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ABSTRACT

Bayesian Neural Networks (BNNs) provides a mathematically grounded frame-
work to quantify uncertainty. However BNNs are computationally inefficient,
thus are generally not employed on complicated machine learning tasks. Deep
Ensembles were introduced as a Bootstrap inspired frequentist approach to the
community, as an alternative to BNN’s. Ensembles of deterministic and stochas-
tic networks are a good uncertainty estimator in various applications (Although,
they are criticized for not being Bayesian). We show Ensembles of deterministic
and stochastic Neural Networks can indeed be cast as an approximate Bayesian
inference. Deep Ensembles have another weakness of having high space com-
plexity, we provide an alternative to it by modifying the original Bayes by Back-
prop (BBB) algorithm to learn more general concrete mixture distributions over
weights. We show our methods and its variants can give better uncertainty es-
timates at a significantly lower parametric overhead than Deep Ensembles. We
validate our hypothesis through experiments like non-linear regression, predictive
uncertainty estimation, detecting adversarial images and exploration-exploitation
trade-off in reinforcement learning.

1 INTRODUCTION

Neural Networks models have been applied in diverse fields from weather forecasting, to au-
tonomous vehicle driving, to online advertisement and many more (Goodfellow et al. (2016)). How-
ever, vanilla feed-forward NNs are susceptible to the problem of over-fitting. In addition to this,
NNs trained using Maximum Likelihood Estimation (MLE), or Maximum A Posteriori (MAP) can-
not provide an estimate of the uncertainty in predicted value and tend to produce overconfident
results on out-of-distribution test data. Thus we aim to build deep learning frameworks which are
more robust, secure and reliable - specifically, in the face of uncertainty we would like the model to
be able to say ”I Don’t Know!”

A principled approach to build such models is through Bayesian inference, where instead of
a point estimate for the network parameters, we infer the posterior distribution of the weights
given the data. The predictive distribution of unseen data (x∗, y∗) is given by q(y∗|x∗) =∫
p(y∗|x∗,W )p(W |D)dW , where p(W |D) is the true posterior computed from Bayes rule. Un-

fortunately, since modern NNs have an exponentially large number of parameters and do not lend
themselves to being integrated into mathematical equations, exact inference remains intractable.

Several methods for approximate Bayesian inference have been investigated. Until now, Hamil-
tonian Monte Carlo (HMC) (Neal (2012)) has been considered the gold standard for approximate
Bayesian inference. However, HMC requires explicit storage of samples from the posterior and is
typically not scalable to larger networks and datasets. Thus methods based on Variational Inference
(VI) have gained popularity recently for the task of approximate inference. VI relies on using a
surrogate posterior (qθ(W )) as an approximation for the true posterior. One of the first application
of VI in NNs was by Hinton & Van Camp (1993) but the optimization remained intractable for most
Bayesian Neural Networks (BNNs). Graves (2011) revisited similar ideas and proposed a simple
but biased estimator for performing VI with a fully factorized posterior (mean field assumption).

Recently, Bayes-by-Backprop algorithm (BBB) also employed VI using an unbiased estima-
tor for Variational loss, a fully factorized Gaussian posterior and a non-Gaussian prior Blun-
dell et al. (2015). Interestingly, Gal & Ghahramani (2016) showed links between Bernoulli
Dropout(Srivastava et al. (2014), Hinton et al. (2012)) and approximate inference in Deep Gaussian
Process (Damianou & Lawrence (2013)), thus allowing for the extraction of uncertainty estimates
of a NN in a principled way. Louizos & Welling (2016) arrived at the same conclusion through
structured posterior approximations via matrix variate Gaussian Posterior (Gupta & Nagar (2018))
and local reparameterization trick (Kingma et al. (2015)).
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Bayesian methods are far more computationally expensive, as compared to standard NNs, making
Deep Ensembles a very attractive alternative as they scale well to large datasets and models. The
intuition behind Deep Ensembles is straightforward, NNs initialized and trained independently can
be expected to output similar predictions on training data, while disagreeing on points away from
training set. Despite their empirical success in uncertainty estimation and adversarial robustness
(Lakshminarayanan et al. (2017), Strauss et al. (2018)), Deep Ensembles have lacked theoretic sup-
port from the Bayesian perspective. Thus, it is interesting to see how ensembles of deterministic and
stochastic NNs can be placed into the VI framework. Another drawback of Deep Ensembles is their
heavy parametric overhead. We modify the BBB algorithm to learn mixture distributions rather than
the unimodal Gaussian distribution, which reduces this burden. We further show that this way, Deep
Ensembles can be linked with the Bayesian framework. In essence, using our methods, we are able
to achieve accuracy and uncertainty estimates (with lower parametric cost) which are never worse
than Deep Ensembles, BBB, Concrete Dropout

