
Workshop track - ICLR 2018

CHANNEL-PRIORITIZED CONVOLUTIONAL NEURAL
NETWORKS FOR SPARSITY AND MULTI-FIDELITY

Chun-Min Chang
National Taiwan University
d05921027@ntu.edu.tw

Hung-Yi Ou Yang
National Cheng Kung University
frank840925@gmail.com

Chia-Ching Lin
National Taiwan University
d05921018@ntu.edu.tw

Chin-Laung Lei
National Taiwan University
cllei@ntu.edu.tw

Kuan-Ta Chen
Academia Sinica
swc@iis.sinica.edu.tw

ABSTRACT

We propose a novel convolutional neural networks (CNNs) training procedure to
allow dynamically trade-offs between different resource and performance require-
ments. Our approach prioritizes the channels to enable structured sparsity and
multi-fidelity approximations at inference time. We train the VGG network with
our method on various benchmark datasets. The experiment results show that, on
the CIFAR-10 dataset, a 63× parameters reduction and a 11× FLOPs reduction
can be achieved, with only a 2% accuracy drop.

1 INTRODUCTION

While the trend nowadays is to make neural network architectures deeper to improve performance,
it is still desirable to deploy a compact and computational efficient model with multi-fidelity ap-
proximations to allow dynamic scaling over a computation range, especially for applications on end
devices. The term fidelity level here is defined as the proportion of features (channels in the case
of CNNs) applied during forward propagation. For example, a 30% fidelity level approximation
uses 30% of the channels in every layer to obtain an approximated result. We can use the entire
set of features for inference under normal condition, and a lower fidelity level approximation under
resource limited condition.

Many computational efficient networks focus on reducing the model size, either by directly forcing
weights to become zeros in Han et al. (2016); Li et al. (2016); Molchanov et al. (2016), or by
inducing zeros in the scaling factors in the batch normalization layers by Liu et al. (2017); Ye et al.
(2018). Other techniques, such as low-rank approximation by Denton et al. (2014); Jaderberg et al.
(2014), weight grouping by Gong et al. (2014); Han et al. (2015); Zhou et al. (2017); Ullrich et al.
(2017), and group sparsity regularizer by Wen et al. (2016); Zhou et al. (2016); Alvarez & Salzmann
(2016) can be used independently or in conjunction with other approaches to further reduce the
model size. However, none of these techniques supports dynamic scaling to meet varying resource
and performance requirements. On the other hand, as for adaptive computation networks, the work
by McDanel et al. (2017) introduces a global scaling factor to dynamically control the percentage of
features being included. Huang et al. (2017) proposes a network architecture framework that uses a
cascade of intermediate classifiers throughout the network with early-exit ability.

Our approach, channel prioritization, is a two-stage procedure that benefits from both design consid-
erations above. We prioritize the channels in each layer by their channel indices. Before training, all
scaling factors of each batch normalization (BN) layer are initialized with a monotonically decreas-
ing function. In the training stage, we incorporate L1 penalty and monotonicity-induced penalty on
the scaling factors to encourage sparsity and keep the monotonicity, as will be discussed in Sec-
tion 2. After training, we prune away insignificant channels and then fine-tune the network again. In
the fine-tuning stage, we also aggregate the losses at different fidelity levels to achieve multi-fidelity
approximations.

1

Workshop track - ICLR 2018

Training stage

1. Monotonically decreasing initialization on �

2. Train with sparsity and monotonicity constraints

Fine-tuning stage

4. Fix scaling factors and define multiple fidelity levels

5. Aggregate multiple losses and fine-tune network

3. Prune channels

by a threshold

Figure 1: Flow-chart of channel prioritization procedure.

No Constraint Initialization Initialization, Sparsity Initialization, Sparsity, Monotonicity

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.8

0.0

0.5

1.0

1.5

2.0

1.0

1.5

Channel index

V
a

lu
e

 o
f

s
c
a

lin
g

 f
a

c
to

rs

Scaling factors
conv1_1

conv2_1

conv3_1

conv4_1

conv5_1

Figure 2: The scaling factors trained under different constraints on the CIFAR-10 dataset. From left to right,
the percentage of the values smaller than 0.05 is 0%, 1.9%, 78%, 77%, and the Kendall’s rank correlation is
0.02, -0.86, -0.39, and -0.66.

2 CHANNEL PRIORITIZATION

We leverage the fact, that channel importance becomes comparable across the network since ev-
ery scaling factor in batch normalization (BN) layers Ioffe & Szegedy (2015) always multiples a
normalized activation, to design the following initialization and penalty techniques that prioritize
channels. Channel prioritization enables to prune networks in a structured way without sorting, and
provides a simple and effective way to control the percentage of parameters and resource involved.

