 44.8 40.3 59.6 55.3 47.4 48.3 75.1 74.2 65.8 64.4 68.3 66.0 51.2 47.6
Meta-GNN 77.3 77.5 64.2 62.9 67.9 66.8 60.8 60.1 76.7 75.2 67.5 66.1 78.2 78.2 68.1 67.2
GPN 78.6 79.0 67.7 68.9 70.9 70.6 62.4 63.7 77.1 76.3 69.7 69.4 80.1 79.8 69.0 69.4
AMM-GNN 79.5 77.3 69.6 67.2 71.4 68.8 63.3 61.0 73.7 71.0 69.9 66.9 79.1 77.6 55.7 45.6
SMUGd 78.7 78.3 69.5 68.9 69.9 69.5 63.4 63.8 78.2 77.4 69.8 68.2 79.9 79.3 69.1 68.6
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Figure 4: Effects of hyper-parameters.

Ama-C Ama-E Cora DBLP63

68

73

78

83

AU
RO

C 
(%

)

SMUG-SM
SMUG+EDC

SMUG+MDC
SMUG+CDC

SMUG+PC

(a) OOD detection

Ama-C Ama-E Cora DBLP63

68

73

78

83

AC
C 

(%
)

SMUG-SM
SMUG+EDC

SMUG+MDC
SMUG+CDC

SMUG+PC

(b) Node classification

Figure 5: Performance of different variants of SMUG.

and node classification. This is because the probability-based dis-
criminator adopts an adaptive threshold for OOD identification,
which is neglected by the distance-based criterion.

5.5 Case Study
To further display the promotion of OOD detection to GFSC, we
randomly select two classes in Cora as OOD samples and treat
the other five classes as normal. We plot the relative positions of
node embeddings in the latent space with and without sand mixing.
Node embeddings are mapped into a 2D space using t-SNE for
visualization [56]. Samples in different categories are presented
with different colors and shapes. Fig. 6a shows that samples of
classes 0 and 1 are encoded closely without sand mixing. Moreover,
all these clusters have relatively large support radii. In contrast,
Fig. 6b shows that samples in normal classes are encoded more
closely than those without sand mixing. Besides, the prototypes of
different classes are encoded much further. Moreover, the encoder
also successfully distinguishes OOD samples from normal ones.
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Figure 6: Embeddings without and with the OOD loss.

6 CONCLUSION
This paper proposes a novel graph few-shot learning framework
with sand mixing for OOD sample detection. It powers graph few-
shot learning models with the ability to identify OOD samples
and improves classification performance. To address the cold-start
problem due to the lack of ground-truth OOD samples, we select
several known classes as artificial OOD samples and mix them with
normal samples in the query sets of meta-training tasks. We develop
two discriminators to distinguish OOD samples from normal ones.
Moreover, a combined loss is designed to optimize the encoder
based on the performance of OOD discriminators. Experiments
based on four benchmark datasets demonstrate that our method
performs better than state-of-the-art methods in OOD detection
and few-shot classification tasks. In future work, we would like
to generalize the proposed few-shot learning framework to other
fields, such as computer vision and natural language processing.
Another interesting direction is to cluster detected OOD samples in
dynamic graphs and study the evolution of community structures.
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APPENDIX A: THEORETICAL ANALYSIS OF
THE PROPOSED METHOD
This section presents the theoretical analysis to verify that the
proposed method can improve the classification performance of
FSC models. We assume an 𝑁 -way 𝐾-shot few-shot classification
problem, which contains a small number of OOD samples. Given a
sample-label pair (X,Y), our model attempts to learn a compressed
representation of X by an encoder 𝑓Θ : X → Z𝑛×𝑑 . The encoder
discards irrelevant information that does not contribute to the
prediction of Y, where X = X𝐼𝐷 ∪ X𝑂𝑂𝐷 , Y = Y𝐼𝐷 ∪ Y𝑂𝑂𝐷 .