Contributions: We design an efficient and simple way of sampling from mixture distributions which
incorporates the ”local reparameterization trick”(Kingma et al. (2015)) to obtain low variance gra-
dients for tuning of parameters in mixture distributions. This is also of independent interest for
designing more complex posteriors using any mixture distributions besides the ones used in this pa-
per. We also fit ensembles of deterministic and Bayesian NNs into VI framework with no changes
made to the original algorithm. We improve upon the uncertainty estimates of Deep Ensembles by
using mixture distribution with relatively less number of parameters.

Distribution of the paper - In section 2, we show how the original BBB algorithm can be modified
for generalized mixture distributions while remaining back-prop compatible. For simplicity, we
stick to a mixture of Gaussian’s. In section 3, we provide links between Ensembles and VI with
mixture distributions. Section 4 contains experiments that demonstrate that our methods generate
superior uncertainty estimates as compared to unimodal distributions or Deep Ensembles.

2 CONCRETE MIXTURE OF GAUSSIAN

A feed-forward network trained with gradient descent will arrive at point estimates. However, in
the case of BNNs, the weights are not point estimates but a probability distribution. Let us revisit
the problem of finding a functional relationship y = fW (x) between input x and output y, given
a labelled training dataset D = {(x1, y1), (x2, y2), . . . } from a Bayesian standpoint. Our task is to
find a distribution over the parameters p(W |D), given the input data. Given this posterior, we can
predict test output y∗ given a new test input x∗ by marginalizing the likelihood over the space of
parameters W .

However, even for modest sized NNs, the number of uncertain parameters prohibit this calculation
analytically. We require approximate inference methods in such cases. We define an approximating
variational distribution qθ(W ) with parameters θ. We would minimize the Kullback-Leibler (KL)
Divergence with respect to the parameters θ to maximize the similarity between proposed posterior
and the true posterior. Note that the problem of minimizing KL Divergence can be reformulated
to minimizing of another term usually called the Variational free energy in literature Friston et al.
(2007), Blundell et al. (2015). Evaluating the objective of maximizing this is computationally expen-
sive for large datasets therefore. Thus we split the entire data into M mini batchesD1, D2, . . . , DM .
The unbiased Monte Carlo (MC) approximation to the minibatch cost it given as:

W j ∼ qθ(W ), L̂V I−MC(θ) = −
∑
i∈Dj

log(p(yi|fW
j

(xi))) +
1

M
KL(qθ(W )||p(W )) (1)

In order to use stochastic backpropogation, we need the MC sample W j to be reparameterized as
g(θ, ε). We shall see how this is possible for Mixture of Gaussians (MoG) next.

2.1 SAMPLING FROM CONCRETE MIXTURE OF GAUSSIAN

Blundell et al. (2015) proposed the Bayes-by-Backprop algorithm for tuning of weight posterior’s
parameters. For simplicity, the posterior was assumed to be fully factorized Gaussian. The as-
sumption of fully factorized posterior is also known as the Mean Field assumption in the literature.

qθ(W ) =

N∏
i=1

N(wi;µi, σ
2
i ) θ = (µi, σ

2
i )(i=1,...,N) N = Total no. of weights (2)

Louizos & Welling (2016) used a matrix variate Gaussian posterior Gupta & Nagar (2018) to cap-
ture correlations between weights of same layer. Both of the above assumption do not account for
multiple modes in true posterior. A natural choice for posterior that can capture multiple modes is
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a mixture distribution, where each mixture component would correspond to a separate mode of the
true posterior.

We show method to sample from for mixture of Gaussian (MoG) for independent weights and mix-
ture of matrix variate Gaussian (MoMG) for correlated weights, while still being able to use the local
reparameterization trick. This method can be extended for any mixture of distributions in general.