(C1) Monotonically Decreasing Initialization. We initialize the scaling factors with a monotoni-
cally decreasing function as follow to induce priority along the channels. Given the l-th layer with
Nl channels,

γ
(k)
l = 2× (1− k − 1

Nl
), k = 1, ..., Nl (1)

(C2) Sparsity penalty. We impose L1 penalty on scaling factors, |γ(k)l | to induce sparsity.

(C3) Monotonicity-induced penalty. We quantify monotonicity as the successive difference be-
tween any two consecutive scaling factors. The penalty is defined as follow.

L
(k)
m,l =

{
γ
(k+1)
l − γ(k)l , if γ(k+1)

l > γ
(k)
l

0 , otherwise
, k = 1, .., Nl − 1 (2)

In the training stage, the objective is the weighted sum of cross-entropy loss, sparsity penalty, and
the monotonicity-induced penalty on scaling factors is shown below.

Lobj = Loss + λs
∑
k,l

|γ(k)l |+ λm
∑
k,l

L
(k)
m,l (3)

where λs and λm tradeoff between loss, sparsity and monotonicity. In this practice, we aim to
sparsify and prioritize the scaling factors, which allows pruning insignificant channels afterwards
with ease.

Multi-fidelity Approximations. Prioritized channels enable us to select the foremost p% in the
channel index of every layer to compute the p% fidelity approximation. We aggregate the losses at
various fidelity levels as the fine-tuning objective to optimize multi-fidelity approximations. Given
a set of fidelity levels, P

Lobj =
∑
p

Lossp ,∀p ∈ P (4)

, where and the loss at p% fidelity level is denoted as Lossp. In the fine-tuning stage, we fix the
parameters in the BN layers and update the others. Thus, there is no constraints on sparsity and
monotonicity. The complete algorithm is summarized as Figure 1.

2

Workshop track - ICLR 2018

Table 1: Performance and resource demands

Dataset Model Accuracy (%) Parameters Ratio (%) FLOPs Ratio (%)

VGG-16, baseline 88.7 1.50 × 107 - 6.26 × 108 -
Li et al. (2016) +0.2 5.40 × 106 36.0 4.12 × 108 65.8

Liu et al. (2017) +0.2 1.72 × 106 11.5 3.13 × 108 51.0

Our, IDP at 100% +0.5 , −5.8 9.10 × 105 , 1.50 × 107 6.1, 100 1.81 × 108, 6.26 × 108 28.9, 100
CIFAR-10 Our, IDP at 75% −0.7 , −6.1 5.17 × 105 , 8.49 × 106 3.5, 56.6 1.08 × 108, 3.68 × 108 17.4, 58.8

Our, IDP at 50% −2.7 , −8.2 2.40 × 105 , 3.83 × 106 1.6, 25.5 5.58 × 107, 1.79 × 108 8.9, 28.6
Our, IDP at 25% −12.8 , −79.2 6.92 × 104 , 1.00 × 106 0.4, 6.67 2.00 × 107, 5.70 × 107 3.2,, 9.10

VGG-16, baseline 64.0 1.50 × 107 - 6.26 × 108 -
Liu et al. (2017) +0.3 3.78 × 106 25.2 3.90 × 108 62.4

CIFAR-100 Our, IDP at 100% +0.5 , −0.3 2.99 × 106 , 1.50 × 107 19.9, 100 3.48 × 108 , 6.26 × 108 55.6, 100
Our, IDP at 50% −7.3 , −30.0 8.20 × 105 , 3.87 × 106 5.5, 25.8 1.08 × 108 , 1.79 × 108 17.3, 28.6

conv1_1

conv1_2

conv2_1

conv2_2

conv3_1

conv3_2

conv3_3

conv4_1

conv4_2

conv4_3

conv5_1

conv5_2

conv5_3

0 64 128 256 512
Channel index

type
Pruned

Kept

Pruned network on CIFAR−10

25

50

75

40 60 80 100
Fidelity level (%)

T
e
s
t
a
c
c
u
ra

c
y
 (

%
)

Multi−fidelity (our)

IDP, McDanel et al. (2017)

Accuracy on CIFAR−10

conv1_1

conv1_2

conv2_1

conv2_2

conv3_1

conv3_2

conv3_3

conv4_1

conv4_2

conv4_3

conv5_1

conv5_2

conv5_3

0 64 128 256 512
Channel index

type
Pruned

Kept

Pruned network on CIFAR−100

0

20

40

60

40 60 80 100
Fidelity level (%)

T
e
s
t
a
c
c
u
ra

c
y
 (

%
)

Multi−fidelity (our)

IDP, McDanel et al. (2017)

Accuracy on CIFAR−100

Figure 3: Visualization of the pruned network structures and fine-tuned performance on the CIFAR-10 (left)
and CIFAR-100 (right).

