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ABSTRACT

Neural text generation models such as recurrent networks are typically trained by
maximizing data log-likelihood based on cross entropy. Such training objective
shows a discrepancy from test criteria like the BLEU metric. Recent work opti-
mizes expected BLEU under the model distribution using policy gradient, while
such algorithm can suffer from high variance and become impractical. In this
paper, we propose a new Differentiable Expected BLEU (DEBLEU) objective
that permits direct optimization of neural generation models with gradient descent.
We leverage the decomposability and sparsity of BLEU, and reformulate it with
moderate approximations, making the evaluation of the objective and its gradient
efficient, comparable to common cross-entropy loss. We further devise a simple
training procedure with ground-truth masking and annealing for stable optimization.
Experiments on neural machine translation and image captioning show our method
significantly improves over both cross-entropy and policy gradient training.

1 INTRODUCTION

Text generation includes a broad set of natural language processing (NLP) tasks, such as machine
translation (Sutskever et al., 2014; Bahdanau et al., 2014), dialog (Serban et al., 2016; Bordes et al.,
2016), image captioning (Karpathy & Fei-Fei, 2015; Vinyals et al., 2015), and others. Recent years
have seen great advances in the field, especially with the use of modern neural network models, e.g.,
sequence-to-sequence for neural machine translation (Sutskever et al., 2014), and efficient training
with gradient back-propagation. A text generation system is usually evaluated with certain measures.
BLEU score (Papineni et al., 2002) is one of the most widely-used metrics. On the other hand,
however, the dominant training objective for the models is to maximize the data log-likelihood (e.g.,
based on the cross-entropy loss), resulting in a discrepancy between the training and test criteria.

The BLEU metric is non-differentiable, and hence disables direct gradient descent optimization.
Previous efforts have been made attempting to address the issue. For example, Ranzato et al. (2015)
use the policy gradient (Sutton et al., 2000) with BLEU as the reward. The algorithm maximizes the
expected BLEU score under the model distribution. However, such reinforcement learning approach
is known to be difficult for training due to exceedingly high variance and poor exploration efficiency.
Recent work (Casas et al., 2018; Zhukov & Kretov, 2017) made preliminary attempts to develop
differentiable approximations of BLEU for neural model training, but only studied on toy tasks or
obtained negative results. Earlier literature (Rosti et al., 2011; He & Deng, 2012; Pauls et al., 2009;
Smith & Eisner, 2006) has developed differentiable variants of BLEU designed for statistical machine
translation, which are not directly applicable to neural text generation.

In this paper, we develop a new differentiable BLEU objective that is end-to-end trainable with
gradient descent for neural generation models. Specifically, starting from the conventional expected
BLEU objective, we reformulate it with moderate approximations, and leverage the sparsity of BLEU
scores to enable efficient evaluation of the resulting new objective and its gradient w.r.t. model
parameters. The computational complexity is comparable to the common cross-entropy loss. No
sampling from the huge sequence space nor cumbersome policy gradient is needed. For stable
and efficient optimization, we further devise a training procedure for the objective with simple
ground-truth masking and annealing.
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We evaluate the proposed method in the tasks of neural machine translation and image captioning,
and obtained significantly improved performance and more stable convergence compared to the
commonly used cross-entropy training and policy gradient.

2 RELATED WORK

Text generation using deep neural models such as recurrent neural networks (Sutskever et al., 2014;
Mikolov et al., 2010) has achieved great progress in many concrete tasks like machine transla-
tion (Bahdanau et al., 2014; Vaswani et al., 2017). However, these models are typically trained with
the maximum-likelihood objective for convenience, which can lead to sub-optimal performance due
to the discrepancy between the training objective and the test metrics such as BLEU. Many works
resort to reinforcement learning for direct optimization of the non-differentiable evaluation metrics.
For example, Ranzato et al. (2015); Rennie et al. (2017); Liu et al. (2017); Shen et al. (2015); Smith
& Eisner (2006) propose to use policy gradient or minimum risk training to optimize the expected
BLEU score. A variety of training tricks are used to reduce variance and stabilize the learning.