To sample weight w from a mixture of K Gaussians i.e. w ∼ qθ(w) =
∑K
j=1 pjN(w;µj , σ

2
j ),∑K

j=1 pj = 1, we assume a latent random variable which governs the component of the mixture
that generates the value of w. We assume the latent random variable to be uniform random variable
u i.e. u ∼ Uniform[0,1] . The latent random variable u has a pj probability of being in the range
[pj−1, pj + pj−1), similarly it has pj+1 probability of being in between [pj + pj−1, pj + pj−1 +
pj+1) and so on, thus if u falls in the range [pj−1, pj + pj−1) we sample from the j’th distribution
N(w;µj , σ

2
j ). For example when sampling from mixture of three Gaussian, we will have to first

sample two random variables zp1 and zp1+p2 , which can be seen as correlated Bernoulli random
variables.

u ∼ Uniform[0, 1], zp1 = 1u<p1 , zp1+p2 = 1u<p1+p2 and ε ∼ N(0, 1)

w = zp1(µ1 + σ1ε) + (1− zp1)(zp1+p2)(µ2 + σ2ε) + (1− zp1+p2)(µ3 + σ3ε) (3)

Unfortunately, in the above case where we sample w from a multimodal distribution, local
reparametrization trick cannot be applied. This is because the Bernoulli random variables zp1 and
zp1+p2 can’t be parameterized in the form of g(θ, ε). So, we replace them with their continuous
relaxation, the Concrete distribution Gal et al. (2017),Maddison et al. (2016). This distribution can
be viewed as softmax relaxation of the max function used in Gumbel-max trick Gal et al. (2017).
This allows us to represent the discrete random variable zp1 as ẑp1 = g(θ, ε). Thus we replace zp1
and zp1+p2 in equation 4 with:

zp1 ≈ ẑp1 = sigmoid(
1

t
.(log(p1)− log(1− p1) + log(u)− log(1− u))

zp1+p2 ≈ ẑp1+p2 = sigmoid(
1

t
.(log(p1 + p2)− log(1− p1 − p2) + log(u)− log(1− u)) (4)

where, t is the temperature term and is usually kept as 0.1 or 0.01 (<<1 to guarantee most of the
mass of the pdf is around 0 and 1). So, we have now successfully reparameterized w as g(θ, ε)
where θ = (µ1,σ1,µ2,σ2,µ3,σ3,p1,p2). To prevent parametric explosion, we assume p1, p2 are same
for the entire layer. This is similar to assuming that Dropout parameter p is the same for entire layer.
Thus now, with mean field assumption we can now define the posterior of the weight matrixW from
mixture of K Gaussians as:

qθ(W ) =
∏
i

∑
j

pijN(wi;µij , σ
2
ij),

K∑
j=1

pij = 1, θ = ((pij , µij , σ
2
ij)j=1,...,K)i=1,...,N (5)

To model the correlations among the weights it is possible for us the treat the entire weight matrix
W of a layer, as a MoMG Gupta & Nagar (2018) i.e. p(W ) =

∑
i piMN(Mi, Ui, Vi), where

p(W ′) = MN(Mi, Ui, Vi) =
exp(− 1

2 tr[V
−1
i (W ′ −Mi)

TU−1i (W ′ −Mi)])

(2π)rc/2|Vi|c/2|Ui|r/2
(6)

Mi is a r× c matrix and is the mean of the distribution, Ui is a r× r matrix that provides covariance
of the rows and Vi is a c × c matrix that governs the covariance of the columns of the matrix. It has
been shown by Gupta et al. in Gupta & Nagar (2018) that matrix variate distributions are essentially
multivariate Gaussian.

p(vec(W ′)) = N(vec(Mi), Vi ⊗ Ui), ⊗ is the Kronecker product (7)

Thus, now instead of treating each weight independently we are now able to sample directly from its
joint distribution which is assumed to be a MoMG. For sampling from a mixture of 2 matrix variate
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Gaussian, W = zp(M1+U
1
2
1 EV

1
2
1 )+ (1− zp)(M2+U

1
2
2 EV

1
2
2 ))where Ei,j ∼ N(0, 1). We replace

zp with its continuous relaxed version ẑp, thus making it possible to use the local reparameterization
trick. We assume Ui = diag(σ2

ri) and Vi = diag(σ2
ci) i.e. independent rows and columns in

this paper. This allows us to reduce the number of parameters as compared to MoG, while still
modelling correlations between weights. Now that we are able to sample from MoG and MoMG
we need to be able to approximate DKL(qθ(W )||p(W )), where we assume a Gaussian prior i.e.
p(W ) = N(0, l−2I). We use Monte Carlo approximations similar to the one used in Blundell et al.
(2015) for optimising the DKL(qθ(W )||p(W )).

For all following sections, we interchangeably use the name Concrete MoG (CMoG) and Concrete
MoMG (CMoMG) for MoG and MoMG respectively.

