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ABSTRACT

Database information may be disclosed in a variety of ways depending on the
sensitivity of the stored information and the recipient’s need to know. Tradition-
ally, researchers have been concerned with preventing a recipient of the infor-
mation from associating sensitive information (e.g., a disease) with specific indi-
viduals. However, other concerns may apply. For example, within an enterprise
(Domingo-Ferrer et al., 2016), certain test results may be considered sensitive and
should be only be openly disclosed to divisions concerned with these results. On
the other hand, disclosing as much information as possible may also be in the
enterprise’s interest as it is not always clear what information may actually be
useful to a division. We propose a mechanism that allows a discloser to exer-
cise fine control over what is being disclosed and allowing disclosing information
indirectly rather than directly. The mechanism is based on word embedding, a
technique from Natural Language processing (NLP) in which each word is asso-
ciated with a low dimensional (say, 200) vector of real numbers. These vectors are
constructed so as to capture the meaning of the associated words. In disclosing
vectors constructed based on sensitive information, rather than the information
itself, we achieve degrees of disclosures’.

1 A QUICK INTRODUCTION TO WORD EMBEDDING

There are a few mechanisms for obtaining a vector representation of words in a language, called
language, or word, embedding (Bengio et al., 2003). Such mechanismc use Neural Networks (NNs)
(Bengio et al., 2003), log-linear classifiers (Mikolov et al., 2013a) and various matrix formula-
tions (Levy & Goldberg, 2014).For example, a popular method is word2vec (Mikolov, 2013) that
produces vectors that appear to capture syntactic as well semantic properties of words (Mikolov
et al., 2013c;b). The exact mechanism employed by word2vec and suggestions for alternatives are
the subject of current research (Goldberg & Levy, 2014; Pennington et al., 2014). However, word
embedding may be applied to sequences other than natural language sentences, for example, the
work of (Socher et al., 2013) explores capturing image semantics with word embedding.

2 APPLYING WORD EMBEDDING TO RELATIONAL DATABASES

In (Bordawekar & Shmueli, 2017), a whole relation in a relational database may be converted into
text (a process called textification), one tuple (record, row) at a time. As relational database columns
are associated with a variety of data types (e.g., numeric,string, date, text) textification is a non-
trivial process. However, once textification is done, each database token is associated with a vector
capturing its meaning. This allows a whole new class of queries, called Cognitive intelligence (CI)
queries that may be realized within standard SQL via user-defined functions (UDFs) (Bordawekar
et al., 2017). CI queries operate both at the standard relational level as well as within a latent
information level that exposes intra and inter-column hidden connections.

∗Work done while the author was visiting IBM Research.
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3 DEGREES OF INFORMATION DISCLOSURE

Consider a single relational database relation R with five columns: A, B, C, D and E. Further, assume
its first column, A, contains the primary key, a string that is unique for each relation tuple (record,
row). In disclosing R to a recipient we identify the following stages:

1. Deciding which columns should be completely eliminated, say due to a very high degree
of sensitivity. In our example, we may decide to simply eliminate column E.

2. Deciding the content of which columns should be encrypted prior to producing word vec-
tors. In our example, we may decide that column B be first encrypted. This keeps equality
between equal entries in different tuples (rows) for this column, but severs identifying these
values in other columns (inter-column severance) as well as hides the true nature of the con-
tent within en encrypted column.

3. Vector construction based on texitifying R’ the modified relation R. This step associates a
vector with each token in relation R’, see Figure 1.

4. Deciding which columns of R’ are to be disclosed to the recipient. In our example, we may
decide to disclose all columns, A, B, C and (the encrypted version of) D. The recipient will
be presented with R” consisting of restricting R’ to the disclosed columns.

5. Deciding which R’’ columns are to be disclosed to recipient should be first encrypted. As-
sume that column B is encrypted prior to disclosure in our example. The vector associated
with an encrypted value is the one that was associated with the pre-encrypted value.