Another line of research aims to close the discrepancy by making BLEU score differentiable. Our
work falls into this category. In the modern neural text generation context, Zhukov & Kretov (2017);
Casas et al. (2018) made the initial attempts to develop differentiable BLEU objectives. The key idea
is to make soft approximations to the count of n-gram matching in the original BLEU formulation.
However, their derivations are preliminary, and only toy or negative results are obtained. Our new
formulation uses a couple of similar approximations or assumptions. We provide clear intuitions
of leveraging the sparsity of BLEU score, and decompose the goal into multiple derivation steps.
Along with the devised training procedure, to the best of our knowledge, we are the first to develop
end-to-end gradient descent BLEU training for neural models, which is highly practical and achieves
greatly improved results. Earlier work has proposed differentiable BLEU objectives in the context of
statistical machine translation (Rosti et al., 2011; He & Deng, 2012; Pauls et al., 2009). For example,
Rosti et al. (2011) adapts expected BLEU on confusion networks to train the weights of different
features. Their context differs from the neural generation setting (e.g., they do not make differentiable
approximations to the n-gram count) and is not directly applicable for neural model training.

3 DIFFERENTIABLE EXPECTED BLEU

3.1 BACKGROUND

We first establish notations for the sequence generation setting. Let y = (y1, . . . , yT ) be a candidate
sequence generated by a model pθ(y) with parameter θ. Let y∗ = (y∗1 , . . . , y

∗
T∗) be a reference

sequence (i.e., ground truth). Here T and T ∗ are the lengths of y and y∗, respectively. Further define
ya:b = (ya, . . . , yb−1) as a sub-sequence of y that starts from index a and ends at index b− 1, which
is of length b− a. Let y¬a:b be the remaining tokens in y excluding ya:b. The goal is to optimize the
model parameter θ so that the resulting samples have the maximum BLEU score against reference
sequences.

The BLEU Metric

Let us first take a review of the BLEU metric proposed in (Papineni et al., 2002) which evaluates
the overlap of y against y∗. Specifically, BLEU is defined as a weighted geometric mean of n-gram
precisions:

BLEU = BP · exp
(∑N

n=1
wn log precn

)
(1)

where BP is a brevity penalty depending on the lengths of y and y∗; N is the maximum n-gram
order (typically N = 4); {wn} are the weights which usually take 1/N ; and precn is the n-gram
precision defined as:

precn =

∑
s∈gramn(y) min

(
C(s,y), C(s,y∗)

)∑
s∈gramn(y) C(s,y)

(2)

where gramn(y) is the set of unique n-gram sub-sequences of y; and C(s,y) is the number of times
a gram s occurs in y.
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The conventional formulation above enumerates over unique n-grams in y. However, for the
derivations in the sequel, it is more convenient to enumerate over token indexes. To this end, for each
n-gram of y starting from index i, namely, yi:i+n, we re-write the count C(yi:i+n, ·) as follows:

C(yi:i+n,y) =
∑T−n+1

i′=1
1[yi′:i′+n = yi:i+n] , vn,i,

C(yi:i+n,y
∗) =

∑T∗−n+1

j′=1
1[y∗j′:j′+n = yi:i+n] , v∗n,i.

(3)

Eq.(2) is then re-written with vn,i and v∗n,i as:

precn =
1

T − n+ 1

∑T−n+1

i=1
min

(
1,

v∗n,i
vn,i

)
,

1

T − n+ 1

∑T−n+1

i=1
on,i (4)

Conventional Learning Methods

As the BLEU metric is not differentiable for direct optimization, to train the model p, the simplest
algorithm is instead to maximize the data log-likelihood log p(y∗) which has a discrepancy from the
BLEU metric we aim to maximize. To address the discrepancy, a common approach is the policy
gradient algorithm (Sutton et al., 2000; Ranzato et al., 2015) that maximizes the expected BLEU:

LPG(θ) = Epθ(y) [BLEU(y,y∗)] . (5)

The above expectation is intractable due to the large space of sequences. Thus the optimization has to
resort to stochastic approximation, leading to gradient:

∇θLPG(θ) = Ey∼pθ(y) [BLEU(y,y∗) · ∇θ log pθ(y)] . (6)

However, the update is still impractical due to its exceedingly high variance, and in practice many
stabilization techniques would be required (Ranzato et al., 2015).

