
Under review as a conference paper at ICLR 2018

TRAINING NEURAL MACHINES
WITH PARTIAL TRACES

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel approach for training neural machines which incorporates
additional supervision on the machine’s interpretable components (e.g., neural
memory). To cleanly capture the kind of neural machines to which our method
applies, we introduce the concept of a differential neural computational machine
(∂NCM) and show that several existing architectures (e.g., NTMs, NRAMs) can be
instantiated as a ∂NCM and can thus benefit from any amount of additional super-
vision over their interpretable components. Based on our method, we performed a
detailed experimental evaluation with NTM and NRAM machines, showing the
approach leads to significantly better convergence and generalization capabilities
of the learning phase than standard training using only input-output examples.

1 INTRODUCTION

Recently, there has been substantial interest in neural abstract machines that can induce programs
from examples Feser et al. (2015; 2016); Frankle et al. (2016); Gaunt et al. (2017); Graves et al.
(2014; 2016); Kaiser & Sutskever (2016); Kurach et al. (2016); Reed & de Freitas (2016); Vinyals
et al. (2015); Zaremba & Sutskever (2015); Zhang et al. (2015). While significant progress has been
made towards learning interesting algorithms Graves et al. (2016), ensuring the training of these
machines converges to the desired solution can be very challenging. Interestingly however, even
though these machines differ architecturally, they tend to rely on components (e.g., neural memory)
that are more interpretable than a typical neural network (e.g., an LSTM). A key question then is:

Can we somehow provide additional amounts of supervision for these interpretable components
during training so to bias the learning towards the desired solution?

In this work we investigate this question in depth. We refer to the type of supervision mentioned above
as partial trace supervision, capturing the intuition that more detailed information, beyond input-
output examples, is provided during learning. To study the question systematically, we introduce the
notion of a differential neural computational machine (∂NCM), a formalism which allows for clean
characterization of the neural abstract machines that fall inside our class and that can benefit from
any amount of partial trace information. We show that common architectures such as Neural Turing
Machines (NTMs) and Neural Random Access Machines (NRAMs) can be phrased as ∂NCMs, useful
also because these architectures form the basis for many recent extensions, e.g., Graves et al. (2016);
Grefenstette et al. (2015); Kaiser & Sutskever (2016). We also explain why other machines such
as the Neural Program Interpreter (NPI) Reed & de Freitas (2016) or its recent extensions (e.g., the
Neural Program Lattice Li et al. (2017)) cannot be instantiated as an ∂NCM and are thus restricted to
require large (and potentially prohibitive) amounts of supervision. We believe the ∂NCM abstraction
is a useful step in better understanding how different neural abstract machines compare when it
comes to additional supervision. We then present ∂NCM loss functions which abstractly capture
the concept of partial trace information and show how to instantiate these for both the NTM and the
NRAM. We also performed an extensive evaluation for how partial trace information affects training
in both architectures. Overall, our experimental results indicate that the additional supervision can
substantially improve convergence while leading to better generalization and interpretability.

To provide an intuition for the problem we study in this work, consider the simple task of training
an NTM to flip the third bit in a bit stream (called Flip3rd) – such bitstream tasks have been
extensively studied in the area of program synthesis (e.g., Jha et al. (2010); Raychev et al. (2016)).
An example input-output pair for this task could be [0, 1, 0, 0] → [0, 1, 1, 0]. Given a set of such

1

Under review as a conference paper at ICLR 2018

(a) Overfitting & No Traces (b) Generalizing & No Traces (c) Generalizing & Traces

Figure 1: Traces of locations accessed by read/write heads for the Flip3rd task in three different
training setups. The y-axis represents time (descending); x-axis represents head locations. First two
NTMs are trained without partial trace information. White represents the distribution of the write
head; orange the distribution of the read head; (b) and (c) generalize and are more interpretable than
(a); (c) was trained using partial trace information and is more interpretable than (b).

examples, our goal is to train an NTM that solves this task. An example NTM that generalizes well
and is understandable is shown in Figure 1c. Here, the y-axis is time (descending), the x-axis is the
accessed memory location, the white squares represent the write head of the NTM, and the orange
squares represent the read head. As we can see, the model writes the input sequence to the tape and
then reads from the tape in the same order. However, in the absence of richer supervision, the NTM
(and other neural architectures) can easily overfit to the training set – an example of an overfitting
NTM is shown in Figure 1a. Here, the traces are chaotic and difficult to interpret. Further, even if
the NTM generalizes, it can do so with erratic reads and writes, an example of which is shown in
Figure 1b. Here, the NTM learns to read from the third bit (circled) with a smaller weight than from
other locations, and also reads and writes erratically near the end of the sequence. This model is less
interpretable than the one in Figure 1c because it is unclear how the model knows which the third bit
actually is, or why a different read weight would help flip that bit.

In this work we will develop principled ways for guiding the training of a neural abstract machine
towards the behavior shown in Figure 1c. For instance, for Flip3rd, providing partial trace
information on the NTM’s read heads for 10% of the input-output examples is sufficient to bias the
learning towards the NTM shown in Figure 1c 100% of the time.

2 NEURAL COMPUTATIONAL MACHINES

To capture the essence of our method and illustrate its applicability, we now define the abstract notion
of a neural computational machine (NCM). NCMs mimic classic computational machines with a
controller and a memory, and generalize multiple existing architectures. Our approach for supervision
with partial trace information applies to all neural architectures expressible as NCMs. A useful
feature of the NCM abstraction is that it clearly delineates end-to-end differentiable architectures
(Graves et al. (2014)’s NTM, Kurach et al. (2016)’s NRAM), which can train with little to no trace
supervision, from architectures that are not end-to-end differentiable (Reed & de Freitas (2016)’s
NPI) and hence require a certain minimum amount of trace information. In the follow-up section, we
show how to phrase two existing neural architectures (NTMs and NRAMs) as an NCM.

An NCM is a triple of functions: a processor, a controller, and a loss:

Processor The processor π : W × C ×M → B ×M performs a pre-defined set of commands C,
which might involve manipulating memories in M . The commands may produce additional feedback
in B. Also, the processor’s operation may depend on parameters in W .

Controller The controller κ : W × B × Q × I → C × Q × O decides which operations the
machine performs at each step. It receives external inputs from I and returns external outputs in O. It
can also receive feedback from the processor and command it to do certain operations (e.g., memory
read). The decisions the controller takes may depend on its internal state (from Q). The controller
can also depend on parameters in W . For instance, if the controller is a neural network, then the
network’s weights will range over W .

2

Under review as a conference paper at ICLR 2018

I

O

C

B

κ π M

Q

(a) NCM

w, r

address

m

r

read

w

e
a

write

controller

x

y

Mt

(b) NTM

READ

ADD

SUB

LT

rt.2

WRITE

rt,1

rt+1,2

rt+1,1

Mt

controllerft

ct at bt

(c) NRAM

Figure 2: (a) is depiction of the generic NCM structure (b) is a high-level overview of an NTM and
(c) is a high level overview of the NRAM architecture. The controller outputs a circuit, which in
this case contains the modules READ, ADD, SUB, LT, and WRITE. The controller encodes the two
inputs to the modules as probability vectors, a, b and c, over the possible choices. The most likely
choice is shown in green. The only input to the controller are the registers r1 and r2.

