
Workshop track - ICLR 2018

FASTER NEURAL NETWORKS STRAIGHT FROM JPEG

Lionel Gueguen & Alex Sergeev
Uber Technologies
San Francisco, CA 94103, USA
{lgueguen, asergeev}@uber.com

Rosanne Liu & Jason Yosinski
Uber AI Labs
San Francisco, CA 94103, USA
{rosanne, yosinski}@uber.com

ABSTRACT

Training CNNs directly from RGB pixels has enjoyed overwhelming empirical
success. But can more performance be squeezed out of networks by using different
input representations? In this paper we propose and explore a simple idea: train
CNNs directly on the blockwise discrete cosine transform (DCT) coefficients
computed and available in the middle of the JPEG codec. We modify libjpeg to
produce DCT coefficients directly, modify a ResNet-50 network to accommodate
the differently sized and strided input, and evaluate performance on ImageNet. We
find networks that are both faster and more accurate, as well as networks with
about the same accuracy but 1.77x faster than ResNet-50.

1 INTRODUCTION

Progresses toward training convolutional neural networks on a variety of tasks (Krizhevsky et al.,
2012; Mnih et al., 2013; Ren et al., 2015; He et al., 2015) has led to the widespread adoption of such
models in both academia and industry. Traditionally CNNs are trained with input provided as an array
of red-green-blue (RGB) pixels. In this paper we propose and explore a simple idea for accelerating
neural network training and inference where networks are applied to images encoded in the JPEG
format. We modify the libjpeg library to decode JPEG images only partially, resulting in an image
representation consisting of a triple of tensors containing discrete cosine transform (DCT) coefficients
in the YCbCr color space. Due to how the JPEG codec works, these tensors are at different spatial
resolutions. We then design and train a network to operate directly from this representation; as one
might suspect, this turns out to work reasonably well. Fig. 1ab shows the JPEG encoding process and
a schematic view of the partial decoding process we employ in this paper. JPEG encoding consists of
three steps: first the color space of an image is converted from RGB to YCbCr, the spatial resolution
of the latter two channels is often reduced. Then each of the three channels is split into blocks of 8×8,
and each block undergoes a DCT. Lastly the result of DCT goes into a Huffman encoding algorithm
for further compression . In our work we decode a compressed image up to its DCT coefficients,
which are then directly input to a CNN.

2 DESIGNING CNN MODELS FOR DCT INPUT

We adapt ResNet-50 (He et al., 2015) for processing DCT coefficients. Some care is required, as
DCT coefficients from the Y (luma) channel, DY , generally have a larger size than those from the
chroma channels, DCb and DCr, as shown in Fig. 1a. We design two special transforms (T1, T2)
that take care of the spatial dimension matching. Fig. 1c illustrates this process. We consider the
receptive field size and stride (hereafter denoted withR and S) for each unit at the end of transforms
and throughout the network. Whereas for typical networks taking RGB input, the receptive field and
stride of each unit will be the same in terms of each input channel (red, green, blue), here the receptive
fields considered in the original pixel space may be different for information flowing through the Y
channel vs the Cb and Cr channels, which may not be desired. We explored seven different methods
of transforms (T1, T2), from the simplest upsampling to deconvolution, and combined with different
options of subsequent ResNet block stacks. UpSampling: Both chroma DCT coefficients DCb and
DCr are upsampled by a factor of two in height and width to the dimensions of DY . The three are
then concatenated, and go through a batch normalization layer before going into ResNet blocks 3, 4,
and 5. UpSampling-RFA: This setup is similar to UpSampling, but here we keep ResNet Block 2
(rather than removing it), and modify blocks 2 and 3 such that they mimic the increase inR and S
observed in original ResNet-50; we denote this “Receptive Field Aware” or RFA. Deconvolution-
RFA: An alternative to upsampling is a learnable deconvolution layer. In this design we use two