3.2 THE DEBLEU OBJECTIVE

Note that in the above expected BLEU objective (Eq.5) a sequence y with BLEU(y,y∗) = 0 does
not contribute to the model learning. Inspired from this, we reformulate the BLEU metric with
moderate approximations, and leverage the decomposability and sparsity of BLEU. That is: a) Based
on the definition (Eq.1), the BLEU evaluation effectively decomposes the whole sequence space into
n-gram spaces, with n up to N (=4, typically); b) Only a small set of n-gram values are effective, i.e.,
with non-zero contributions to the final BLEU score. The resulting approximated reformulation of the
expected BLEU, as well as its gradient w.r.t. θ, is directly tractable. We thus call the new objective
the differentiable expected BLEU (DEBLEU).

We now derive DEBLEU in detail. In the sequel we omit the subscript θ of pθ for notation simplicity.
Starting from the original expected BLEU objective (Eq.5) and the BLEU definition (Eq.1), we first
make a couple of approximations for tractability. Specifically, during decoding at training time, we
set the length of y to be the same of the ground truth y∗, namely T = T ∗. This assumption has also
been used in previous work (e.g., Yang et al. (2018)). The brevity penalty term BP is then independent
of y. Secondly, as in (Zhukov & Kretov, 2017), we approximate the expectation by swapping it with
other operations:

Ep(y)BLEU = Ep(y)BP ·
∏N

n=1
precwnn ≈ BP ·

∏N

n=1

(
Ep(y)precn

)wn . (7)

The approximation, though somewhat arbitrary, is necessary for efficient and tractable computation,
and we found the resulting metric still correlates well with the original BLEU, as shown in our
experiments. We optimize the right-hand side approximated objective in the following, where

Ep(y)precn =
1

T − n+ 1

∑T−n+1

i=1
Ep(y) [on,i] . (8)

Recall that (as defined in Eqs.3-4):

on,i = min

(
1,

v∗n,i
vn,i

)
, v∗n,i =

∑T∗−n+1

j′=1
1[y∗j′:j′+n = yi:i+n]. (9)

That is, for each pair (n, i), the quantity v∗n,i, and thus on,i, is non-zero only if the sub-sequence
yi:i+n occurs in the reference sequence y∗ (so that 1[y∗j′:j′+n = yi:i+n] = 1 for some j′), namely,
yi:i+n ∈ gramn(y

∗).
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∗ , 𝑗 = 1
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𝒚
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…
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∗ , 𝑗 = 8

Figure 1: An example value of yi:i+n in Eq.(10). As described in the text, effective values for yi,i+n
that can contribute to the final BLEU score are the set of n-grams in the reference y∗. Here, i = 1,
n = 2, and yi,i+n takes value of “i am” which occurs twice in y∗ (j = 1 and j = 8). The probability
p(yi,i+n = “i am”) is thus counted twice when enumerating j, and hence in Eq.(10) we divide
C(“i am”,y∗) to avoid such duplicate count.

With the key observation, for each term Ep(y)[on,i] of Eq.(8), we decompose y into yi:i+n and the
remaining y¬i:i+n1, and explicitly enumerate all effective values of yi:i+n by simply enumerating
the n-grams of y∗:

Ep(y) [on,i] = Ep(yi:i+n)Ep(y¬i:i+n) [on,i]

=
∑

s∈gramn(y∗)
p(yi:i+n = s) · Ep(y¬i:i+n) [on,i]

=
∑T∗−n+1

j=1

1

C(y∗j:j+n,y
∗)
· p(yi:i+n = y∗j:j+n) · Ep(y¬i:i+n) [on,i] .