Loss Function The loss function Le : Trace × E → R indicates how close a trace τ ∈ Trace of
an execution of the machine (defined below) is to a behavior from a set E. The loss function provides
a criterion for training a machine to follow a prescribed set of behaviors, and hence we impose certain
differentiability conditions. We require that the loss surface is continuous and piecewise differentiable
with respect to the weights w ∈W for all examples e and inputs x with traces τ(w, x):

l(w;x, e) = Le(τ(w, x), e) (1)

Execution The execution of the machine begins with an input sequence x = {xt}n1 and initial
values of the controller state q0, memorym0, and processor feedback b0. At each time step t = 1 . . . n,
controller and processor take turns executing according to the following equations:

(ct, qt, yt) = κ(w, bt−1, qt−1, xt)

(bt,mt) = π(w, ct,mt−1) (2)

A trace τ(w, x, b0,m0, q0) = {(ct, bt, qt, yt,mt)}n1 records these quantities’ values at each time step.
We will occasionally write τC , τB , . . . for the trace projected onto one of its components c, b,

∂NCMs Note that the differentiability conditions that we impose on the loss do not imply that
any of the NCM functions π, κ and Le are continuous or differentiable. They indeed can be highly
discontinuous as in NCMs like Weston et al. (2014)’s memory networks with a hard attention
mechanism, or as in Reed & de Freitas (2016)’s neural programmer-interpreters. In order to fix
these discontinuities and recover a differentiable loss surface, these architectures train with strong
supervision only: the training examples e ∈ E must provide a value for every traced quantity that
comes from a discontinuous parameter.

In contrast, what we call differentiable neural computational machines (∂NCM), have κ, π and Le
continuous and piecewise differentiable. In this case, the loss surface is differentiable with respect to
every parameter. Thus, there is no need to specify corresponding values in the examples, and so we
can train with as much trace information as available.

3

Under review as a conference paper at ICLR 2018

3 NTMS AND NRAMS AS NCMS

We now show how NTMs and NRAMs can be instantiated as ∂NCMs.

NTM as ∂NCM An Neural Turing Machine (NTM) Graves et al. (2014) (Figure 2b) has access
to a memoryM ∈ Rc×n of c cells of n real numbers each. We suppose the machine has one read
head and one write head, whose addresses are, respectively, the probability vectors r, w ∈ [0, 1]{1...c}.
At every time step, the read head computes the expected value m ∈ Rn of a random cell at index
i ∼ r. This value together with the current input are fed into a controller neural network, which then
decides on several commands. It decides what fraction e ∈ Rn to erase and how much a ∈ Rn to
add to the cells underneath the write head. The write head stores the tape expected after a random
modification at index i ∼ w. Then the controller indicates the head movement with two probability
vectors ∆r,∆w ∈ [0, 1]{−1,0,+1} which are convolved with the respective head addresses (the actual
addressing mechanism is more involved, but we omit it for brevity) Finally, the controller produces
the current output value. In terms of NCMs, the NTM’s variables fall into the following classes:

I/O State Communication

x ∈ I
y ∈ O

q ∈ Q
(r, w,M) ∈M

(e, a,∆r,∆w) ∈ C
m ∈ B

Each of these variables change over time according to certain equations (see Appendix A for details).
The processor π and the controller κ functions for each time step satisfy:

((et, at,∆rt,∆wt), qt, yt) = κ(w,mt, qt−1, xt)

(mt+1, (rt, wt,Mt)) = π((et, at,∆rt,∆wt), (rt−1, wt−1,Mt−1)).
(3)

The standard loss function Le for the NTM simply includes a term, such as cross-entropy or L2

distance, for the machine output at every time step. Each of these compare the machine output to the
respective values contained in the examples e ∈ E.

NRAM as ∂NCM A Neural Random Access Machine (NRAM) Kurach et al. (2016) is a neural
machine designed for ease of pointer (de-)referencing. An NRAM has a variable sized memory
M ∈ Rc×c whose size varies between runs. It also has access to a register file r ∈ Rn×c with a
constant number n of registers. Both the memory and the registers store probability vectors over
{1 . . . c}. The controller receives no external inputs, but at each time step reads the probability
that a register assigns to 0. It also produces no external output, except a probability f ∈ [0, 1] for
termination at the current time step. The output of the run is considered to be the final memory state.

Unlike the NTM, computation in the NRAM is performed by a fixed sequence of modules. Each
module implements a simple integer operation/memory manipulation lifted to probability vectors.
For example, addition lifts to convolution, while memory access is like that of the NTM. At every
time step the controller organizes the sequence of modules into a circuit, which is then executed. The
circuit is encoded by a pair of probability distributions per module, as shown in Figure 2c. These
distributions specify respectively which previous modules or registers will provide a given module
first/second arguments. The distributions are stacked in the matrices a and b . A similar matrix c is
responsible for specifying what values should be written to the registers at the end of the time step.
The NCM instantiation of an NRAM is the following:

I/O State Communication

{1} = I

ft ∈ O
qt ∈ Q

(rt,Mt) ∈M
(at, bt, ct) ∈ C

rt,−,0 ∈ B

The equations that determine these quantities can be found in Appendix B. The processor function π
and the controller function κ expressed in terms of these quantities are:

((at, bt, ct), ht, ft) = κ(w, r(t−1),−,0, ht−1, 1)

(rt,−,0, (rt,Mt)) = π((at, bt, ct), (rt−1,Mt−1)).
(4)

4

Under review as a conference paper at ICLR 2018

The loss of the NRAM is more complex than the NTM loss: it is an expectation with respect to
the probability distribution p of termination time, as determined by the termination probabilities ft
(see Appendix B). For every t = 1 . . . k, the loss considers the negative log likelihood that the i-th
memory cell at that time step equals the value ei provided in the example, independently for each i:

Le(τ, e) = −
∑
t<k

pt
∑
i<c

log(Mt,i,ei). (5)

4 SUBTRACE SUPERVISION OF NCMS

Incorporating supervision during NCM training can be helpful with: (i) convergence: additional
bias may steer the minimization of the NCM’s loss function Le, as much as possible, away from
local minima that do not correspond to good solutions, (ii) interpretability: the bias can also be
useful in guiding the NCM towards learning a model that is more intuitive/explainable to a user
(especially if the user already has an intuition on what it is that parts of the model should do), and
(iii) generalization: the bias can steer the NCM towards solutions which minimize not just the loss on
example of difficulties it has seen, but on significantly more difficult examples.