3 DEEP ENSEMBLE AS BAYESIAN INFERENCE

Deep Ensemble is a simple non-Bayesian framework which is able to predict uncertainty on out-of-
distribution samples. Deep Ensemble algorithm involves training M randomly initialized networks
on independently sampled batches. Owing to its simplicity and scalability, Deep Ensemble is widely
used for uncertainty estimation. This departure from Bayesian methodology to capture uncertainty
is of concern since the Bayesian framework is a principled and widely accepted approach to capture
uncertainty. Thus, it is indeed surprising to see that with no simplification made to the original Deep
Ensemble algorithm described in Lakshminarayanan et al. (2017), we can show equivalence with
the VI framework.
In order to show the equivalence with VI, we assume the approximate posterior is a mixture of
points or Gaussian (with σ → 0) in a high dimensional probability space. For example in case
the network has only two layers with parameters W1 and W2 respectively, the joint distribution is
q(W1,W2|θ) = pN(M1, σ

2I) + (1 − p)N(M2, σ
2I)(σ → 0), where θ is the set of all variational

parameters which in this case are M1 and M2. We fix probability p = 1
2 .

Note, M1 = [M11,M12] is the concatenation of the variational parameters of layer 1 and layer 2,
and similarly, M2 = [M21,M22] is the concatenation of the variational parameters of layer 1 and
layer 2 (Assuming we have a NN of only two layers for simplicity). For example if the first point
is selected while sampling, we will have W1 = M11 and W2 = M12, we will see that minimizing
the KL divergence of this posterior with the true posterior is mathematically equivalent to the Deep
Ensemble algorithm described above. For sampling, the W1 and W2 from the above posterior, we
use the same sampling technique as described for MoG, except that here same random variable zp
is tied to all variational parameters.

u ∼ Uniform[0, 1] and zp = 1u<p

W1 = zpM11 + (1− zp)M21, W2 = zpM12 + (1− zp)M22 (8)

In MoG for every weight we had to sample a separate zp independently for each weight. This
random variable tying is the only difference in sampling between the two, and this observation is a
critical tool linking Deep Ensemble to VI Framework. Next we try to minimize the unbiased Monte
Carlo (MC) estimate of the mini-batch variational free energy. Minimizing the mini-batch cost for
mini-batch i = 1, 2 . . . M

w(i) ∼ qθ(w), LiV I−MC = − log(p(D(i)|w(i))) +
1

M
log(q(w(i)|θ))− 1

M
log(p(w(i))) (9)

Note we have taken a MC estimate of the KL divergence too, but following Hoffman et al.
(2013),Kingma & Welling (2014) convergence to the same limit as the expectation of variational
free energy is still guaranteed. Now assume a Gaussian prior i.e. P (w(i)) = N(0, l−2I). Note
for p = 1

2 there are equal chance of having w(i) = M1 or w(i) = M2, suppose for this batch i,
w(i) =M1

LiV I−MC = − log(p(D(i)|M1)) +
1

M
log(

1

2
) +

1

M

1

2
l2||M1||22 (10)

We further simplify loss function for regression case, and fit a Gaussian with variance τ−1

(also called model precision), to the negative log-likelihood of the data i.e. p(yj |xj ,M1) =
N(yj ; ŷj , τ

−1I). So, after dividing the whole equation by τ we have
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LiV I−MC ∝
1

2

∑
j∈Di

||yj − ŷj ||22 +
1

Mτ
log(

1

2
) +

1

M

1

2τ
l2||M1||22 (11)

Minimizing the above equation can be seen as training a single NN with parameters M1 on mini
batch i with L2 regularization λ = 1

2Mτ l
2. Equivalently, there will be another mini-batch j where

w(j) = M2, and minimizing the MC estimate of the variational free energy, in this case, will be
equivalent to training a NN with parameters M2 with the same regularization as before. This is
equivalent to a Deep Ensemble of 2 NNs with parameters M1 and M2 which were randomly ini-
tialized and trained on independently sampled mini-batches as was in the original algorithm. The
predictive distribution of unknown label y∗ is given as q(y∗|x∗) =

∫
p(y∗|x∗, w)q(W |θ)dW =

1
2p(y

∗|x∗,M1) +
1
2p(y

∗|x∗,M2), which is a mixture of Gaussian and matches the predictive distri-
bution of Deep Ensemble. Thus independently training an Ensemble of NN’s can be seen as training
a ”hypothetical” Bayesian NN’s with a specific mixture distribution.

Although we have shown equivalence for a specific case of 2 NNs, it can be easily generalized to N
NNs, by considering an approximate posterior a mixture of N points and taking p = 1

N . Note that
we can tune p’s too by using the same concrete relaxation that we took in CMoG. We called this
modified algorithm Concrete Ensemble.