3 EXPERIMENTAL RESULTS

We test our approach using the ImageNet pre-trained VGG-16 model on the CIFAR-10 and CIFAR-
100 datasets. For the BN layers, we initialize the scaling factors by equation 2, and the shift factors to
zero. Note that we use data augmentation and L2 weight decay of 10−5 to prevent overfitting instead
of Dropout layers. In the training stage, we set both λs and λm to 0.001. In the fine-tuning stage,
we aggregate losses at fidelity levels of 25, 50, 75, 100% to optimize multi-fidelity approximations.

Channel Prioritization and Sparsity. Figure 2 illustrates the scaling factors under different con-
straints. We use the Kendall’s rank correlation Kendall (1955) to monitor if the scaling factors keep
monotonicity along with the channel indices. Clearly, we can see monotonically decreasing ini-
tialization helps to maintain priority, sparsity regularization drives the scaling factors toward zeros,
and monotonicity-induced penalty promotes monotonicity beside initialization. We visualize the
compressed network structures in Figure 3.

Multi-fidelity Approximations. To test the computational efficiency, we compare with the pruning
method proposed in Li et al. (2016) and Liu et al. (2017)1. It is shown that our method accomplishes
better parameters reduction and FLOPs reduction rates. To test the adaptive computation ability,
we evaluate the network at different fidelity levels and compare with another adaptive computation
method, IDP, proposed by McDanel et al. (2017). On the CIFAR-10, our model at 25% fidelity
level uses only 0.4% parameters and 3.2% FLOPs to achieve 75.9% accuracy, beating IDP by 65%
accuracy. Note that IDP does not prune networks so that our approach also outperforms in both
parameters and FLOPs reductions. The results are summarized in Table 1.

4 CONCLUSION

We propose a novel method for CNNs to learn prioritized channels, prune the network in a structure
way, and incorporate multi-fidelity approximations to trade-off between varying resource and per-
formance demands. Thanks to the cascading nature in deep neural networks, the input and output
channels of an intermediate layer are both at p × 100% fidelity level, so only p2 × 100% parame-
ters are used in essence. Channel prioritization is a generalized training method that can be used to
train or retrain any modern CNN that has BN layers, without modifying the network architecture or
requiring extra hardware support.

1Implement the single-pass scheme and prune lower scaling factors by percentile threshold at 70%

3

Workshop track - ICLR 2018

REFERENCES

Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons in deep networks. In
Advances in Neural Information Processing Systems, pp. 2270–2278, 2016.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. In Advances in Neural Informa-
tion Processing Systems, pp. 1269–1277, 2014.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional net-
works using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang, Erich Elsen, Peter Va-
jda, Manohar Paluri, John Tran, et al. Dsd: Dense-sparse-dense training for deep neural networks.
2016.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q. Wein-
berger. Multi-scale dense convolutional networks for efficient prediction. CoRR, abs/1703.09844,
2017. URL http://arxiv.org/abs/1703.09844.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.org/
abs/1502.03167.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

Maurice G Kendall. Rank correlation methods. 1955.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. CoRR, abs/1708.06519, 2017.
URL http://arxiv.org/abs/1708.06519.

Bradley McDanel, Surat Teerapittayanon, and HT Kung. Incomplete dot products for dynamic
computation scaling in neural network inference. 2017.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014. URL http://arxiv.org/abs/1409.1556.

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network compres-
sion. arXiv preprint arXiv:1702.04008, 2017.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in Neural Information Processing Systems, pp. 2074–2082,
2016.

J. Ye, X. Lu, Z. Lin, and J. Z. Wang. Rethinking the Smaller-Norm-Less-Informative Assumption
in Channel Pruning of Convolution Layers. ArXiv e-prints, January 2018.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantiza-
tion: Towards lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044, 2017.

Hao Zhou, Jose M Alvarez, and Fatih Porikli. Less is more: Towards compact cnns. In European
Conference on Computer Vision, pp. 662–677. Springer, 2016.

4

http://arxiv.org/abs/1703.09844
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1708.06519
http://arxiv.org/abs/1409.1556

	Introduction
	Channel Prioritization
	Experimental Results
	Conclusion