6. Disclosing pairs (w, v) where w is a token occurring in R” and v is the associated vector.

A B C D E

#12 C72H95ClN14O14 12 Ocean Ave. NY 56%

#57 C27H32F2N8 2 Marine Ave. CA 66%

#63 C24H31NO 13 Houston St. NY 40%

… … … … ….

Relation R

Eliminate column E, Encrypt Column D

A B C D

#12 C72H95ClN14O14 12 Ocean Ave. e100099

#57 C27H32F2N8 2 Marine Ave. e298009

#63 C24H31NO 13 Houston St. e100099

… … … …

Relation R’

Form Vectors, say using word2vec

Token v1 v2 v3 v4 v5 …. v199 v200

#12 -12.06 1.23 1.34 -2.0 -15.55 0.01 2.03

C72H95ClN14O14 45.2 1.11 1.33 -1.0 -2.9 2.3 3.5

….

e100099 -11.05 -10.02 2.22 -2.7 0.04 12.12 0.54

Vectors

Figure 1: Producing word vectors from a modified relation.

The end result is that the recipient is presented with a relation (R’’ in our example) and with each
token, its associated vectors, see Figure 2. The important point to note is that the recipient obtains
significant additional information beyond the content of R’’. The vectors, in fact, encode knowl-
edge not present in R’’ i.e, knowledge accessible through the vectors, say using CI queries. On
the other hand, decoding vectors and associating them to original relational tokens is a daunting
task. One can view a word embedding model as a one-way semantic hash from the source relational
tokens to the meaning vectors. This provides a level of information hiding that may be appropriate
to many real-life situations. For example, suppose our table is describing employees, column A
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is the employee badge number and column C records employee addresses (recall that column C is
not encrypted in R’’). While constructing vectors, the information in column C (suppose we also
encrypt column C prior to releasing R’’) is utilized in the vectors associated with the encrypted
column C values. If two addresses are identical, this is easy to detect (although the addresses them-
selves cannot be discerned). If two addresses are close (say same town and street, different number)
this information will be exposed in that their vectors are close (high cosine value). In this way,
information may be hidden but exposed to a certain degree. This goes further, if one is interested
in employees close to Joe Smith, this address information will also affect closeness of Joe Smith’s
column A vector to other employees column A vectors (along side other pieces of information in
other columns).

A B C D

#12 C72H95ClN14O14 12 Ocean Ave. e100099

#57 C27H32F2N8 2 Marine Ave. e298009

#63 C24H31NO 13 Houston St. e100099

… … … …

Relation R’

Encrypt column B

Relation R’’

A B C D

#12 e200301 12 Ocean Ave. e100099

#57 e200328 2 Marine Ave. e298009

#63 e200554 13 Houston St. e100099

… … … …

Token v1 v2 v3 v4 v5 …. v199 v200

#12 -12.06 1.23 1.34 -2.0 -15.55 0.01 2.03

e200301 45.2 1.11 1.33 -1.0 -2.9 2.3 3.5

….

e100099 -11.05 -10.02 2.22 -2.7 0.04 12.12 0.54

Associated
Vectors

Both R’’ and the 
associated vectors 
are disclosed

Figure 2: Producing word vectors from a modified relation.

4 DISCLOSING ADDITIONAL INFORMATION

The steps outlined above introduce increasing measures of information hiding: eliminating columns,
encrypting prior to vector construction, eliminating a column when disclosing and encrypting dis-
closed columns. However, there are measures that reduce information hiding. One such measure
that increases information exposure is the use of external sources, e.g., Wikipedia. During training,
we can mix the text obtained by textifying the relation with text derived from external source(s).
This way, the vectors of database tokens may encode closeness to terms that do not even appear in
the database, thereby exposing additional information. For example, suppose that relation R deals
with medical drugs. The word toxic may not appear in R. However, column B contains chemical
formulae. Certain compounds may be identified by an external source as toxic. Training on both R
and the external source may reveal closeness of a token of a column B (or A) vector. to the vector of
toxic even though toxic does not appear in R.

5 CONCLUSIONS

Degrees of disclosures presents a wide range of possibilities for effective and measured disclosure.
We plan to formally quantify these degrees and reason about their merits.
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