The way we provide additional supervision to NCMs is, by encoding, for example, specific commands
issued to the processor, into extra loss terms. Let us illustrate how we can bias the learning with an
NTM. Consider the task of copying the first half of an input sequence {xt}2l1 into the second half of
the machine’s output {yt}2l1 , where the last input xl from the first half is a special value indicating that
the first half ended. Starting with both heads at position 1, the most direct solution is to consecutively
store the input to the tape during the first half of the execution, and then recall the stored values
during the second half. In such a solution, we expect the head positions to be:

wt = p(t) =

{
one-hot(t) if t = 1 . . . l

one-hot(l) if t ≥ l + 1
rt = q(t) =

{
one-hot(1) if t = 1 . . . l

one-hot(t− l) if t ≥ l + 1
(6)

To incorporate this information into the training, we add loss terms that measure the cross-entropy
(H) between p(t) and wt as well as between q(t) and rt. Importantly, we need not add terms for
every time-step, but instead we can consider only the corner cases where heads change direction:∑

t=1,l+1,2l

H(p(t), wt) +H(q(t), rt).

4.1 GENERIC SUBTRACE LOSS FOR NCMS

We now describe the general shape of the extra loss terms for arbitrary NCMs. Since, typically, we
can interpret only the memory and the processor in terms of well-understood operations, we will
consider loss terms only for the memory state and the communication flow between the controller
and the processor. We leave the controller’s hidden state unconstrained – this also permits us to use
the same training procedure with different controllers.

The generic loss is expressed with four loss functions for the different components of an NCM trace:

LC : C × EC → R LB : B × EB → R
LO : O × EO → R LM : M × EM → R (7)

For each part α ∈ {C,B,O,M}, we provide hints (t, v, µ) ∈ σα that indicate a time step t at which
the hint applies, an example v ∈ Eα for the relevant component, and a weight w ∈ R of the hint. The
weight is included to account for hints having a different importance at different time-steps, but also
to express our confidence in the hint, e.g., hints coming from noisy sources would get less weight.

A subtrace σ is a collection of hints used for a particular input-output example e. We call it a subtrace
because, typically, it contains hints for a proper subset of the states traced by the NCM during
execution. The net loss for a given input-output example and subtrace equals the original loss Le
added to the weighted losses for all the hints, scaled by a constant factor λ:

L(τ, (σ, e)) = Le(τ, e) + λ

∑
α∈{C,B,O,M}

∑
(t,v,µ)∈σα µLα(τα,t, v)∑

α∈{C,B,O,M}
∑

(t,v,µ)∈σα µ
(8)

5

Under review as a conference paper at ICLR 2018

r0

r1 READ

READ INC

ONE ADD

WRITE

r0

r1

Figure 3: An example circuit for the task of adding one to all memory cells. The arrows for register
updates are shown in red. Technically, modules take two arguments, but some ignore an argument,
such as INC or READ. For them, we show only the relevant arrows.

4.2 SUBTRACES FOR NTM

For NTMs, we allow hints on the output y, the addresses r and w, and the tapeM. We include extra
loss terms for the memory state only (all other loss terms are zero):

LM ((rt, wt,Mt), (wr, v)) = H(v, wt)

LM ((rt, wt,Mt), (rd, v)) = H(v, rt)
(9)

Unlike the output and addresses, values on the tape are interpreted according to an encoding internal to
the controller (which emerges only during training). Forcing the controller to use a specific encoding
for the tape, as we do with NTM output, can have a negative effect on training (in our experiments,
training diverged consistently). To remedy this, we do not apply loss to the tape directly but to a
decoded version of a cell on the tape. While a decoder might find multiple representations and overfit,
we found that it forced just enough consistency to improve the convergence rate. The decoder itself is
an auxiliary network φ trained together with the NTM, which takes a single cell from memory as
input. The output of the decoder is compared against the expected value which should be in that cell:

LM ((−,−,Mt), (tape, i, v)) = H(φ(Mt,i), v). (10)

For all subtraces we provide in our experiments with NTMs, the hints have the same unit weight.

4.3 SUBTRACES FOR NRAM

For NRAMs, we hint which connections should be present in the circuit the controller constructs at
each step, including the ones for register updates. An example circuit is shown in Figure 3. In terms
of an NCM, this amounts to providing loss for commands and no loss for anything else. We set the
loss to the negative log likelihood of the controller choosing specific connections revealed in the hint:

LC((at, bt, ct), (module,m, i, j)) = − log(at,m,i)− log(bt,m,j)

LC((at, bt, ct), (register, r, i)) = − log(ct,r,i) (11)

In our experiments, we observed that assigning higher weight to hints at earlier timesteps is crucial
for convergence of the training process. For a hint at time-step t, we use the weight µ = (t+ 1)−2.
A possible reason for why this helps is that the machine’s behavior at later time-steps is highly
dependent on its behavior at the early time-steps. Thus, the machine cannot reach a later behavior
that is right before it fixes its early behavior. Unless the behavior is correct early on, the loss feedback
from later time-steps will be mostly noise, masking the feedback from early time-steps.

Other Architectures The NCM can be instantiated to architectures as diverse as a common
LSTM network or End-To-End Differentiable Memory Networks. Any programming inducing
neural network with at least partially interpretable intermediate states for which the dataset contains
additional hints could be considered a good candidate for application of this abstraction.

5 EXPERIMENTAL EVALUATION

We evaluated our NCM supervision method on the NTM and NRAM architectures. For each of the
two architectures we implemented a variety of tasks and experimented with different setups of trace
supervision. The main questions that we address are: (i) does trace supervision help convergence,
interpretability, and generalization? (ii) how much supervision is needed to train such models? Below,
we summarize our findings – further details are provided in the appendix.

6

Under review as a conference paper at ICLR 2018

Figure 4: Relative percentage of training instances which generalized out of ten runs per task for the
NTM. We provide a subtrace 100% of the time and use λ = 1. x-axis shows the type of supervision.

density 100 100 100 100 50 50 50 50 10 10 10 10 1 1 1 1

λ 1 0.3 0.1 0.03 1 0.3 0.1 0.03 1 0.3 0.1 0.03 1 0.3 0.1 0.03

baseline 45

addr+val 30 50 50 50 50 50 70 80 60 80 40 40 40 60 40 10

address 0 60 40 40 20 70 80 90 90 70 60 50 50 50 60 60

value 60 50 40 60 80 70 40 10 50 10 40 70 50 30 40 60

read 40 60 70 40 30 80 90 90 100 70 80 50 30 50 60 30

write 0 30 50 20 30 40 60 20 40 40 40 40 20 50 70 50

corner 50 70 80 80 40 40 90 70 80 70 60 40 50 60 60 40

Figure 5: The number of initial runs which generalized for Flip3rd. The first dimension listed
in the rows controls the execution details revealed in a subtrace, while the second dimension (the
density column) controls the proportion of examples that receive extra subtrace supervision.

