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Abstract

Information of time differentiation is extremely important
cue for a motion representation. We have applied first-order
differential velocity from a positional information, more-
over we believe that second-order differential acceleration
is also a significant feature in a motion representation. How-
ever, an acceleration image based on a typical optical flow
includes motion noises. We have not employed the acceler-
ation image because the noises are too strong to catch an ef-
fective motion feature in an image sequence. On one hand,
the recent convolutional neural networks (CNN) are robust
against input noises.

In this paper, we employ acceleration-stream in addition
to the spatial- and temporal-stream based on the two-stream
CNN. We clearly show the effectiveness of adding the ac-
celeration stream to the two-stream CNN.

1 Introduction

Highly discriminative motion representation is needed in
the fields of action recognition, event recognition, and video
understanding. Space-time interest points (STIP) that cap-
ture temporal keypoints are a giant step toward solving vi-
sual motion representation. An improvement over STIP is
the so-called dense trajectories (DT) proposed by Wang et
al. [20]. The simple purpose of DT is to have denser sam-
pling and more various descriptors than STIP. In 2013, DT
was improved by three techniques, namely, camera mo-
tion estimation with SURF, Fisher vector representation,
and detection-based noise canceling [21]. The powerful
framework of DT or improved DT (DT/IDT) has been cited
in numerous papers as of 2016. However, the success of
convolutional neural networks (CNN) cannot be ignored
in image-based recognition. We project motion informa-
tion into images in order to implement the CNN archi-
tecture for motion representation. The two-stream CNN
is a noteworthy algorithm to capture the temporal fea-
tures in an image sequence [18]. The integration of spa-
tial and temporal streams allows us to effectively enhance
motion representation. We obtain significant knowledge
about the spatial information, which helps the temporal fea-

ture. The strongest approach introduced is the crosspoint
of the IDT and the two-stream CNN. Trajectory-pooled
deep-convolutional descriptors (TDD) [22] have achieved
the highest performance in several benchmarks, such as
UCF101 [19] (91.5%) and HMDB51 (65.9%) [11]. A
more recent performance was demonstrated in the Activ-
ityNet challenge in conjunction with CVPR2016. At this
performance, the TDD-based approach surprisingly accom-
plished a 93.2% mAP (94.2% on UCF101 and 69.4% on
HMDB51).

However, the current approaches heavily rely on the two-
stream architecture. To improve motion-based features, we
must employ the acceleration stream for richer image rep-
resentation. In physics, acceleration is the change rate of
speed with respect to time. Here, acceleration images are
able to extract a precise feature from an image sequence.

In this paper, we propose the simple technique of us-
ing “acceleration images” to represent a change of a flow
image. The acceleration images must be significant be-
cause the representation is different from position (RGB)
and speed (flow) images. We apply two-stream CNN [18]
as the baseline; then, we employ an acceleration stream, in
addition to the spatial and the temporal streams. The ac-
celeration images are generated by differential calculations
from a sequence of flow images. Although the sparse rep-
resentation tends to be noisy data (see Figure 1), automatic
feature learning with CNN can significantly pick up a nec-
essary feature in the acceleration images. We carry out ex-
periments on traffic data in the NTSEL dataset [7].

2 Related work

Space-time interest points (STIP) have been a primary focus
in action recognition [13]. In STIP, timet space is added to
thex, y spatial domain. Improvements of STIP have been
reported in several papers, such as [14], [15], [3]. However,
the significant approach is arguably the dense trajectories
approach (DT) [20]. The DT is describes the trajectories
that track densely sampled feature points. Descriptors are
applied to the densely captured trajectories by histograms
of oriented gradients (HOG) [1], histograms of optical flow
(HOF) [14], and motion boundary histograms (MBH) [2].
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Figure 1: Image representation of RGB (I), flow (I
′

), and acceleration (I
′′

).

Dense sampling approaches for activity recognition were
also proposed in [6, 8, 21] after the introduction of the first
DT. These studies incremented DT, for example, by elim-
inating extra flow [6] and integrating a higher-order de-
scriptor into the conventional features for fine-grained ac-
tion recognition [8]. Additionally, Wanget al. proposed an
IDT [21] by executing camera motion estimation, cancel-
ing detection-based noise, and adding a Fisher vector [16].
More recent work has reported state-of-the-art performance
achieved with the concatenation of CNN features and IDT
in the THUMOS Challenge [4, 5, 25]. Jainet al. em-
ployed a per-frame CNN feature from layers 6, 7, and
8 with AlexNet [10]. Zhuet al. [25] extended both the
representations with multi-scale temporal sampling in the
IDT [12] and video representations in the CNN feature [24].
The combination of IDT and CNN synergistically improves
recognition performance.