Stein Variational Gradient Descent (SVGD) (Liu & Wang (2016)) is particle based Bayesian ap-
proach and is close to Deep Ensembles. Both SVGD and Deep Ensembles can be viewed as particle
filters trying to approximate an underlying distribution. The mini-batch SVGD update is given as
θt+1
i = θti+

1
N

∑N
j=1[k(θ

t
j , θ

t
i)∇θtj log(p(θ

t
j |Di))+∇θtjk(θ

t
j , θ

t
i)]. Ensembles have a mode seeking

nature, whereas SVGD seek to maintain some level of diversity. SVGD is far less popular despite
their similarity with Deep Ensembles because in practice, different initializations for large scale NNs
suffice for capturing different modes, and thus, the additional time complexity overhead of O(N2)
for computing the kernel is not justified by empirical results.

More specifically, if fθ(w) = 1
N

∑N
i=1 fi(w; θi), where θi are independent variational parameters,

and fi(w) could be any arbitrary distribution. Let us define L(θ) as the Variational Free Energy of
the mixture distribution fθ(w), and L(θi) as the Variational Free Energy of the individual mixture
component fi(w; θi). We can approximately bound L(θ) as; 1

N

∑N
i=1 L(θi) − H( 1

N ) ≤ L(θ) ≤
1
N

∑N
i=1 L(θi), where H(p ) is the entropy. So, individually optimizing θi’s (since they are indepen-

dent of each other) is also minimizing the variational free energy of the mixture distribution, and
interestingly increasing the ensemble size increases the tightness of the bound.The upper bound is
arrived at using the convexity of KL divergence and the lower bound is obtained by further lower
bounding the variational approximation to KL divergence between mixture distributions (Durrieu
et al. (2012)). See Appendix A.2 for more details

Simple arguments that will allow us to extend this proof to ensemble of arbitrary architecture of
Neural Networks have been added to Appendix 3.

4 EXPERIMENTS

The following networks are used in experiments: Normal feed forward Multi Layer Perceptron
(MLP), Deep Ensemble of 3 NN (Ensemble)(Lakshminarayanan et al. (2017)), Concrete Deep En-
semble of 3 NN (CEnsemble), Concrete Mixture of 3 Gaussain (CMoG) with p’s tied for each layer
(3 p’s per layer), Concrete Mixture of 2 Matrix Variate Gaussian (CMoMG), Bayes by Backprop
(BBB) (Blundell et al. (2015)) and Concrete Dropout (CDropout) (Gal et al. (2017)).
4.1 REGRESSION TASK

We use Concrete mixture of Gaussian, and Concrete Ensemble described above to fit y = x3 for
−4 < x < 4, and observe the estimation for −6 < x < 6. We observe our algorithms (CMoG
and CMoMG) can predict uncertainty in out of training data points much better compared to the
uncertainty estimation with vanilla NN or previous uncertainty estimation frameworks like MC-
Dropouts Gal (2016), Ensemble, BBB, and Concrete dropouts. For both CMoG (we consider a
mixture of 2 and 3 Gaussian) and Concrete Ensemble, we use fully connected feed forward NN with
two hidden layers of size 100 each and ReLU activation, and performed a forward pass ten times,
with result averaging for training, and for testing, performing a forward pass on trained NN forty
times. We perform this experiment thrice and average the results. Figure 1 compares uncertainty
estimation using CMoG and Concrete Ensemble with previous frameworks for the same architecture
as described above.
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Figure 1: Uncertainty estimates (±1 std ) for out of distribution samples on toy regression data

Figure 2: Time evolution of weight distribution of one of the weight in the CMoG-BNN with mixture
of 3 Gaussians

4.2 UNCERTAINTY ESTIMATION ON FULLY CONNECTED NETWORKS

In this subsection, we show advantage of using multimodal posterior for fully connected feed for-
ward networks. We first describe results for our methods on the classification task of MNIST digit
dataset (LeCun et al. (2010)). We use a fully connected network with two hidden layers having 1000
and 600 units respectively and ReLU activation. The last layer is a softmax layer with ten units.
Refer appendix section for accuracy obtained and no. of parameters used.

Now, we assess how our methods behave when test data does not lie on the training manifold. Over-
confident predictions on such data are one of the most important challenges for reliable deployment
of deep learning methods in the real world. The expectation is that if the input image does not lie on
the training manifold, then the predictive uncertainty should be high. We use the same architecture
as described above for the remaining subsection.