Subtraces For NTMs We measured how often we successfully trained an NTM that achieves
strong generalization. We consider a model to generalize if relative to the training size limit n, it
achieves perfect accuracy on all of tests of size ≤ 1.5n, and perfect accuracy on 90% of the tests
of size ≤ 2n. Figure 4 reports the average improvement compared to a baseline using only I/O
examples. We ran experiments with four different tasks and various types of hints (cf. Appendices C,
E). Some of the hint types are: read and write specify respective head addresses for all time steps;
address combines the previous two; corner reveals the head addresses, but only when the heads
change direction; value gives value for a single cell. Except for three cases, trace supervision helped
improve generalization. Here, RepeatFlip3d is most challenging, with baseline generalizing only
5% of the time (cf. Appendix I). Here we have the largest improvement with extra supervision: corner
type of hints achieve eight-fold increase in success rate, reaching 40%. Another task with an even
larger ratio is RepeatCopyTwice (cf. Appendix), where success increases from 15.5% to 100%.

In addition to this experiment, we performed an extensive evaluation of different setups, varying the
global λ parameter of the loss Eq. 8, and providing hints for just a fraction of the examples. The full
results are in Appendix I; here we provide those for RepeatFlip3d in Table 5. The table reveals
that the efficacy of our method heavily depends on these two parameters. The best results in this case
are for the read/corner type of hints 1

2 / 1
10 of the time, with λ ∈ {0.1, 1}. The best results for other

tasks are achieved with different setups. Generally, our conclusion is that training with traces 50%
of the time usually improves performance (or does not lower it much) when compared to the best
method. This observation raises the interesting question of what the best type and amount of hints are
for a given task.

Finally, we observed that in all cases where training with trace supervision converged, it successfully
learned the head movements/tape values we had intended. This show that trace supervision can bias
the architecture towards more interpretable behaviors. In those cases, the NTM learned consistently
sharper head positions/tape values than the baseline, as Figure 6 shows for Flip3rd.

Effect of Subtraces For NRAMs Ease of generalization for the NRAM is a known issue, with
Neelakantan et al. (2015) reporting that ListK for example generalizes poorly, even when trained
with noise in the gradient, curriculum learning, and an entropy bonus. We observed that when run
on an indefinite number of examples with the correct number of timesteps and a correct module

7

Under review as a conference paper at ICLR 2018

(a) (b)

Figure 6: Execution traces of two NTMs trained on Flip3rd until generalization. First is baseline
(no trace supervision); second is trained with corner hints. Time flows top to bottom. The first pane
from every pair shows the value written to tape; second shows head locations. Figures show that a
little extra supervision helps the NTM write sharper 0–1 values and have more focused heads.

(a) Error Rates for NRAM

(b) Permute with noise for NRAM

Figure 7: (a) average number of errors after training had completed for NRAM. Observe that full
training results in a significantly higher percent of generalization after training stopped. (b) shows the
distribution of errors to problem length for Permute (one character of noise in 10% of samples).

sequence, Swap and Increment would in fact occasionally generalize perfectly, but did not have
the resources to run such indefinite tests with Permute, ListK, and Merge.

Figure 7a demonstrates that when training had finished, either because it had ended early or had
reached 5000 training examples (our upper bound), generalization would in fact be on average
significantly better than the baseline the more hints that were used for all tasks. Here, number of hints
used seemed to be a sufficient predictor for the quality of the trained model.

Robustness to Noise The effect of increasing supervision on the quality of the trained model
was so strong that not even noise in the input was able to significantly hinder generalization. In
Figure 7b, we corrupted a single character in the output examples for the Permute problem in 10%
of the examples. We found that without any extra hints, no convergence was seen after training was
complete, whereas with just corner subtraces, the generalization was nearly optimal.

Furthermore, we found that noise in the trace does not seriously harm performance. We corrupted a
single hint for 20% of the traces of the Increment task using otherwise full supervision, as can be
seen in the NoisyFull line of Figure 14.

6 CONCLUSION

We presented a method for incorporating (any amount of) additional supervision into the training
of neural abstract machines. The basic idea was to provide this supervision (called partial trace
information) over the interpretable components of the machine and to thus more effectively guide the
learning towards the desired solution. We introduced the ∂NCM architecture in order to precisely
capture the neural abstract machines to which our method applies. We showed how to formulate

8

Under review as a conference paper at ICLR 2018

partial trace information as abstract loss functions, how to instantiate common neural architectures
such as NTMs and NRAMs as ∂NCMs and concretize the ∂NCM loss functions. Our experimental
results indicate that partial trace information is effective in biasing the learning of both NTM’s and
NRAM’s towards better converge, generalization and interpretability of the resulting models.

REFERENCES

Matko Bošnjak, Tim Rocktäschel, Jason Naradowsky, and Sebastian Riedel. Programming with a
differentiable forth interpreter. In under review for ICLR (2017). URL http://arxiv.org/
abs/1605.06640.

Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett (eds.). Ad-
vances in Neural Information Processing Systems 28, 2015. URL http://papers.nips.cc/
book/advances-in-neural-information-processing-systems-28-2015.

John K Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure transformations from
input-output examples. In ACM SIGPLAN Notices, volume 50, pp. 229–239. ACM, 2015.

John K Feser, Marc Brockschmidt, Alexander L Gaunt, and Daniel Tarlow. Differentiable functional
program interpreters. arXiv preprint arXiv:1611.01988, 2016.

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. Example-directed
synthesis: a type-theoretic interpretation. ACM SIGPLAN Notices, 51(1):802–815, 2016.

Karlis Freivalds and Renars Liepins. Improving the neural gpu architecture for algorithm learning.
arXiv preprint arXiv:1702.08727, 2017.

Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel Tarlow. Lifelong perceptual
programming by example. In under review for ICLR (2017). URL https://arxiv.org/
abs/1611.02109.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR, abs/1410.5401, 2014.
URL http://arxiv.org/abs/1410.5401.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
Adrià Puigdomènech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain,
Helen King, Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis.
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626):471–
476, Oct 2016. ISSN 0028-0836. URL http://dx.doi.org/10.1038/nature20101.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning to trans-
duce with unbounded memory. In Cortes et al. (2015), pp. 1828–1836. URL http://papers.
nips.cc/paper/5648-learning-to-transduce-with-unbounded-memory.

Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. Oracle-guided component-based
program synthesis. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pp. 215–224. ACM, 2010.

Lukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. In Kingsbury & Bengio (2016).
URL http://arxiv.org/abs/1511.08228.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Brian Kingsbury and Samy Bengio (eds.). 4th International Conference on Learning Representations,
May 2-4, 2016, San Juan, Puerto Rico, 2016. URL http://www.iclr.cc/doku.php?id=
iclr2016:main.

Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random-access machines. ERCIM
News, 2016(107), 2016. URL http://ercim-news.ercim.eu/en107/special/
neural-random-access-machines.