(10)

The third equation enumerates the starting index j of n-grams in y∗, which necessitates to divide the
occurrence time of y∗j:j+n, namely C(y∗j:j+n,y

∗), to avoid duplicate count. Figure 1 illustrate an
example of enumerating j.

The only difficult part above is the last term Ep(y¬i:i+n) [on,i]. For computational tractability, we
make the following approximations:

Ep(y¬i:i+n) [on,i] = Ep(y¬i:i+n) min

(
1,

v∗n,i
vn,i

)
≈ min

(
1,Ep(y¬i:i+n)

v∗n,i
vn,i

)
≈ min

(
1,

v∗n,i
Ep(y¬i:i+n)vn,i

)
,

(11)

where the first equation is by definition of on,i (Eq.9); the first approximation is due to the exchange
of the expectation operation with the min(·, ·) function; and the second approximation stems from
applying the expectation directly to the denominator. Note that the numerator v∗n,t is independent
of y¬i:i+n: by the definition in Eq.(3) and the condition yi:i+n = y∗j:j+n from Eq.(10), we have
v∗n,i = C(y∗j:j+n,y

∗) .

The last intractability for our BLEU reformulation is to compute the denominator in Eq.(11). By
definition of vn,i (Eq.3), we have:

Ep(y¬i:i+n)vn,i =
∑T−n+1

i′=1
Ep(y¬i:i+n)1[yi′:i′+n = yi:i+n]

=
∑T−n+1

i′=1
Ep(y¬i:i+n)1[yi′:i′+n = y∗j:j+n],

(12)

where the second equation is because yi:i+n has taken value of y∗j:j+n in Eq.(10). We consider all
three cases for the pair yi′:i′+n and yi:i+n:

1) yi′:i′+n refers to the same n-gram sub-sequence as yi:i+n (i.e., i′ = i). It is clear that
Ep(y¬i:i+n)1[yi′:i′+n = y∗j:j+n] = 1.

2) yi′:i′+n does not overlap with yi:i+n (i.e., |i′ − i| ≥ n), which means yi′:i′+n is independent
of yi:i+n, and thus Ep(y¬i:i+n)1[yi′:i′+n = y∗j:j+n] = p(yi′:i′+n = y∗j:j+n).

1Here we assume yi:i+n and y¬i:i+n are independent, so that p(y) is decomposed as p(y) =
p(yi:i+n) p(y¬i:i+n).
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3) Part of yi′:i′+n overlaps with yi:i+n (i.e., 0 < |i′ − i| < n). In this case, only the non-
overlapping part of yi′:i′+n is random variable to be marginalized out. Thus, differing from
case 2), we generally have Ep(y¬i:i+n)1[yi′:i′+n = y∗j:j+n] ≥ p(yi′:i′+n = y∗j:j+n). However,
for computational simplicity, we simply use the latter for approximation.

With the above discussion, Eq.(12) is approximated as:

Ep(y¬i:i+n)vn,i ≈ 1 +
∑T−n+1

i′=1
i′ 6=i

p(yi′:i′+n = y∗j:j+n) (13)

Summary

We have completed the BLEU reformulation. In particular, Eq.(10) made the key step that identifies
the small set of effective values for each yi:i+n, which is exactly the set of n-grams of the reference
y∗. As y∗ is given, direct enumeration of its n-grams is straightforward and computationally efficient.