1



Workshop track - ICLR 2018

(c) Transformation and Merge

(d) Results: Inference Speed vs. Top-5 Error

Figure 1: (a) The three steps to encode JPEG images. (b) The inverse process of JPEG decoding. In
this paper we run only the first step of decoding and then feed directly into a neural network. (c) The
coefficients DY and DCb, DCr are transformed through (T1, T2) into activations of identical spatial
sizes. (d) Inference speed vs top-5 error rates. Six group of experiments are presented. ResNet-50
baseline on both RGB and YCbCr show nearly identical performance, indicating that the YCbCr
color space on its own is not sufficient for improved performance. Two sets of RGB controls show
that simply making ResNet-50 shorter or thinner cannot produce competitive speed gains. Finally,
two sets of DCT experiments are shown, those that merge Y and Cb/Cr channels early in the network
(within one layer of each other) or late. Several of these networks are both faster and more accurate,
and the Late-Concat-RFA-Thinner network is about the same level of accuracy while being 1.77x
faster than ResNet-50.

separate deconvolution layers on DCb and DCr to increase of spatial size. Channel size is kept the
same. The rest of the design is the same as UpSampling-RFA. DownSampling: As opposed to
upsampling spatially smaller coefficients, another approach is to downsample the large one, DY ,
with a convolution layer. The rest of the design is the same as UpSampling. As we will see in Sec. 3,
this network operates on smaller total input, resulting in much faster processing at the expense of
higher error. Late-Concat: In this design, we run DY through Block 3 of ResNet-50 given that they
share the same spatial dimensions. In parallel, DCb and DCr are passed through an ID block, before
being concatenated with the DY path. The joined representation is then fed into Blocks 4 and 5.
This results in more total computation along the luma path than the chroma path and tended to result
in fast networks with good performance. Late-Concat-RFA: This receptive field aware version of
Late-Concat passes DY through modified Block 2 and 3, such that the increase inR mimics theR
in the original ResNet-50. Then, DCb and DCr are concatenated to the activations of the first layer
from Block 4. Because a smaller spatial size is used in Block 2, we increase the number of channels
to 1024 to keep the representation size at that layer the same. Late-Concat-RFA-Thinner: This
architecture resembles Late-Concat-RFA where the number of channels is decreased in Block 2 and
3. Instead of letting the number of channels rise to 1024 in Block 2, and then 512 in Block 3, the
number of channels is set to 384 in both blocks. Then, the Cb and Cr components with 64 channels
each, are convolved into 256 channels while maintaining their spatial dimensions. These activations
get concatenated with the activations from the first identity layer from the block 4, allowing to form a
volume of size 14× 14× 1024. These changes were tried in an attempt to keep the performance of
the Late-Concat-RFA model but obtain some of the speed benefits of the Late-Concat. As will be
shown in Fig. 1d, it strikes an attractive balance.

3 RESULTS AND DISCUSSIONS

We train on ImageNet (Deng et al., 2009) with the standard ResNet-50 stepwise decreasing learning
rates described in (He et al., 2015). The distributed training framework Horovod (Sergeev & Balso,
2017) is employed to facilitate parallel training over 128 GPUs. Experiments are conducted with
images which are first resized to 224×224 pixels with a random crop, and the JPEG quality used
during encoding is 100%, so as little information is lost as possible.

2



Workshop track - ICLR 2018

ERROR RATE VS INFERENCE SPEED — Results are shown in Fig. 1d for all seven proposed
DCT architectures from Section 2, along with two baselines: ResNet-50 on RGB inputs, and ResNet-
50 on YCbCr inputs. The full result include validation top-1 and top-5 error rates and inference
frames per second (FPS). Both ResNet baselines achieve a top-5 error rate of 7.35% at an inference
speed of 208 FPS on a Titan GPU, while the best DCT network achieves it at 6.98% with 268 FPS.
We further analyze the results by dividing them into three categories, and make our conclusions in
each.

UpSampling, DownSampling, Late-Concat. In these architectures DCT coefficients are directly
connected to ResNet-50. Several of these architectures providing significant inference speed-up (three
far-right dots in Fig. 1d), almost ×2 in the best case. The speedup is due to less computation as a
consequence of reduced ResNet blocks. A sharp increase of error with DownSampling suggests that a
reduction in the spatial structure of the Y (luma) causes a reduction of information, while maintaining
its spatial resolution (as in UpSampling and Late-Concat) performs closer to the baseline.