9

http://arxiv.org/abs/1605.06640
http://arxiv.org/abs/1605.06640
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-28-2015
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-28-2015
https://arxiv.org/abs/1611.02109
https://arxiv.org/abs/1611.02109
http://arxiv.org/abs/1410.5401
http://dx.doi.org/10.1038/nature20101
http://papers.nips.cc/paper/5648-learning-to-transduce-with-unbounded-memory
http://papers.nips.cc/paper/5648-learning-to-transduce-with-unbounded-memory
http://arxiv.org/abs/1511.08228
http://www.iclr.cc/doku.php?id=iclr2016:main
http://www.iclr.cc/doku.php?id=iclr2016:main
http://ercim-news.ercim.eu/en107/special/neural-random-access-machines
http://ercim-news.ercim.eu/en107/special/neural-random-access-machines

Under review as a conference paper at ICLR 2018

Chengtao Li, Daniel Tarlow, Alexander L. Gaunt, Marc Brockschmidt, and Nate Kushman. Neural
program lattices. In under review for ICLR (2017). URL https://openreview.net/pdf?
id=HJjiFK5gx.

Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach, and
James Martens. Adding gradient noise improves learning for very deep networks. arXiv preprint
arXiv:1511.06807, 2015.

Veselin Raychev, Pavol Bielik, Martin T. Vechev, and Andreas Krause. Learning programs from
noisy data. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pp.
761–774, 2016. doi: 10.1145/2837614.2837671. URL http://doi.acm.org/10.1145/
2837614.2837671.

Scott Reed and Nando de Freitas. Neural programmer-interpreters. In Kingsbury & Bengio (2016).
URL https://arxiv.org/abs/1511.06279.

under review for ICLR (ed.). 5th International Conference on Learning Representations, April 24-
26, 2017, Toloun, France, 2017. URL http://www.iclr.cc/doku.php?id=ICLR2017:
main.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Cortes et al. (2015), pp.
2692–2700. URL http://papers.nips.cc/paper/5866-pointer-networks.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. CoRR, abs/1410.4615, 2014. URL
http://arxiv.org/abs/1410.4615.

Wojciech Zaremba and Ilya Sutskever. Reinforcement learning neural turing machines. CoRR,
abs/1505.00521, 2015. URL http://arxiv.org/abs/1505.00521.

Wei Zhang, Yang Yu, and Bowen Zhou. Structured memory for neural turing machines. CoRR,
abs/1510.03931, 2015. URL http://arxiv.org/abs/1510.03931.

10

https://openreview.net/pdf?id=HJjiFK5gx
https://openreview.net/pdf?id=HJjiFK5gx
http://doi.acm.org/10.1145/2837614.2837671
http://doi.acm.org/10.1145/2837614.2837671
https://arxiv.org/abs/1511.06279
http://www.iclr.cc/doku.php?id=ICLR2017:main
http://www.iclr.cc/doku.php?id=ICLR2017:main
http://papers.nips.cc/paper/5866-pointer-networks
http://arxiv.org/abs/1410.4615
http://arxiv.org/abs/1505.00521
http://arxiv.org/abs/1510.03931

Under review as a conference paper at ICLR 2018

A NTM EQUATIONS

The controller for the NTM consists of the networks ϕ, ψy, ψe, ψa, χr, χw, which operate on the
variables:

x – in q – controller state r – read address ∆r – change in r e – erase M – tape
y – out m – read value w – write address ∆w – change in w a – add (12)

The equations that describe NTM executions are:

∆rt = χr(qt) rt = address(∆rt, rt−1,Mt−1)

∆wt = χw(qt) wt = address(∆wt, wt−1,Mt−1)

yt = ψy(qt) mt = rtMt−1

et = ψe(qt) Mt =Mt−1 − (wt ⊗ et)�Mt−1 + wt ⊗ at
at = ψa(qt) qt = ϕ(xt, qt−1,mt). (13)

B NRAM EQUATIONS

The controller of the NRAM consists of the networks ϕ, ψa, ψb, ψc, ψf , which operate on the
variables:

a – lhs circuit b – rhs circuit c – register inputs o – module outputs
r – register state M – memory tape h – controller state f – stop probability. (14)

The equations that describe the NRAM execution are:

at = softmax(ψa(qt)) At,i = (r1, . . . , rR, o0, . . . , oi−1)Tat,i ∀i < M

bt = softmax(ψb(qt)) Bt,i = (r1, . . . , rR, o0, . . . , oi−1)T bt,i ∀i < M

ct = softmax(ψc(qt)) rt,i = (r1, . . . , rR, o1, . . . , oQ)T ct,i ∀i < R

ft = ψf (qt) ot,i,k =
∑

0≤a,b<M

At,i,aBt,i,b[mi(a, b) = k] ∀i /∈ {ρ, ω}, k < M

qt = ϕ(qt−1, rt,−,0) ot,ρ =MtAt,ρ

Mt = (J −At,ω)JT · Mt−1 +At,ωB
T
t,ω (15)

pt = ft
∏
i<t

(1− fi) pT = 1−
∑
i<T

pi (16)

11

Under review as a conference paper at ICLR 2018

C SETUP FOR NTM

For all of our NTM experiments we use a densely connected feed-forward controller. There are
two architectural differences from the original NTM Graves et al. (2014) that helped our baseline
performance: (1) the feed-forward controller, the erase and the add gates use tanh activation; (2)
the output layer uses softmax. In the original architecture these are all logistic sigmoids. For the
newly introduced tape decoder (active only during training) we used two alternative implementations:
a tanh-softmax network, and a single affine transformation. We tested the NTM’s learning ability
on five different tasks for sequence manipulation, two of which have not been previously investigated
in this domain. These tasks can be found in Appendix E.

We performed experiments using several combination of losses as summarized in Appendix F. The
observed training performance per task is shown in Appendix I, with rows corresponding to the
different loss setups. The corner setup differs from the address setup in that the example subtraces
were defined only for a few important corner cases. For example in RepeatCopyTwice, the write
head was provided once at the beginning of the input sequence, and once at the end. Similarly, the
read head was revealed at the beginning and at the end of every output repetition. In all other setups
we provide full subtraces (defined for all time steps).

The supervision amount can be tuned by adjusting the λ weight from Equation 8. Further, we can also
control the fraction of examples which get extra subtrace supervision (the density row in Figure I).
The performance metric we use is the percentage of runs that do generalize after 100k iterations for
the given task and supervision type. By generalize we mean that the NTM has perfect accuracy on all
testing examples up to 1.5× the size of the max training length, and also perfect accuracy on 90% of
the testing examples up to 2× the maximum training length.

We used a feed-forwad controller with 2× 50 units, except for RepeatCopyTwice, which uses
2 × 100 units. For training we used the Adam optimizer Kingma & Ba (2014), a learning rate of
10−3 for all tasks except RepeatFlip3d and Flip3rd which use 5 · 10−4. The lengths of the
training sequences for the first four tasks are from 1 to 5, whereas the generalization of the model
was tested with sequences of lengths up to 20. For Flip3rd and RepeatFlip3d, the training
sequence length was up to 16, whereas the testing sequences have maximum length of 32.