More specifically, combining Eqs.(10,11,13), we can approximate as:

Epθ(y) [on,i] ≈
∑T∗−n+1

j=1

pθ(yi:i+n = y∗j:j+n)

C(y∗j:j+n,y
∗)

min

1,
C(y∗j:j+n,y

∗)

1 +
∑T−n+1

i′=1
i′ 6=i

pθ(yi′:i′+n = y∗j:j+n)

 ,

, õn,i

(14)

where the model distribution pθ is invoked only for evaluating the likelihood of given reference
n-grams y∗j:j+n

2. We discuss the implementation of the likelihood evaluation in the next section.
Note that there is no need of stochastic sampling from the huge sequence space as in the original
policy gradient expected BLEU objective (Eq.5). The gradient of Eq.(14) w.r.t. θ can also be
straightforwardly computed. (The min(·, ·) operation may invoke subgradient, which is minor in
practice.)

Plugging Eq.(14) into Eq.(8), we obtain

Ep(y)precn ≈
1

T − n+ 1

∑T−n+1

i=1
õn,i , p̃recn, (15)

and further plugging the above into Eq.(7), we obtain the full, approximated reformulation of the
expected BLEU objective:

Ep(y)BLEU ≈ BP ·
∏N

n=1
p̃recwnn . (16)

In practice, we found it is more stable and simple-to-implement by maximizing the logarithm of the
resulting formulation. We thus define the final DEBLEU objective as:

LDEBLEU , − logBP−
∑N

n=1
wn log p̃recn (17)

In summary, Eqs.(17,15,14) fully define the proposed DEBLEU objective, which is fully differentiable
w.r.t. the model parameter θ and is therefore end-to-end trainable.

3.3 TRAINING & IMPLEMENTATION

We now discuss the implementation and training process of the proposed DEBLEU objective. In
particular, we devise a simple mask-and-anneal procedure that optimizes the objective smoothly.
We further analyze the computational complexity of the objective, showing that the computation is
efficient, comparable to the common cross-entropy objective.

Gumbel-softmax Decoding with Teacher Masks

Recall that for sequence generation models such as recurrent networks, we have the step-wise
decomposition of the sequence distribution pθ(y) =

∏
i pθ(yi | y1:i). The main computation of the

DEBLEU objective is to evaluate the likelihood pθ(yi:i+n = y∗j:j+n) for each i, j, and n. To this

2Interestingly, recall that in the common maximum-likelihood learning with cross-entropy loss, the model
distribution pθ is invoked for evaluating the likelihood of the whole reference sequence, i.e., p(y = y∗).
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Figure 2: An illustration of decoding with teacher masks. The red lines denote masked steps, for
which the corresponding one-hot ground-truth token is used for both DEBLEU evaluation and next
step decoding. For unmasked steps, the output Gumbel-softmax distribution is used as a soft token
and fed to the next step. Left panel illustrates a mask pattern of 2:2, and the right panel illustrates a
4:2 pattern. As the training proceeds, annealing between the patterns is performed. See section 3.3
for more details.

end, we first perform Gumbel-softmax decoding to obtain the step-wise distribution pθ(yi | y1:i)
for each step, and compute the likelihood by multiplying the probabilities of relevant steps, namely
pθ(yi:i+n = y∗j:j+n) =

∏n−1
t=0 pθ(yi+t = y∗j+t | y1:i+t). As a popular decoding approach (Jang

et al., 2016; Hu et al., 2017), Gumbel-softmax decoding at each step feeds the output distribution to
the next step as a soft input token (See Figure 2 for an example).

In practice, however, we found using the above decoded pθ(yi:i+n = y∗j:j+n) for every step i can
lead to unstable results especially at the early stage of training. This is partially because of the
accumulated error of using probabilities to replace the hard count in the original BLEU (see, e.g.,
Eq.12). To address the issue, we introduce teacher masks. That is, for a set of selected steps i, we
replace the distribution pθ(yi | y1:i) with the respective one-hot representation of ground-truth token
y∗i (i.e., the distribution used is now p(yi) = 1 if yi = y∗i and 0 otherwise). Figure 2 illustrates some
examples of such masked steps. We found such replacement can make the evaluation of the DEBLEU
and its gradient more stable. Besides, for a masked step, we also use the one-hot ground-truth token
as the input to the next step (Figure 2). This resembles the teacher-forcing decoding used in vanilla
maximum-likelihood learning, and hence the name “teacher mask”.