Recently, CNN features with temporal representations
have been proposed [18, 17, 22]. Ryooet al. clearly
bested IDT+CNN with their pooled time series (PoT) that
continuously accumulates frame differences between two
frames [17]. The feature is simple but effective for grasping
continuous action sequences. The feature type that should
be implemented, however, is one that improves the repre-
sentation so that it adequately fits the transitional action
recognition. It is difficult to achieve short-term predic-
tion by using the PoT, because it describes features from a
whole image sequence. Kataoka proposed a subtle motion
descriptor (SMD) to represent sensitive motion in spatio-
temporal human actions [9]. The SMD enhances the zero-
around temporal pooled feature. Two-stream CNN is a
well-organized algorithm that captures the temporal feature
in an image sequence [18]. The integration of the spatial
and the temporal streams allows us to effectively enhance
the motion representation. We can obtain significant knowl-
edge about how spatial information helps the temporal fea-

ture. Moreover, the strongest approach introduced is at the
crosspoint of the IDT and two-stream CNN. TDDs have
achieved the highest performance in several benchmarks,
such as UCF101 (91.5%) and HMDB51 (65.9%) [22].

3 Acceleration images into two-
stream CNN

Acceleration images. The placement of acceleration im-
ages is shown in Figure 1. The acceleration imageI

′′

is
a second-order differential from a position imageI that is
RGB input. The acceleration imageI

′′

is shown below:

I
′′

x = I ′(i + 1, j)− I ′(i, j) (1)

I
′′

y = I ′(i, j + 1)− I ′(i, j) (2)

where i and j are elements ofx and y. I ′ indicates a
flow image that is calculated with optical flow displacement
(d) [18]:

I
′

x = dx(u, v) (3)

I
′

y = dy(u, v) (4)

where (u, v) is an arbitrary point. The accel-
eration and flow images are stacked 10 frames
in a row as (I

′′

x1, I
′′

y1, I
′′

x2, I
′′

y2, ..., I
′′

x10, I
′′

y10) and

(I
′

x1, I
′

y1, I
′

x2, I
′

y2, ..., I
′

x10, I
′

y10) [18].
We implement VGGNet, which is supported by Limin

Wang [23]. We integrate the acceleration stream on the two-
stream CNN, in addition to the spatial and temporal streams
as follows:

f = fspa + αftem + βfacc (5)

wheref indicates the softmax function, andspa, tem, and
acc correspond to the spatial, temporal, and acceleration
streams, respectively.α (= 2.0) andβ (= 2.0) are weighted
parameters.
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Figure 2: NTSEL dataset.

CNN training. The learning procedure of the spatial and
the temporal streams is based on [23]. We employ a tempo-
ral net as a pre-trained model, because the 20-channel input
and image values are very similar. The initial learning rate
is set as 0.001 and updating is x0.1 for every 10,000 iter-
ations. The learning of the acceleration stream terminates
at 50,000 iterations. We assign a high dropout ratio in all
fully connected (fc) layers. We set 0.9 (first fc layer) and
0.9 (second fc layer) for the acceleration stream.

4 Experiment

NTSEL dataset (NTSEL) [7] (Figure 2). The dataset
contains near-miss events captured by a vehicle. We fo-
cused on a pedestrian’s gradual changeswalking straight,
turning, which is a fine-grained activity on real roads. The
four activities arewalking, turning, crossing, andriding a
bicycle. The dataset has 100 videos of pedestrian actions.
Each of the four actions has 25 videos: 15 videos for train-
ing and the other 10 videos for testing. A difficulty of the
dataset is to divide walking activities (e.g.,walking, turn-
ing, crossing) with similar appearances from the image se-
quence. Primitive motion understanding is beneficial to the
dataset.

Results. The results are shown in Table 1. The perfor-
mance rate is based on per-video calculations. The video
recognition system outputs an action label for each video.

Approach % on NTSEL

Spatial stream 87.5
Temporal stream 77.5
Acceleration stream 82.5
Two streams (S+T) [23] 87.5
Three stream (S+T+A; ours) 90.0

Table 1: Performance rate of three-stream architecture
(spatial + temporal + acceleration; S+T+A) and other ap-
proaches on the NTSEL dataset.

Our proposed algorithm that adds the acceleration stream
significantly outperforms the two-stream CNN with an in-
crease of 2.5% on the NTSEL dataset. The correct recog-
nitions of the spatial, temporal, and acceleration streams
are 87.5%, 77.5%, and 82.5%, respectively. Surprisingly,
the acceleration stream performs better than the temporal
stream. The acceleration stream effectively recognizes the
movement of acceleration in the traffic data. We confirmed
that the motion feature of acceleration in an image sequence
improves video recognition. Although the knowledge is
based on position, speed, and acceleration in physics, we
proved the existence of acceleration in the video motion.
Moreover, we believe that the CNN processing automati-
cally selected the dominant feature from the acceleration
stream.
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5 Conclusion

In this paper, we propose the definition of acceleration im-
ages that represent a change of a flow image. The acceler-
ation stream is employed as an additional stream to a two-
stream CNN. The process of the two-stream CNN picks up
a necessary feature in the acceleration images with an auto-
matic feature mechanism. Surprisingly, the motion recogni-
tion with the acceleration stream is better than recognition
with the temporal stream.

Our future work is to iteratively differentiate the acceler-
ation images to extract more detailed motions. In particular,
we hope to capture more refined features in human motion.
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