D SETUP FOR NRAM

Like in the NTM, we use a densely connected two layer feed forward controller for our experiments,
and use ReLU as the activation function. We make no modifications to the original architecture, and
use noise with the parameter η = 0.3 as suggested by Neelakantan et al. (2015), and curriculum
learning as described by Zaremba & Sutskever (2014). We stop training once we get to a difficulty
specified by the task, and increase the difficulty once 0 errors were found on a new testing batch of 10
samples. Each training iteration trains with 50 examples of the currently randomly sampled difficulty.
Regardless of whether the model had converged, training is stopped after 5000 samples were used.
Such a low number is used to replicate the potential conditions under which such a model might be
used. As with the NTM, the Adam optimizer was used. The specific tasks we use are described in
Appendix G, and the specific kinds of supervision we give are described in Appendix H. The λ we
used here was 40. The system was implemented using PyTorch.

12

Under review as a conference paper at ICLR 2018

E NTM TASKS

Every input sequence ends with a special delimiter xE not occurring elsewhere in the sequence

Copy – The input consists of generic elements, x1 . . . xnxE . The desired output is x1 . . . xnxE .
RepeatCopyTwice – The input is again a sequence of generic elements, x1 . . . xnxE . The

desired output is the input copied twice x1 . . . xnx1 . . . xnxE . Placing the delimiter only
at the end of the output ensures that the machine learns to keep track of the number of
copies. Otherwise, it could simply learn to cycle through the tape reproducing the given
input indefinitely. We kept the number of repetitions fixed in order to increase baseline task
performance for the benefit of comparison.

DyckWords – The input is a sequence of open and closed parentheses, x1 . . . xnxE . The desired
output is a sequence of bits y1 . . . ynxE such that yi = 1 iff the prefix x1 . . . xi is a balanced
string of parentheses (a Dyck word). Both positive and negative examples were given.

Flip3rd – The input is a sequence of bits, x1x2x3 . . . xnxE . The desired output is the same
sequence of bits but with the 3rd bit flipped: x1x2x̄3 . . . xnxE . Such a task with a specific
index to be updated (e.g., 3rd) still requires handling data dependence on the contents of the
index (unlike say the Copy task).

RepeatFlip3d – The input is a sequence of bits, x1x2x3x4x5x5 . . . xE . The desired output is
the same sequence of bits but with every 3rd bit flipped: x1x2x̄3x4x5x̄6 . . . xE .

F NTM SUBTRACES

addr+val

value address/corner

write read

Figure 8: A heirarchy of supervision types (but not quantities) for NTMs.

value traces provide hints for the memory at every timestep as explained in Equation 10.
read – provides a hint for the address of the read head at every timestep.
write – provides a hint for the address of the write head at every timestep.
address – provides hints for the address of both the read and the write head at every timestep.
addr+val – provides value, read and write hints for every timestep.
corner – provides hints for the address of both the read and the write head at every “important”

timestep - we decided what important means here depends on which task we are referring to.
In general, we consider the first and last timesteps important, and also any timestep where
a head should change direction. For example, in RepeatCopyTwice for an example of
size n with e repeats, we’d provide the heads at timesteps 0, n, 2n, 3n . . . , en.

13

Under review as a conference paper at ICLR 2018

G NRAM TASKS

Below we describe all the tasks we experimented with. We predominantly picked tasks that the
NRAM is known to have trouble generalizing on. We did not introduce any new tasks, and more
detailed descriptions of these tasks can be found in Kurach et al. (2016).

Swap – Provided two numbers, a and b and an array p, swap p[a] and p[b]. All elements but that in
the last memory cell are not zero.

Increment – Given an array p, return the array with one added to each element. All elements but
that in the last cell for the input are not zero. Elements can be zero in the output.

Permute – Given two arrays p and q return a new array s such that s[i] = q[p[i]]. The ar-
rays p and q are preceded by a pointer, a, to array q. The output is expected to be
a, s[0] . . . , s[n], q[0], q[n].

ListK – Given a linked list in array form, and an index k return the value at node k.
Merge – given arrays p and q, and three pointers a, b, c to array p, q, and the output sequence (given

as zeros initially), place the sorted combination of p and q into the output location.

The following table describes the specific NRAM instantiation used for each task. The default
sequence (def) is the one described by Kurach et al. (2016). The number of timesteps is usually
dependent on the length of the problem instance, M (equivalently the word size or difficulty), and in
the case of ListKwas given with respect to the argument k. The difficulty (D) was simply the length
of the sequence used.

Task No. Regs Module Sequence Timesteps Learn Rate Start D End D
Swap 5 def 7 0.01 6 10

Increment 2 def + R M + 2 0.01 4 10
Permute 4 R + def + R + W M + 3 0.05 7 12
ListK 6 def k + 5 0.05 9 16
Merge 8 def + def + def M + 3 0.05 13 16

H NRAM SUBTRACES

For each of the tasks listed Appendix G, we hand coded a complete circuit for every module and
every timestep we would provide. The following subtraces types describe how we provide hints
based on this circuit.

None – provides no hints.
Full – provides the entire circuit.
SingleHint – provides a random hint at a random timestep.
SingleTimestep – provides the entire circuit at a random timestep.
Corners – provides the entire circuit at the first and last timesteps.
Registers – provides hints for the registers at every timestep.
Modules – provides hints for the modules at every timestep.