We interleave masked and unmasked steps. Specifically, given a mask pattern #unmasked:#masked,
we apply a mask such that #unmasked consecutive steps are not masked, followed with #masked
consecutive steps that are masked. For example, typical mask patterns are 2:2 (Figure 2, left panel),
4:2 (Figure 2, right panel), and 1:0 (i.e., no mask). Such regular-shaped (as opposed to randomly-
sampled) masks correspond to the characteristics of (DE)BLEU evaluation in which consecutive
steps are usually grouped together to form an n-gram and compute respective likelihood. Note that
the masks also implement certain randomness across training iterations by shifting to left or right for
a random number of steps.

As the training proceeds, we anneal the mask pattern by gradually increasing the portion of unmasked
steps. For example, after the model converges with a mask pattern of 2:2, we change to apply a
pattern of 4:2. The annealing continues until no masks are used. This in effect creates a curriculum
learning (Bengio et al., 2009) strategy that gradually increases the difficulty of the optimization
problem.

Pretraining In practice we first pretrain the model by minimizing the vanilla maximum-likelihood
cross-entropy loss, and continue to train the model with the proposed DEBLEU objective using the
above mask-and-anneal procedure.

Complexity Analysis

As above, the main computation of DEBLEU falls in evaluating the likelihood pθ(yi:i+n = y∗j:j+n)
for i ∈ {1, . . . , T}, j ∈ {1, . . . , T ∗}, and n ∈ {1, . . . , N}. The values can be efficiently computed
with a complexity of O(N · T · T ∗ + V · T ) (see Appendix A for details). In comparison, the
common maximum likelihood cross-entropy loss has a computational complexity of O(V · T ). Since
in practice V · T usually dominates N · T · T ∗, the proposed DEBLEU objective adds only negligible
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Method BLEU on de-en BLEU on en-fr

Cross Entropy 22.98 38.37
Policy Gradient 23.24 38.81

DEBLEU 24.37 39.79

Table 1: BLEU scores on the German-to-English (de-en) and English-to-French (en-fr) test sets.
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Figure 3: The curves of test-set BLEU score when training on the German-to-English (de-en)
and English-to-French (en-fr) datasets, respectively. The starting point (step=0) is the model after
pretraining.

computational overhead compared to the cross-entropy objective, while providing greatly improved
empirical performance as shown in the next section. At last, it is worth noting that all the computation
can be executed in a batch mode just as other objectives such as cross entropy.

4 EXPERIMENTS

We evaluate the proposed DEBLEU objective in the tasks of machine translation and image captioning.
The empirical results show our method provides better performance in terms of test-set BLEU, in
comparison to the popular algorithms including cross-entropy based maximum-likelihood learning as
well as the policy gradient algorithm.

Throughout the experiments, we set the n-gram precision weights in DEBLEU (Eq.17) to w1 = 0.1
and w2 = w3 = w4 = 0.3. We found such a smaller weight of uni-gram precision helps with more
stable convergence. We conjecture this is because the uni-gram precision completely ignores word
order, which can, to some extent, cause instability in training.

We will release all experimental code for reproducibility upon acceptance.

4.1 NEURAL MACHINE TRANSLATION

Setup We use both the German-to-English (de-en) and English-to-French (en-fr) datasets from
IWSLT 2014 (Cettolo et al., 2014). Each dataset contains around 172K training instances. We pruned
the vocabulary size of each language to around 15K. We use a sequence-to-sequence model with
attention (Bahdanau et al., 2014). The encoder is a two-layer bi-directional LSTM RNN, while the
decoder is a single-layer uni-directional LSTM RNN. Both the encoder and decoder have a hidden
size of 1000 and a word embedding size of 500. We use the Adam SGD optimizer with learning rate
annealing from 10−3 to 10−5. Both the policy gradient and the DEBLEU algorithms start with a
cross-entropy pretrained model. After pretraining, the policy gradient objective is mixed with the
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Method BLEU ROUGE-L METEOR CIDEr SPICE