UpSampling-RFA, Late-Concat-RFA the two best architectures above are extended to slowly
increase theirR, so as to mimic theR growth of ResNet-50. They are shown to achieve better error
rates than their non-RFA counterparts while still providing an average speed-up of ×1.3. With the
proper RFA adjustments in architecture, these two versions manage to beat the RGB baseline.

Deconvolution-RFA, Late-Concat-RFA-Thinner In this category we attempt to further improve
the RFA architectures, by (1) learning the upsampling operation with Deconvolution-RFA, and (2)
reducing the number of channels with Late-Concat-RFA-Thinner. On the one hand Deconvolution-
RFA reduces the top-5 error rate of UpSampling-RFA by 0.15 while maintaining an equivalent
inference speed. On the other hand, Late-Concat-RFA-Thinner achieves error rates on par with the
baseline while providing a speed-up ratio of ×1.77.

RGB NETWORK CONTROLS — For a fair comparison, we make control networks with ar-
chitecture tweaks similar to what we did with our proposed DCT networks. We mutate the ResNet
architecture slightly to get it to perform with lower error and/or higher speed. The experiments and
observations are summarized below.

Reducing the Number of Layers. We remove the Identity blocks one at a time, from the bottom up,
from Blocks 2 and 3, resulting in 6 experiments as 6 layers are removed. We can see the trade-off
between the inference speed and accuracy in Fig. 1d under the legend “Baseline, Remove ID Blocks”
(series of 6 gray squares). As can be seen, networks become slightly faster but at a large reduction in
accuracy.

Reducing the Number of Channels. We also investigate thinning the network to speed up inference.
We reduce layer width by each of three ratios: {1.1,

√
2, 2}. The same trade-off between speed and

accuracy is shown in Fig. 1d under the legend “Reduced # of Channels”. As with reducing the number
of layers, networks become slightly faster but at a large reduction in accuracy.

Learning the DCT Transform. A final set of four experiments — shown in Fig. 1d as four
“YCbCr pixels, DCT layer” diamonds — addresses whether we can obtain similar benefit to the
DCT architectures but starting from RGB pixels by processing RGB pixels using convolutional
layers designed to replicate, exactly or approximately, the DCT transform. We use 8×8 filters
with stride 8. In DCT-Learn, we randomly initialize filters and train them in the standard way. In
DCT-Ortho, we regularize the convolution weights toward orthonormality, as described in Brock
et al. (2017), inspired by the orthonormality of the DCT transform. In DCT-Frozen, we use the exact
DCT coefficients without training, and in DCT-Frozenx2 we modify the stride to be 4 instead of 8 to
increase representation size at that layer and allow filters to overlap. Surprisingly, this network tied
the performance (6.98%) of the best other approach when averaged over three runs, though without
the speedup of the Deconvolution-RFA approach. This is interesting because it departs from network
design rules of thumb currently in vogue: first layer filters are large instead of small, hard-coded
instead of learned, run on YCbCr space instead of RGB, and process channels depthwise (separately)
instead of together. Future work could perhaps evaluate to what extent we consider adopting some of
these choices as standard practice.

3



Workshop track - ICLR 2018

REFERENCES

Andrew Brock, Theodore Lim, JM Ritchie, and Nick Weston. Neural photo editing with introspective
adversarial networks. In 5th International Conference on Learning Representations, Toulon,
France, 2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pp. 248–255. IEEE, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems 25, pp. 1106–1114, 2012.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing Atari with Deep Reinforcement Learning. ArXiv e-prints, December 2013.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information processing systems,
pp. 91–99, 2015.

Alex Sergeev and Mike Del Balso. Meet Horovod: Uber’s open source distributed deep learning
framework for TensorFlow, 2017. URL https://eng.uber.com/horovod/.

4

https://eng.uber.com/horovod/

	Introduction
	Designing CNN models for DCT input
	Results and Discussions