We employ the Information Bottleneck principle [57] to analyze
the model proposed for layer-wise analyses of Deep Neural Net-
works in terms of information compression efficiency [58]. Specif-
ically, the mutual information 𝐼 (·; ·) is employed to quantify the
statistical dependence between two variables. For convenience, we
use𝑋 ,𝑌 , and𝑍 to denote variables in the subspacesX,Y, andZ. We
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also abbreviate 𝐼 (𝑋 𝐼𝐷 ∪𝑋𝑂𝑂𝐷 ;𝑍 ) as 𝐼 (𝑋 ;𝑍 ). Accordingly, 𝐼 (𝑋 ;𝑍 )
represents the amount of information maintained in 𝑍 , which is
learned by the FSC encoder. Correspondingly, 𝐼 (𝑍 ;𝑌 𝐼𝐷 ) represents
the amount of relevant information about 𝑌 𝐼𝐷 that is learned by
the classifier. Then, the losses 𝐿𝐹𝑆𝐶 and 𝐿𝑂𝑂𝐷 can be formulated
as:

𝐿𝐹𝑆𝐶 = 𝐼 (𝑋 ;𝑍 ) − 𝐼 (𝑍 ;𝑌 𝐼𝐷 ), (16)

and
𝐿𝑂𝑂𝐷 = 𝐼 (𝑋 ;𝑍 ) − 𝐼 (𝑍 ;𝑌𝑂𝑂𝐷 ), (17)

where variables𝑋 ,𝑌 , and𝑍 take values from the subspaces ofX,Y,
and Z, respectively. Moreover, 𝐼 (𝑋 ;𝑍 ) = 𝐼 (𝑋𝑂𝑂𝐷 ;𝑍 ) + 𝐼 (𝑋 𝐼𝐷 ;𝑍 ).
Then, the proposed joint loss can be rewritten from the perspective
of information theory as follows:

𝐿 = (1 + 𝛽 )𝐼 (𝑋 ;𝑍 ) − 𝐼 (𝑍 ;𝑌 𝐼𝐷 ) − 𝛽𝐼 (𝑍 ;𝑌𝑂𝑂𝐷 )

= (1 + 𝛽 )𝐼 (𝑋 𝐼𝐷 ;𝑍 ) − 𝐼 (𝑍 ;𝑌 𝐼𝐷 )

+ (1 + 𝛽 )𝐼 (𝑋𝑂𝑂𝐷 ;𝑍 ) − 𝛽𝐼 (𝑍 ;𝑌𝑂𝑂𝐷 ),

(18)

where 𝛽 is an adjustable hyper-parameter. Further, 𝐿 can be divided
into two parts:

𝐿′𝐹𝑆𝐶 = (1 + 𝛽 )𝐼 (𝑋 𝐼𝐷 ;𝑍 ) − 𝐼 (𝑍 ;𝑌 𝐼𝐷 ), (19)

and
𝐿′𝑂𝑂𝐷 = (1 + 𝛽 )𝐼 (𝑋𝑂𝑂𝐷 ;𝑍 ) − 𝛽𝐼 (𝑍 ;𝑌𝑂𝑂𝐷 ) . (20)

Since we are concerned with the classification effectiveness of
FSC, we analyze 𝐿′

𝐹𝑆𝐶
for further analysis. The mutual information

can be rewritten as the Kullback-Leibler divergence between the
marginal and conditional probability distributions as follows:

𝐼 (𝑋 𝐼𝐷 ;𝑍 ) = E𝑥,𝑧 [𝐷𝐾𝐿 (𝑝 (𝑧 | 𝑥 ) ∥ 𝑝 (𝑧 ) ) ], (21)

where E(·) is the expectation operation, and 𝐷𝐾𝐿 (𝑃 ∥ 𝑄) =∑
𝑥∈𝑋 𝑃 (𝑥) log 𝑃 (𝑥 )

𝑄 (𝑥 ) . The empirical distribution of 𝑝 (𝑧) can bemod-
eled as [58]:

𝑝 (𝑧 ) = 1
𝑁

𝑁∑︁
𝑖=1

𝛿 (𝑧 − 𝑓Θ (𝑥𝑖 ) ), (22)

where 𝛿 (·) is the Dirac delta function, 𝑥𝑖 is the sample of the 𝑖-
th class. The conditional distribution 𝑝 (𝑧 | 𝑥𝑖 ) can be formulated
as an isotropic normal distribution around the observation in the
embedded space:

𝑝 (𝑧 | 𝑥𝑖 ) = N(𝑧 | 𝑓Θ (𝑥𝑖 , 𝛿2𝐼 ) )

