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Abstract

Optical coherence tomography (OCT) is an important method for visualization
and quantification of intra-retinal layers. OCT-derived measures of retinal layers
support investigating the role of afferent visual pathway degeneration in neurode-
generative diseases like multiple sclerosis (MS). Therefore, accurate, robust and
repeatable segmentation of retinal layers is of interest in such applications. In this
paper, a novel 3D fully convolutional deep architecture is proposed for automated
segmentation of retinal layers. For this purpose, 3D convolutions explore spatial
and inter-frame dimensions to extract features. The proposed network uses a set of
convolution and subsampling layers in an alternating fashion to learn a hierarchy
of shrinking 3D feature maps (encoder stage). The encoder is then followed by
multiple convolution and upsampling blocks enlarging the feature map to the size
of original input image for semantic segmentation (decoder stage). The proposed
framework was validated on 3D OCT scans of healthy subjects captured by a
Topcon 3D OCT device. We contrast the ensemble results with the Deep-Net-2D
and Graph-DP methods and observe a significant increase of 6% in the Dice metric
for two layers and consistent improvements across the retinal layers. Despite the
strategies used for dealing with the class imbalance, contour error values are rather
inferior for two layers, but still promising for most of the classes. The results are
promising for further application of the approach in neurodegenerative diseases.

1 Introduction

Optical coherence tomography (OCT) is able to provide high resolution visualization and quan-
tification of intra-retinal layers by low coherence interferometry. In neurodegenerative diseases
like multiple sclerosis (MS), OCT is potent to provide information both during initial diagnosis
and monitoring of the disease (1). In this context, segmentation of intra-retinal layers with high
accuracy and repeatablity will be quintessential to allow clinical usability. Several previous works
have been proposing different approaches for reaching this goal. Conventional segmentation methods
are based on a models as prior constraints like (2). In segmentation methods based on artificial
intelligence, representative features are extracted to train a classifier, e.g. support vector machines or
neural networks, to localize the boundaries. Deep learning methods and i.e. the convolutional neural



network (CNN) , one of its most established realizations, have recently gained increasing interest
from various research fields (3). Segmentation of OCT retinal images using deep learning is a new
field in medical imaging communities.

Semantic segmentation using deep learning methods is already investigated in methods like (fully
convolutional networks (FCN) fine-tuned for segmentation), (encoder-decoder based architecture)
, and (U-Net).Recent works in retinal layer segmentation combine the probabilistic predictions of
CNN model with a graph search method and a pure end-to-end CNN framework is introduced in (4).

However, the 3D intrinsic information in OCT is ignored in most of the mentioned deep learning
based methods despite of being very popular in graph-based approaches. In this paper we propose a
3D deep learning based end-to-end learning framework for segmentation of multiple retinal layers
in OCT images. Experimental results on normal datasets show high accuracy and reliability, which
makes it a potent candidate to be used in clinical applications in the context of neurodegenerative
disorders.

2 Proposed segmentation method

LetV ={(n,m,l),n=1,...,Nym=1,...,M,l =1,..., L} be a3D volume of locations/voxels,
on which observed OCT B-scans and their segmentations, are defined. A segmentation solution is a
partition of V into K exhaustive and mutually exclusive regions. In the sequel, it will be convenient
to represent each partition by a label b in the label set B = {by,...,bx_1}, and treat the OCT
segmentation problem as a K = 9 class classification. The tissue classes include 7 retinal layers, RaR
and RbR regions as upper and lower non of interest regions.The layers have the following anatomical
correspondence: The Inner Limiting Membrance (ILM), Nerve Fiber Layer to Inner Plexiform Layer
(NFL-IFL), Inner Nuclear Layer (INL), Outer Plexiform Layer (OPL), Outer Nuclear Layer to Inner
Segment Myeloid (ONL-ISM), Inner Segment Ellipsoid (ISE) and Outer Segment to Retinal Pigment
Epithelium (OS-RPE).

The proposed 3D deep network is constructed by stacking the encoder, decoder, and classification
blocks. The encoder block learns a hierarchy of shrinking 3D feature maps. The decoder block
enlarges the feature maps to the size of original input image for semantic segmentation. The
skip architecture of the network leverage the short-cuts across encoder and decoder to connect the
intermittent feature maps with the same dimension from encoder to their corresponding in decoder
through concatenation layers. These skip layers combine coarse and semantic information with fine
and appearance information. The convolution kernels for all the encoder blocks are 3 dimensional
with cubic size 7 x 3 x 2 to ensure that the receptive field at the last encoder block covers the
whole retinal region. Finally, a convolutional layer with 1 x 1 x 1 kernels is employed to map its
input channels (feature maps) to 9 channels corresponding to 9 classes. At the end, a softmax layer
estimates the probability of a voxel belonging to each of the 9 classes.

Cross entropy can be used as a measure of dissimilarity between the predicted probability of voxel ¢
to belong to class b, p? and one-hot encoded true label ¢°. The cost function is then computed by
taking the average of all cross-entropies in the OCT volume. In the experiments, the underrepresented
retinal classes are rescaled by an empirically selected weight w = 5.

3 Experimental Results

The proposed framework was evaluated on the Isfahan publicly available data set from the Oph-
thalmology Dept. of Feiz Hospital, Isfahan, Iran. The data set consists of 13 normal 3D macular
(spectral domain) SD OCT images from 13 subjects with normal eyes. Ten B-scans per subject were
randomly selected and annotated for the retinal layers by an expert clinician. The performance of
the proposed 3D method is evaluated against two state-of-the-art retinal OCT layer segmentation
algorithms, one using graph-based dynamic programming (Graph-DP)(5) and the other a 2D deep
retinal layer segmentation network (Deep-Net-2D)(4).

All the networks were run up to convergence. The experiments were run on a workstation with Intel
Xeon CPU, one 11 GB Nvidia GTX 1080 Ti GPU and 32 GB RAM.



Table 1: Results of 8-Fold cross validation on 8 patients and ensemble performance of 8 models on
rest two patients.

RaR | ILM | NFL-IPL | INL | OPL | ONL-ISM | ISE | OS-RPE | RbR
s
A | Deep-Net-3D (ensemble) | 0.95 | 0.90 0.92 0.83 | 0.84 0.92 0.91 0.90 0.96
Deep-Net-3D (single) 0.92 | 0.85 0.90 0.78 | 0.79 0.89 0.88 0.86 0.93
Deep-Net-2D) 0.88 | 0.83 0.88 0.75 | 0.79 0.83 0.81 0.83 0.91
Graph-DP(5) - 0.83 0.86 0.71 | 0.74 0.84 - - -
8 Deep-Net-3D (ensemble) - 1.08 1.41 1.48 | 1.66 1.84 0.98 1.01 -
Deep-Net-3D (single) - 1.11 1.51 1.56 | 1.68 1.91 1.03 1.14 -
Deep-Net-2D) - 1.12 1.59 1.71 | 1.73 1.91 1.07 1.21 -
Graph-DP(5) - 1.14 1.62 1.68 | 1.72 1.95 - 1.27 -
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Figure 1: Performance visualization of the methods.

Subjects 1-8 are considered as the training set, and subjects 9-13 are used for the testing phase. A
qualitative comparison of the proposed 3D method in contrast with the two comparative methods is
presented in Fig. [1]
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Conclusion

The presented results demonstrated the potential of the proposed method by superior performance on
current methods, which makes it a good candidate for accurate segmentation of macular 3D OCTs in
neurodegenerative cases. Reliability analysis and further validation will be now performed in a larger
data set also containing images from other devices.
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