The first experiment we do is evaluate the predictive uncertainty of model trained on MNIST dataset
on Fashion MNIST dataset (Xiao et al. (2017)). This is similar to MNIST-NotMNIST experiment
done by Lakshminarayanan et al. (2017). As the images in Fashion MNIST dataset are completely
different than in MNIST, ideally a trained model should be very uncertain about its prediction.
Figure 3 shows the histogram of entropy of the output of trained models using different methods
on test MNIST, and test Fashion MNIST data. MLP and Concrete Dropout are overconfident on
predictions for Fashion MNIST data. Deep Ensemble and CEnsemble show an increase in no. of
data points showing high entropy. BBB shows significant improvement over previously described
methods. CMoMG shows comparable results with BBB even after having more modes indicating
that the assumption of independent rows and columns may not be best for capturing uncertainty.
CMoG gives the best results by far, which are also near ideal expectations.
For second and third experiment we use more sophisticated methods for analyzing behavior of pre-
dictive uncertainty of model as done in Li & Gal (2017). We don’t include MLP and Concrete
Dropout for these experiments for better clarity (they perform significantly worse). The second ex-
periment considers single gradient step Fast Gradient Sign (FGS) method (Goodfellow et al. (2014)).
The method generates an adversarial input by adding small perturbations to an input image by mov-
ing in the direction which reduces predicted class probability.

xadv = x− η sgn(∇xmax
y

log p(y|x)) (12)
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Figure 3: MNIST-FashionMNIST : Histogram (200 bins) of entropy obtained on MNIST and Fash-
ion MNIST test data

The step size η is varied from 0 to 0.5. Figure 4 shows the accuracy and predictive entropy for
different values of η. CMoG again gives the highest predictive entropy which helps in identifying
adversarial inputs. CMoMG has the slowest decaying accuracy vs step-size curve which makes it
more robust to adversarial attacks. For example, second column of images(η = 0.13) in right panel
of Figure 4 are visually close to true class ’2’and CMoMG gives a higher accuracy for that η than
any other method. Ensemble based methods are again outperformed by BBB, CMoG and CMoMG.
The second attack we consider is the targeted version of FGS (Goodfellow et al. (2014)). The attack

Figure 4: Untargeted Attack: Classification accuracy and predictive entropy vs step-size. The ad-
versarial images are shown(top to bottom) for BBB, CEnsemble, Ensemble, CMoG and CMoMG

here is implemented iteratively (Kurakin et al. (2016)) which produces adversarial examples by
even finer perturbations than single gradient step and without completely destroying the content of
original image. The predictive probability of a target class (’0’ in our case) is maximized for all
non-target class images using

x0
adv = x, xt+1

adv = xtadv + η sgn(∇xtadv
log p(ytarget|xtadv)) (13)

We fix η to 0.01 and iteratively update for 100 iterations. The results obtained are shown in Figure 5.
CMoMG has the slowest decaying and slowest rising true class and target class accuracy respectively
making it more robust against targeted attack. CMoG has highest rise in predictive entropy, making
it more suited for identifying adversarial attack. We note that for iteration 30-100, CMoMG has
better ability to identify an adversarial input. Both these methods having multi-modal posterior
perform better than BBB and Ensemble based methods.

More detailed analysis is required for examining the performance of our methods on adversarial
attacks, but we conclude from the experiments that multi-modal posterior based methods are well
suited for capturing uncertainty.

4.3 UNCERTAINTY ESTIMATION ON ALEXNET AND RESNET

We implement multimodal posterior for AlexNet (Krizhevsky et al. (2012)) and ResNet (He et al.
(2016))for getting better uncertainty estimates. The posterior used is only for fully connected layers
before final layer thus, with less no. of parameters than Deep Ensemble. All the other layers except
fully connected layer have been used with spatial concrete dropout. Refer appendix section for
accuracy obtained and no. of parameters used.

We repeat the MNIST-FashionMNIST experiment done in subsection 4.2 for AlexNet. Figure 6(L)
shows the result obtained. We have shown CDF for better comparison. Note that, even with slightly
less no. of parameters CMoG provides considerable improvement over Deep Ensembles while BBB
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Figure 5: Targeted Attack: Classification accuracy for target class ’0’ and true class and predictive
entropy vs. iterations. The adversarial images are shown(top to bottom) for BBB, CEnsemble,
Ensemble, CMoG, and CMoMG

and CMoMG gives comparable uncertainty with significantly less no. of parameters. This effect
will only improve for larger and deeper networks.

Figure 6: Predictive Entropy CDF: AlexNet on FashionMNIST (L), ResNet on SVHN (R)

We repeat the same experiment but now for CIFAR-10 (Krizhevsky et al.) - SVHN (Netzer et al.
(2011)), using ResNet-20. Figure 6(R) shows the uncertainty obtained on SVHN dataset after train-
ing the model on CIFAR-10 dataset. A clear improvement on uncertainty estimation can be observed
for CMoG over Deep Ensembles with significantly less no. of parameters. This further proves that
we can indeed get better uncertainty estimates for deep networks by using multimodal posterior on
few layers with only a small increase in parameters over normal network.