=
1

(2𝜋𝜎 )𝑑/2 exp
∥ 𝑧 − 𝑓Θ (𝑥𝑖 ) ∥2

2𝜎2 ,
(23)

where 𝜎 is the deviation caused by randomness. After substituting
Equ. (22) and Equ. (23) into Equ. (21), we have:

𝐼 (𝑋 𝐼𝐷 ;𝑍 )

=E𝑥,𝑧

[
log

𝑝 (𝑧 | 𝑥 )
𝑝 (𝑧 )

]
=

∫
1
𝑁

𝑁∑︁
𝑖=1

log
[

1
(2𝜋𝜎 )𝑑/2 exp − ∥ 𝑧 − 𝑓Θ (𝑥𝑖 ) ∥2

2𝜎2

]
+ log

1
𝑁
𝑑𝑥

=
1
𝑁 2

∑︁
𝑧∈𝑍

𝑁∑︁
𝑖=1

(
− ∥ 𝑧 − 𝑓Θ (𝑥𝑖 ) ∥2

2𝜎2 + log𝜎𝑑
)
+ 𝑐𝑜𝑛𝑠𝑡,

(24)

where ∥ 𝑧 − 𝑓Θ (𝑥𝑖 ) ∥2 is the distance from 𝑧 to 𝑓Θ (𝑥𝑖 ). Equ. (24) im-
plies that the mutual information is relevant to the sum of distances
between all pairs of samples in the embedding space. Meanwhile,

the class conditional probability over 𝑧 could be modeled as an
isotropic normal distribution around the class centroid:

𝑝 (𝑧 | 𝑦) = N(𝑧; 𝜇𝑦, 𝜎𝑦𝐼 )

=
1

(2𝜋𝜎2
𝑦 )𝑑/2 exp

(
−
∥ 𝑧 − 𝜇𝑦 ∥2

2𝜎2
𝑦

)
,

(25)

where 𝜇𝑦 represents the class centroid and𝜎𝑦 denotes the deviation.
𝐼 (𝑍 ;𝑌 𝐼𝐷 ) is then rewritten as follows:

𝐼 (𝑍 ;𝑌 𝐼𝐷 )

=E𝑦,𝑧

[
log

𝑝 (𝑧 | 𝑦)
𝑝 (𝑧 )

]
=

∫
1
𝑁

𝑁∑︁
𝑖=1

𝛿 (𝑧 − 𝑧𝑖 ) log𝑝 (𝑧 | 𝑦)𝑑𝑦

=
1
𝑁

𝑁∑︁
𝑦=1

𝐾 log
exp

(
− ∥𝑧−𝜇𝑦 ∥2

2𝜎2
𝑦

)
− log𝜎𝑑𝑦∑

exp
(
− ∥𝑧−𝜇𝑦 ∥2

2𝜎2
𝑦

)
− log𝜎𝑑𝑦

+ 𝑐𝑜𝑛𝑠𝑡,

(26)

where ∥ 𝑧 − 𝜇𝑦 ∥2 is the distance from 𝑧 to 𝜇𝑦 . It is negatively
correlated with class biases. To increase 𝐼 (𝑍 ;𝑌 𝐼𝐷 ), the intra-class
deviation, i.e., the distances between intra-class sample pairs in
the embedded space, should be reduced. Meanwhile, the reduc-
tion of 𝐼 (𝑋 𝐼𝐷 ;𝑍 ) is achieved by increasing the distances between
inter-class sample pairs. Therefore, minimizing 𝐿′

𝐹𝑆𝐶
forces pulling

intra-class samples closer while pushing inter-class samples away.
Compared with the original loss (16), 𝐿′

𝐹𝑆𝐶
has 𝛽 times gains from

OODdetection, whichmakes the distances of samples from different
categories further. Thus, our method can enhance the classification
performance of FSC models. Analogously, 𝐿′

𝑂𝑂𝐷
could separate

OOD samples from normal ones.

10


	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Few-shot Learning
	2.2 Out-Of-Distribution Detection

	3 Preliminaries
	3.1 Graph Few-shot Classification
	3.2 Problem Definition

	4 The Proposed Method
	4.1 An Overview
	4.2 Graph Convolutional Network Encoders
	4.3 Meta-task Settings
	4.4 OOD Discriminator

	5 Experiments
	5.1 Experimental Settings
	5.2 Effectiveness Evaluation
	5.3 Parameters Sensitivity
	5.4 Ablation Experiments
	5.5 Case Study

	6 Conclusion
	References

