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ABSTRACT

Automated laboratories analyze thousands of blood tests every day. Some sam-
ples can become contaminated by improper collection, producing incorrect re-
sults. Identification of such samples is critical and requires a labor intensive ex-
pert review. In our previous work, we demonstrated a useful machine learning
approach to automated detection, but a severe class imbalance in the dataset led to
unstable results. Using a modified data augmentation strategy and an attentional
neural architecture, we show significant improvement over previously published
methods in all binary classification metrics, with an absolute F1-score improve-
ment of 13%. This work represents the state-of-the-art in automated contami-
nation detection and demonstrates that a machine learning pipeline based on our
neural architecture can perform on par with human experts.

1 INTRODUCTION

A recent study from Najat (2017) at the Sulaimani diagnostic labs in Iraqi Kurdistan showed 70%
of blood testing errors occur before the samples ever reach a laboratory. In particular, errors due to
contamination are common and can be difficult to detect, as the severity of the contamination can
vary drastically depending on its source. This can put patients at unnecessary risk of harm (Sharratt
et al., 2009). Laboratory physicians can be trained to identify these contaminations manually from
test results, but the volume of tests per day make it infeasible to do so for labs with automated
chemistry systems. Of the methods that have been proposed to detect contaminated blood tests
automatically, a rules-based approach has been most prevalent, while a machine learning approach
has shown the most promise.

1.1 RELATED WORK

Labs often use a rule-based algorithm for determining whether a blood test has been significantly
skewed by a contamination. Although this class of algorithms is easily implemented, they generally
perform poorly with respect to recall in this setting, which we experimentally validate by using a
rules-based algorithm based on published guidelines (Hernandez, 2011) as a benchmark in Section
3.

Learning algorithms have recently been applied to this problem in Baron et al. (2012) and Mancuso
et al. (2017). Baron et al. used the CART decision tree algorithm for classification. By using CART,
the authors extend the rules-based method to include rules learned from data algorithmically. Their
feature set included the eight analytes of the basic metabolic panel and a 30-day mean glucose
measurement. They achieve reasonable performance with a small dataset (‘above 80%’ sensitivity
and specificity), but the requirement of 30 day mean glucose feature makes this infeasible for general
patient populations. Without this feature, the CART approach was not successful for them. We
evaluate a similar CART-based decision tree to establish how these results scale to our larger dataset
in Section 3.

While this work seems to suggest that the mean glucose over time feature is critical for classifying
contaminated basic metabolic panels, Mancuso et al. (2017) shows that their result is most likely due
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Algorithm 1 Data augmentation for binary classification
Given: training set D = {(xi, yi)|xi ∈ X, yi ∈ Y }, number of mixture model components k,
modelM
Let Xpos = {xi|yi = 1} and Xneg = {xi|yi = 0}.
Fit mixture model pk(x|θ) on Z ∈ {Xpos, Xneg} such that |Z| = min(|Xpos|, |Xneg|).
Draw abs(|Xneg| − |Xpos|) samples from pk(x|θ); label according to choice of Z to form D+.
Let D = D ∪D+.
TrainM on D.
ReturnM

to limited training data. In this work, we evaluated four separate algorithms using a dataset with two
orders of magnitude more samples, of which 194 had been previously identified as contaminated
by clinical judgment of physicians. We reported 86.4% sensitivity and 99.9% specificity using a
random forest classifier, however steps were not taken to account for the extreme class imbalance
in the training set (p = 1.39%). In particular, the results for the random forest sensitivity (86.4%)
could not be reproduced reliably and in a stable manner. Additionally, we used the synthetic dataset
only to demonstrate the scalability of our approach at the time.

2 METHODS

2.1 DATA

The total dataset consisted of 13,945 test results collected at the Robert J. Tomsich Pathology and
Laboratory Medicine Institute of the Cleveland Clinic.1 Of these samples, 194 were labeled as
contaminated (p = 1.39%) by a team of laboratory experts from the Insitute. The dataset was
randomly split into training, validation, and test sets. All models were fit on an augmented version
of the training set, with hyperparameter selection based on validation set performance and final
performance measured on the test set.

2.2 MODELING

In this work, we use a data augmentation strategy that allows for stronger conclusions to be drawn
and markedly improves model performance. Specifically, we train a Bayesian mixture model2 with
Gaussian components on contaminated samples, then sample from the mixture model to even out
the class imbalance in the training set. Our exact procedure for data augmentation can be found in
Algorithm 1.

We evaluate the approaches mentioned in section 1.1 as baselines under this data augmentation
strategy, and then design an updated neural architecture. Included in this architecture is a soft
attention mechanism applied to the input layer, allowing physicians some insight into how the model
is attending to each analyte to determine contamination status. Hyperparameters for the neural
network were tuned manually, while Bayesian optimization was used to find hyperparameters for
each of the other learning algorithms.

3 RESULTS

Table 1 shows an evaluation of our model relative to previous work. All results are reported on
the same held-out test set, which contained no synthetic data. All models were trained using the
augmented training set described in Section 2.1 and Algorithm 1 to allow for a faithful comparison.
In particular, the validation and test sets contained no synthetic data, and each model used the same
validation and test set.

1This is the same dataset used in Mancuso et al. (2017), prepared in a manner compliant with HIPAA
regulation.

2We also trained a standard mixture model, but its performance was much weaker due to the limited number
of contaminated samples in our training set (n = 149).
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Table 1: Best performing models (by F1 score).

Algorithm F1 Score Precision Recall Specificity
Published Guidelines 0.2372 0.4666 0.1590 0.9971
CART 0.6461 0.9545 0.4884 0.9841
Random forest 0.8076 0.9545 0.7 0.9935
Attention network 0.9333 0.9130 0.9545 0.9986

Table 2: Confidence intervals at 95% confidence. Computed over 80 random seeds for random
forest, 30 seeds for attention network.

Algorithm F1 Score Precision Recall Specificity
Random forest (.776, .783) (.959, .965) (.651, .660) (.991, .992)
Attention network (.868, .892) (.797, .838) (.954, .958) (.996, .997)

In general, we find that our data augmentation strategy significantly improves results across all
models. Our decision tree baseline performs significantly better than its predecessor in Baron et al.
(2012), demonstrating that their 30-day mean glucose feature is not strictly necessary. The random
forest baseline from Mancuso et al. (2017) also shows a marked improvement in stability as shown
by the confidence intervals above. Our neural approach outperforms all previously proposed models
when they are evaluated under similar conditions, with an absolute F1 score improvement from 80%
to 93% over previous state-of-the-art approaches.

4 DISCUSSION

Our results demonstrate a clear need for improvement in how automated blood test contamination
detection is currently performed in laboratories around the world. Detection with rules coming from
published guidelines are incapable of performing adequately in this context. They are required to
minimize false positives due to domain-specific requirements in laboratories, but are not sophisti-
cated enough to do so without missing a large majority of contaminated samples. In contrast, learned
algorithms offer a clear advantage when a few logistical concerns are dealt with – in particular, when
the strong class imbalance is overcome and when a reasonable amount of data is available.

Additionally, the attention network allows for interpretability through visualization of the attention
weights (see 4). The random forest afforded some interpretability through variable importance, but
variable importance scores are not sample-specific. The attentional mechanism allows for case-by-
case insight into the model’s decisions, which is critical in a clinical setting.

Figure 1: Attention weights for a single contaminated sample.
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