14

Under review as a conference paper at ICLR 2018

I NTM RESULTS

density 100 100 100 100 50 50 50 50 10 10 10 10 1 1 1 1

λ 1 0.3 0.1 0.01 1 0.3 0.1 0.01 1 0.3 0.1 0.01 1 0.3 0.1 0.01

baseline 52.5

addr+val 100 100 100 70 100 100 100 40 60 80 40 30 30 50 60 10

address 100 100 100 50 90 100 90 30 80 90 70 30 50 30 40 50

value 100 100 70 40 80 20 40 10 10 20 40 30 60 40 20 10

read 90 80 70 50 60 20 50 20 40 40 60 20 70 30 40 10

write 60 70 80 60 80 80 40 40 50 70 50 40 50 60 50 40

corner 100 100 100 50 100 90 60 70 70 20 50 30 50 60 20 30

(a) Copy

density 100 100 100 50 50 50 10 10 10 1 1 1

λ 1 0.3 0.03 1 0.3 0.03 1 0.3 0.0 1 0.3 0.03

baseline 15.5

addr+val 90 100 60 90 80 40 80 20 10 10 0 0

address 90 90 90 100 100 40 100 60 0 0 20 30

value 80 70 0 50 50 10 30 30 20 10 30 0

read 50 30 30 20 60 30 20 60 10 10 10 0

write 30 30 20 10 30 40 20 0 10 10 20 20

corner 60 50 40 50 60 10 20 40 20 10 20 0

(b) RepeatCopyTwice

density 100 100 100 100 50 50 50 50 10 10 10 10 1 1 1 1

λ 1 0.3 0.1 0.01 1 0.3 0.1 0.01 1 0.3 0.1 0.01 1 0.3 0.1 0.01

baseline 45

address 70 90 60 80 90 90 90 50 80 50 90 80 100 80 70 70

read 80 90 70 70 100 100 70 50 50 60 70 70 80 70 50 50

corner 60 100 80 80 80 90 90 90 60 60 100 50 90 80 80 50

(c) DyckWords

density 100 100 100 100 50 50 50 50 10 10 10 10 1 1 1 1

λ 1 0.3 0.1 0.03 1 0.3 0.1 0.03 1 0.3 0.1 0.03 1 0.3 0.1 0.03

baseline 45

addr+val 30 50 50 50 50 50 70 80 60 80 40 40 40 60 40 10

address 0 60 40 40 20 70 80 90 90 70 60 50 50 50 60 60

value 60 50 40 60 80 70 40 10 50 10 40 70 50 30 40 60

read 40 60 70 40 30 80 90 90 100 70 80 50 30 50 60 30

write 0 30 50 20 30 40 60 20 40 40 40 40 20 50 70 50

corner 50 70 80 80 40 40 90 70 80 70 60 40 50 60 60 40

(d) Flip3rd

density 100 100 100 100 50 50 50 50 10 10 10 10 1 1 1 1

λ 1 0.5 0.3 0.1 1 0.3 0.1 0.03 1 0.3 0.1 0.03 1 0.3 0.1 0.03

baseline 5

addr+val 30 20 20 40 30 30 10 10 40 10 0 20 10 10 0 10

address 20 50 30 30 30 40 20 40 20 40 20 0 0 0 20 0

value 0 0 20 20 0 0 0 0 10 10 10 0 0 0 0 0

read 30 10 40 20 10 30 20 40 30 10 0 10 20 0 10 20

write 0 0 0 10 0 0 0 0 10 10 0 0 20 20 30 0

corner 40 40 60 20 50 30 10 30 10 10 0 0 0 10 0 10

1 0.5 0.3 0.1 1 0.3 0.1 0.03 1 0.3 0.1 0.031 0.5 0.3 0.1 1 0.3 0.1 0.031 0.5 0.3 0.10.5 0.3 0.1 1 0.3 0.1 0.03 1 0.3 0.1 0.03 1 0.3 0.1 0.030.5 0.3 0.1 1 0.3 0.1 0.03 1 0.3 0.1 0.03 1 0.3 0.1 0.03

(e) RepeatFlip3d

Figure 9: Baselines have generalization on over 40 different initial weights. Other tests use 10.

15

Under review as a conference paper at ICLR 2018

Which Details to Reveal for NTM? The first dimension listed in the rows of the tables of Figure I
controls the execution details revealed in a Subtrace. We use subtraces showing either the addresses
without the tape values, only the read heads or the write heads, or even weaker supervision in a
few corner cases. In tasks Copy Figure 9a), RepeatCopyTwice (Figure 9b) and DyckWords
(Figure 9c), it is frequently the case that when the NTM generalizes without supervision, it converges
to an algorithm which we are able to interpret. For them, we designed the addr+val traces to match
this algorithm, and saw increases in generalization frequency of at least 45%. It can be concluded
that when additionally provided supervision reflects the interpretable “natural” behavior of the NTM,
the learning becomes significantly more robust to changes in initial weights. Additionally, for tasks
Flip3rd (Figure 9d) and RepeatFlip3d (Figure 9e), both the baseline and other supervision
types are outperformed by training with read supervision. It is also notable that corner supervision in
RepeatFlip3d achieves highest improvement over the baseline, 60% over 5%. In essence, this
means that providing only a small part of the trace can diminish the occurrence of local minima in
the loss function.

How Often to Reveal for NTM? The second dimension controls the proportion of exam-
ples that receive extra subtrace supervision (the density columns in Figure I). For Flip3rd,
RepeatCopyTwice and DyckWords we observed that having only a small number of exam-
ples with extra supervision leads to models which are more robust to initial weight changes than the
baseline, although not necessarily always as robust as providing supervision all the time.

A couple of interesting cases stand out. For Flip3rd with 10% corner subtraces and λ = 1, we find
a surprisingly high rate of generalization. Providing address traces 10% of the time when training
RepeatCopyTwice leads to better performance all the time. For RepeatFlip3d, write traces
at 1% frequency and λ = 0.1 generalize 30% of the time vs. 5% for baseline.

While the type of trace which works best varies per task, for each task there exists a trace which can
be provided only 1% of the time and still greatly improve the performance over the baseline. This
suggests that a small amount of extra supervision can improve performance significantly, but the kind
of supervision may differ. It is an interesting research question to find out how the task at hand relates
to the optimal kind of supervision.

16

Under review as a conference paper at ICLR 2018

J NRAM RESULTS

Subtrace Type \Task Permute Swap Increment ListK Merge PermuteNoise
None 36 44 58 41 13 12

SingleHint 24 38 28 22 12 14
Corners 29 23 36 22 9 17

SingleTimestep 21 52 29 28 12 13
Registers 48 58 73 54 - -

Modules 48 58 107 54 - -
Full 26 33 32 44 21 14

NoisyFull - - - 36 - -

Figure 10: The number of runs which completed for each task and subtrace type. The Data in the
graphs below is taken by averaging the results of these runs.

Subtrace Type \Task Permute Swap Increment ListK
None 6290.29 5505.22 3500.13 5880.11

SingleHint 5565.22 3700.64 4318.20 6574.59
Corners 4468.85 6195.75 3199.86 6601.16

SingleTimestep 6259.05 2662.35 4042.18 5076.17
Registers 6618.12 5774.61 3839.18 6185.54

Modules 6523.16 5781.99 2335.99 6183.74
Full 4919.33 4110.14 3758.99 3216.01

Figure 11: The average time (in seconds) to finish training for each task and subtrace type. For most
tasks it is clear that Full traces while introducing extra computations to individual timesteps, reduce
the amount of time to finish training over not using supervision.

Subtrace Type \Task ListK Swap Permute Increment Merge PermuteNoise
None 95.08 91.52 99.97 99.91 99.96 99.99

SingleHint 93.61 2.41 57.55 14.86 100.0 56.90
Corners 94.47 99.09 16.40 2.14 100.0 20.79

SingleTimestep 36.91 1.75 47.79 13.77 100.0 33.60
Full 12.77 11.01 7.83 9.89 78.44 23.57

Registers 93.22 93.44 99.97 90.36 - -
Modules 93.70 95.57 86.48 40.87 - -

Figure 12: The average number of errors on the test set for each task and subtrace type once trained.