Cross Entropy 27.89 51.93 23.97 88.77 16.99
Policy Gradient 31.15 52.79 24.13 92.61 16.91

DEBLEU 31.39 53.37 24.52 91.49 17.33

Table 2: Image captioning results. Policy gradient optimizes the expected BLEU. The DEBLEU
training achieves the best performance on most of the metrics.

cross-entropy objective with weights 0.3 : 1.0 to obtain the best results (otherwise the performance
drops quickly; we also tried other combination methods such as (Ranzato et al., 2015) but did not
get better results). We further use sample decoding results averaged over 10 runs as the baseline for
policy gradient. For the DEBLEU training, we anneal the teacher mask pattern from 2:2, 4:2 to 1:0
on the German-to-English dataset, while annealing from 2:2, 8:2 to 1:0 on the English-to-French
dataset. Following previous work (Ranzato et al., 2015), at test time we use greedy decoding for
evaluating the test-set BLEU. More experimental settings are provided in Appendix B.

Results The results of test-set BLEU scores are presented in Table 1. We can see that the proposed
DEBLEU training provides significantly better performance than both the cross entropy and policy
gradient training. DEBLEU improves over cross entropy as DEBLEU better correlates to the BLEU
metric, closing the training/test discrepancy in the cross entropy method. The DEBLEU objective
involves approximations to the expected BLEU objective optimized by policy gradient, but still yields
superior results. This is because DEBLEU avoids sampling from the huge sequence space and is
much easier to optimize.

We further visualize the test-set BLEU curves during training. We can see that with DEBLEU training
the BLEU score increases smoothly and keeps stable after convergence. In contrast, the BLEU score
drops in both the cross entropy and policy gradient cases, partially because of the misalignment
between cross entropy and BLEU, and the instability of policy gradient updates. We provide some
generated samples on the German-to-English (de-en) test set in the supplementary materials.

4.2 IMAGE CAPTIONING

Setup For image captioning, we use the MSCOCO dataset (Lin et al., 2014) and take the
train/dev/test split from (Karpathy & Fei-Fei, 2015). We follow (Vinyals et al., 2015) for data
preprocessing and model setup. In particular, a pretrained 101-layer ResNet (He et al., 2016) is
used to encode images into feature vectors as inputs to the decoder. The encoder is fixed throughout
training. The decoder is a single-layer LSTM RNN with both the hidden size and embedding size set
to 512. All other settings are similar to those in machine translation. Please see Appendix B for more
details.

Results Table 2 shows the image captioning results, including the test-set BLEU score of interest
as well as other popular evaluation metrics. As in machine translation, DEBLEU performs best in
terms of the test-set BLEU metric. It is interesting to see that DEBLEU also achieves improved
performance on most of other metrics, though they are not directly optimized. This validates that the
proposed DEBLEU training does not merely overfit to the BLEU score, but instead improves the text
generation results in general.

5 CONCLUSION

We have developed a new differentiable expected BLEU (DEBLEU) objective for end-to-end training
of neural text generation models with direct gradient descent. The proposed method addresses the
train/test discrepancy issue of common cross-entropy training, while is more efficient and practical
than the policy gradient algorithm. Experiments on neural machine translation and image captioning
demonstrate the superiority of the objective and training method. In our derivation, we have leveraged
the decomposability and sparsity of BLEU. We believe such intuition also applies to other widely-
used metrics such as ROUGE and others. We would like to explore differentiable variants of these
metrics in the future.
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APPENDIX A IMPLEMENTATION

The input of our DEBLEU module is (masked) p(y) and the reference sequence y∗ = (y∗1 , . . . , y
∗
T∗).

p(y) can be represented as a T ×V matrix, denoted by P . Then we apply Eqs.(14,15,17) sequentially.
The major computation is in Eq.(14), where all values of p(yi:i+n = y∗j:j+n) and C(y∗j:j+n,y

∗) are
required.