4.4 CONTEXTUAL BANDIT

We consider an online learning task (Mushroom Bandit Task Collier & Llorens (2018), Blundell
et al. (2015)) to get a clear handle on the usefulness of uncertainty estimates. In an online setup, the
agent plays her action based on a policy π. Based on this action, the environment reveals a stochastic
reward. The objective of online learning is to Update the policy π as more and more data is revealed
to maximize the cumulative reward received. Since the reward revealed is a noisy reward, online
learning algorithms face a fundamental dilemma: exploration v/s exploitation. Typically, online
learning algorithms explore in high uncertainty environments and exploit in low uncertainty setups.

We train a contextual neural bandit to learn the dependency between the context and optimal action
as per the pseudo-algorithm given in Collier & Llorens (2018). We train the NN based on BBB,
CMoG, Ensemble, CEnsemble, and CMoMG. The regret variation is shown in figure 7 with the
results have been averaged over three trials.

The MoG agent achieves a balance between eating and ignoring mushrooms more quickly than an
ensemble network and incurs the least regret. Similarly, Matrix Variate based CMoMG can estimate
uncertainty better than BBB and learns the context much faster. Thus, we can see that the ability
to capture multiple modes provides us superior estimates of uncertainty, allowing us to balance
exploration-exploitation in a better way.

Figure 7: Cumulative Regret Variation for Mushroom Bandit Task
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5 DISCUSSION

In this paper, we show equivalence between Ensembles of Deterministic and Bayesian NN and VI.
We have also generalized this proof to an ensemble of NN’s with arbitrary architecture. Bayesian
NN’s with multi-modal posterior have been shown to give superior uncertainty estimates on out of
distribution samples, be more robust to adversarial attacks and learn better trade-offs between explo-
ration and exploitation, while maintaining comparable or better test accuracy as standard methods.
We also show that the parametric overhead of Ensembles can be reduced by using Bayesian NN’s
with mixture distribution.
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A APPENDIX

A.1 ACCURACY AND NUMBER OF PARAMETERS

Table 1 reports the test accuracy obtained on MNIST with Fully connected network and results were
averaged over three trials. The accuracy of CMoG , CEnsemble and CMoMG are better or compa-
rable to benchmark MLP, BBB, Deep Ensemble and Concrete Dropout with the same architecture.

Table 1: Test Accuracy on MNIST

Method Test Accuracy No. of parameters (in Millions)
MLP 98.28 1.39
Concrete Dropout 98.8 1.39
Deep Ensemble 98.51 4.17
BBB 98.44 2.78
Concrete Ensemble 98.57 4.17
CMoG 98.6 8.34
CMoMG 98.66 2.79

Table 2 reports the test accuracy obtained on MNIST with AlexNet and results were averaged over
three trials.

Table 2: Test Accuracy on MNIST

Method (Dataset) Test Accuracy No. of parameters (in Thousands)
CMoG 99.36 44.94
BBB 99.26 21.58
Deep Ensemble 99.29 48.25
CMoMG 99.18 29.38

Table 3 reports the test accuracy obtained on CIFAR-10 with Resnet-20 and results were averaged
over three trials.

Table 3: Test Accuracy on CIFAR-10

Method (Dataset) Test Accuracy No. of parameters (in Millions)
CMoG 91.9 0.273
BBB 91.01 0.271
Deep Ensemble 92.1 0.81

Table 4 reports the Expected Calibration Error (ECE) on CIFAR-10 with Resnet-20 and results were
averaged over three trials.

Table 4: ECE on CIFAR-10

Method ECE
CMoG 0.019
MoG (categorical p) 0.023
Deep Ensemble 0.018
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A.2 BOUNDING THE VARIATIONAL FREE ENERGY WITH RESPECT TO MIXTURE
DISTRIBUTIONS

Variational free energy has two components the Expected loss and the KL divergence between the
assumed posterior and the prior. Now because the Expectation over a mixture distribution is equal
to the sum over expectation of individual components all we need to do is bound the KL divergence
between mixture distribution and true posterior in terms of KL divergence between individual
mixture components and the true posterior.

Thus we want to bound the KL divergence between f(x) and g(x) where

fθ(x) =

N∑
i=1

pifi(x; θi)

pi is the weight of the component individual i in the mixture distribution.