Figure 13: Comparing average generalization to
sequence length for Swap

Figure 14: Comparing average generalization to
sequence length for Increment

17

Under review as a conference paper at ICLR 2018

Figure 15: Comparing average generalization to
sequence length for Permute

Figure 16: Comparing average generalization to
sequence length for ListK

Figure 17: Comparing average generalization to
sequence length for Merge

Figure 18: Comparing average generalization of the DNGPU Freivalds & Liepins
(2017) with that of the NRAM using the full tracer for Merge. For this exper-
iment, a maximum of 10000 samples were used for the DNGPU and 5000 for
the NRAM. The DNGPU was run out of the box from the code supplied by the
authors. 20 runs were averaged for the DNGPU and 38 runs for the NRAM. One
can deduce that while neither is able to generalize this task perfectly, the simpler
and easier to understand architecture, NRAM, does generalize better with fewer
examples when those examples come with richer supervision.

18

Under review as a conference paper at ICLR 2018

K PROGRAMMING NRAMS

The NRAM is parametrized by one or more straight-line partial programs, i.e., programs with no
branching and no loops, chosen by register states. The machine runs in a loop, repeatedly selecting
the program for that register state then executing it. The programs are expressend in a simple
single-assignment imperative language. Each program statement i invokes one of the modules of the
architecture and assigns the result of the invocation to a local variable xi. That variable cannot be
changed later. The final program statement is a parallel-asignment that modifies the machine registers
r1 . . . rk. The values that appear in assignments/invocations can be: variables in scope, machine
registers, or holes ?. These values are not used directly during execution: the actual values needs to be
supplied by the NRAM controller. The values are only used as hints for the controller during training,
with the whole ? denoting no hint. We can describe the language in an EBNF-style grammar:

Fn ::= modules of arity n Si ::= xi ← Fn(Vi, . . . , Vi︸ ︷︷ ︸
n

) (17)

Vi ::= r1 | · · · | rk | ? | x1 | . . . | xi−1 Ri ::= rj1 , . . . , rjn ← Vi, . . . Vi︸ ︷︷ ︸
n

(18)

P1 ::= S1 Pi ::= Pi−1;Si P ::= P1;R1 | P2;R2 | . . . (19)

An example program for the Increment task would be the following:
x1 ← 1;
x2 ← READ(r1);
x3 ← ADD(x2, x1);
x4 ←WRITE(r1, x3);
x5 ← ADD(r1, x1);
r1 ← x5

Here, the controller is encouraged to read the memory at the location stored in the first register r1,
add one to it, then store it back, and then increment the the first register.

An alternative to the trace-based approach is to make the controller produce values only for the holes,
and use directly the specified variable/register arguments. This way, only the unspecified parts of the
program are learned. This is, for example, the approach taken by ∂Forth Bošnjak et al. (2017). There,
programs are expressed in a suitably adapted variant of the Forth programming language, which is as
expressive as the language discussed above, but less syntactically constrained.

The drawback of this alternative is that whenever an argument other than a whole is specified, one
must also specify the time steps to which it applies in all possible executions and not just the training
ones. That is why, typically, these values are specified either for all or for none of the time steps.

In the following examples, we will describe the register states using “0”, “!0” and “-” meaning
respectively that a register has 0, that it contains anything but zero, or that it can contain anything.

L NRAM PERMUTATION PROGRAM

For any register pattern.
x1 ← READ(r0);
x2 ←WRITE(0, x1);
x3 ← READ(r1);
x4 ← ADD(x3, x1);
x5 ← READ(x4);
x6 ←WRITE(r1, x5);
x7 ← INC(r1);
x8 ← DEC(x1);
x9 ← LT (x7, x8);
r0 ← 0;
r1 ← x7;
r2 ← x9;
r3 ← 0;

19

Under review as a conference paper at ICLR 2018

M NRAM LISTK PROGRAM

When the registers are [0, !0, !0, -, -]:
x1 ← READ(r0);
x2 ← ADD(x1, 2);
x3 ←WRITE(0, x1);
r0 ← 1;
r1 ← 1;
r2 ← 1;
r3 ← x2;

When the registers are [!0, !0, !0, -, -]:
x1 ← READ(r1);
x2 ← ADD(x1, 2);
x3 ←WRITE(r1, x1);
r0 ← 1;
r1 ← 0;
r2 ← 1;
r3 ← r3;
r4 ← x2;

When the registers are [!0, 0, !0, -, -]:
x1 ← READ(r3);
x2 ←WRITE(r3, x1);
r0 ← 1;
r1 ← 0;
r2 ← 0;
r3 ← x1;
r4 ← 4;

When the registers are [!0, 0, 0, -, -]:
x1 ← READ(r4);
x2 ←WRITE(r4, r3);
r0 ← 1;
r1 ← 1;
r2 ← 0;
r3 ← x1;

When the registers are [0, !0, 0, -, -]:
x1 ← READ(r2);
x2 ← ADD(x1, 2);
x3 ←WRITE(x2);
r0 ← 0;
r1 ← 1;
r2 ← 0;

N NRAM LISTK PROGRAM

Timestep 0:
x1 ← READ(r0);
x2 ← INC(x1);
x3 ← 0;
x4 ←WRITE(x3, x1);
r0 ← r1;
r1 ← r1;
r2 ← r2;
r3 ← x2;
r4 ← r4;

20

Under review as a conference paper at ICLR 2018

r5 ← r5;

Timestep 1:
x1 ← READ(r1);
x2 ←WRITE(r1, x1);
x3 ← 0;
r0 ← r0;
r1 ← x1;
r2 ← r2;
r3 ← r3;
r4 ← x3;
r5 ← r5;

Timestep 2:
x1 ← READ(r2);
x2 ←WRITE(r2, x1);
x3 ← 0;
r0 ← r0;
r1 ← r1;
r2 ← x1;
r3 ← r3;
r4 ← x3;
r5 ← x3;

Timestep 3 to 3 + k - 1:
x1 ← READ(r0);
x2 ← INC(x1);
x3 ← 0;
x4 ← DEC(x1);
x5 ←WRITE(r0, x1);
r0 ← x1;
r1 ← x4;
r2 ← r2;
r3 ← x2;
r4 ← x3;
r5 ← x3;

Timestep 3 + k:
x1 ← READ(r3);
x2 ←WRITE(r2, x1);
x3 ← 0;
x4 ← 1;
r0 ← r0;
r1 ← r1;
r2 ← r2;
r3 ← x1;
r4 ← x4;
r5 ← x3;

Rest:
x1 ←WRITE(r2, r3);
x2 ← 1;
x3 ← 0;
r0 ← r0;
r1 ← r1;
r2 ← r2;
r3 ← r3;
r4 ← x2;
r5 ← x3;

21

	Introduction
	Neural Computational Machines
	NTMs and NRAMs as NCMs
	Subtrace Supervision of NCMs
	Generic subtrace Loss for NCMs
	Subtraces for NTM
	Subtraces for NRAM

	Experimental Evaluation
	Conclusion
	NTM Equations
	NRAM Equations
	Setup for NTM
	Setup for NRAM
	NTM Tasks
	NTM Subtraces
	NRAM Tasks
	NRAM Subtraces
	NTM Results
	NRAM Results
	Programming NRAMs
	NRAM Permutation Program
	NRAM ListK Program
	NRAM ListK Program