First we will show how to obtain p(yi:i+n = y∗j:j+n). Based on our independence assumption again,
we decompose the probability:

p(yi:i+n = y∗j:j+n) =
∏n−1

d=0
p(yi+d = y∗j+d) (18)

p(yi = y∗j ),∀i, j is now required. Simply p(yi = y∗j ) = Pi,y∗j . Thus, all values can be obtained by

an index selection operation of P with y∗ as indexes. We denote the result as matrix M ∈ RT̃×T∗ ,
in which Mi,j = p(yi = y∗j ). Then, we would like to obtain Mn ∈ R(T̃−n+1)×(T∗−n+1), in which
Mn
i,j = p(yi:i+n = y∗j:j+n), n ∈ {1, . . . , N}. Obviously, M1 = M . For n > 1, we utilize Mn−1

to save computation. Notice that

p(yi:i+n = y∗j:j+n) = p(yi = y∗j ) p(yi+1:i+n = y∗j+1:j+n) (19)

which implies that
Mn = M ◦Mn−1

2:,2: (20)

where Mn−1
2:,2: denotes Mn−1 removed the first row and column and ◦ denotes the Hadamard (element-

wise) product.

As for C(y∗j:j+n,y
∗), we can also obtain it in the same way. We can even preprocess and store it

before training. Anyway, it is not bottleneck our computation.

Batch training In order to utilize the parallelism of the computing devices, batch training is usually
used. All computation above can be batchized. The only thing to care about is the padding. The
target sequences are usually padded to the same length, but padding shall not be regarded as real
tokens in computation. Therefore, we mask out the padding part in matrices P and M1, . . . ,MN .

APPENDIX B EXPERIMENTAL SETTINGS

Machine Translation For dataset preprocessing: In the de-en dataset, we remove all punctuations.
In en-fr dataset, we lowercase all characters, make the punctuation as tokens, and separate words at
apostrophes or hyphens.

For test sets: The test set of the de-en task is created by merging all test sets on IWSLT 2014 official
site; The test set of en-fr is the tst2012 set (see Cettolo et al. (2014) for more details).

Image Captioning The decoder the model is a 1-layer LSTM. The hidden size of the LSTM decoder
and the embedding size are set to 512. And 50% dropout is applied on the decoder. Following
common online implementations, during pretraining, learning rate decay and scheduled sampling are
applied. After pretraining, all learning rate decay and scheduled sampling are removed. The learning
rate is fixed afterwards.

APPENDIX C GENERATED SENTENCE EXAMPLES
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Generated Sentence

Reference Well today we know everything about where our objects come
from

Cross Entropy Now today we know everything that come from
DEBLEU Now today we know everything about where our things come from

Reference Let’s get half of us to agree to spend an hour a day playing
games until we solve real world problems

Cross Entropy We should be able to <UNK> that half of us spend an hour per
day with games until we have the problems of the real world

DEBLEU We should <UNK> that half of us spend an hour a day spend an
hour until we solved the problems of the real world

Reference So what you suddenly started to realize or what I started to
realize is that when you started having conversations with
these companies the idea of understanding your brand is a
universal problem

Cross Entropy So what you suddenly began to understand or what I started to
understand was that when you start talking to these companies
the idea of how your brand is understood is a <UNK> problem

DEBLEU So what you suddenly started to understand or what I started
to understand was that if you start talking to these
companies the idea of how your brand is understood a <UNK>
problem

Reference And I always tell people that I don’t want to show up looking
like a scientist

Cross Entropy And I always tell people that I don’t want to get a scientist
like this

DEBLEU And I say people always I don’t want to get like a scientist

Table 3: Examples of generated sentences on the IWSLT 2014 German-to-English (de-en) test set.
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