A simple upper bound can be achieved using convexity of KL distance as

DKL(fθ(x)||g(x)) ≤
N∑
i=1

piDKL(fi(x; θi)||g(x)) (14)

Keeping pi fixed as 1
N will give us the desired upper bound

We can also find the lower bound using the Variational Approximation (Hershey & Olsen (2007))
by first splitting the KL divergence into two components-

DKL(f(x)||g(x)) = Ef(x)[log(f(x))]− Ef(x)[log(g(x))] (15)

We can use Jensen’s inequality to get the appropriate lower bound for the first term as-

Ef (log(f(x)) =
∑
i

pi

∫
x

fi(x) log(
∑
j

pj
φji
φji

fj)dx

≥
∑
ij

piφji

∫
x

fi(x) log(pjfj(x)/φji)

Maximizing the lower bound wrt φji under the constraint φji ≥ 0 and
∑
j φji = 1,∀ i,j we get

Ef (log(f(x)) ≥
N∑
i=1

pi log(

N∑
j=1

pje
−DKL(fi||fj))−

N∑
i=1

piH(fi)

By similar arguments we can derive -

Ef (log(g(x)) ≥
N∑
i=1

pi log(e
−DKL(fi||g))−

N∑
i=1

piH(fi)

Subtracting the two gives us the Variational Approximation (Hershey & Olsen (2007)) to KL diver-
gence

Dvar(f ||g) =
N∑
i=1

piDKL(fi||g) +
N∑
i=1

pi log(

N∑
j=1

pje
−DKL(fi||fj))

Durrieu et al. (2012) empirically showed this approximation to be closer to DKL(f ||g) than most
other approximations, thus Dvar(f ||g) ≈ DKL(f ||g)

12



Under review as a conference paper at ICLR 2020

We further lower bound, this Variational approximation by ignoring all j 6= i terms inside
log(

∑L
j=1 pje

−DKL(fi||fj))

DKL(f ||g) ≈ Dvar(f ||g) ≥
N∑
i=1

piDKL(fi||g) +
N∑
i=1

pi log(pi)

Fixing pi’s as 1
N gives us the required lower bound

DKL(f ||g) ≈ Dvar(f ||g) ≥ 1

N

N∑
i=1

DKL(fi||g)−H(
1

N
)

We know Variational free Energy w.r.t fθ(w) is L(θ) =
∑N
i=1Efi(w)(− log(p(Y |X,w)) 1

N +
DKL(fθ(w)||p(w))
We then use the derived upper and lower bounds for the KL divergence between mixture distribution
to bound the Variational free energy as required.

A.3 GENERALIZATION OF PROOF TO BE MODEL AGNOSTIC

In an ensemble it is often the case when we take an ensemble of arbitrary NN’s rather than NN’s
with same architecture. So it is desirable for a generalization of the proof given in Section 3 to this
case.

To do so we add ”pseudo parameters” to each NN such that the dimensionality of the pa-
rameters in each NN is extended to become the same and we assume this to be N. We can now
define a prior on the RN such that the support of both the approximate posterior Mixture of
Gaussian and Gaussian prior is the same.

We call these added parameters ”pseudo” because we want them to be hanging parameters
that do not effect the neural network output (imagine an additional hidden layer whose output is
detached from the next layer, thus increasing the dimensionality of the network without changing
it’s original output).

Thus using this trick we have reduced the problem of ensemble of arbitrary NN’s to the
problem of NN’s with same parametric dimensionality. Now we can define a mixture distribu-
tion posterior as q(w|θ) =

∑N
i=1 piq(w|θi) where θi corresponds to the variational parameters

of ith NN and each θi now has the same RN dimensionality thanks to the previously mentioned trick.

Note now θ will comprise of two sets of variational parameter θr (real parameters) and θp

(pseudo parameters). An interesting observation that can be made is that the optimal solution for
the p is collapsing to the prior.

L(θ) = Eq(w|θ)[− log(p(D|w)] +DKL(q(w|θ)||p(w))

Now for optimal solution w.r.t to θp we have -

∇θpEq(w|θ)[− log(p(D|w)] +∇θpDKL(q(w|θ)||p(w)) = 0

Note∇θpEq(w|θ)[− log(p(D|w)] = 0 by design, so clearly the optimal solution for θp is to collapse
to the prior, e.g. if q(w|θp) is Gaussian and the prior p(w) = N(0, I) then we have q(w|θp) =
N(0, I) as the optimal solution. For the q(w|θr) the optimization shall remain exactly the same as
in Section 3. Implying ensembles of NN’s with different architecture too can be framed inside a
Variational Framework.
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