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ABSTRACT

Pre-trained deep neural network language models such as ELMo, GPT, BERT
and XLNet have recently achieved state-of-the-art performance on a variety of
language understanding tasks. However, their size makes them impractical for a
number of scenarios, especially on mobile and edge devices. In particular, the
input word embedding matrix accounts for a significant proportion of the model’s
memory footprint, due to the large input vocabulary and embedding dimensions.
Knowledge distillation techniques have had success at compressing large neural
network models, but they are ineffective at yielding student models with vocabu-
laries different from the original teacher models. We introduce a novel knowledge
distillation technique for training a student model with a significantly smaller vo-
cabulary as well as lower embedding and hidden state dimensions. Specifically,
we employ a dual-training mechanism that trains the teacher and student mod-
els simultaneously to obtain optimal word embeddings for the student vocabulary.
We combine this approach with learning shared projection matrices that transfer
layer-wise knowledge from the teacher model to the student model. Our method
is able to compress the BERTgasg model by more than 60x, with only a minor
drop in downstream task metrics, resulting in a language model with a footprint of
under 7MB. Experimental results also demonstrate higher compression efficiency
and accuracy when compared with other state-of-the-art compression techniques.

1 INTRODUCTION

Recently, contextual-aware language models such as ELMo (Peters et al., |2018), GPT (Radford
et al} 2019), BERT (Devlin et al., 2018)) and XLNet (Yang et al.,[2019) have shown to greatly out-
perform traditional word embedding models including Word2Vec (Mikolov et al., 2013) and GloVe
(Pennington et al.,|2014) in a variety of NLP tasks. These pre-trained language models, when fine-
tuned on downstream language understanding tasks such as sentiment classification (Socher et al.,
2013), natural language inference (Williams et al.l 2018)) and reading comprehension (Rajpurkar
et al 2016} Lai et all 2017), have achieved state-of-the-art performance. However, the large num-
ber of parameters in these models, often above hundreds of millions, makes it impossible to host
them on resource-constrained tasks such as doing real-time inference on mobile and edge devices.

Besides utilizing model quantization techniques (Gong et al.| 2014} |Lin et al., 2016) which aim
to reduce the floating-point accuracy of the parameters, significant recent research has focused on
knowledge distillation (Ba & Caruanal 2014; |[Hinton et al., 2015) techniques. Here, the goal is to
train a small-footprint student model by borrowing knowledge, such as through a soft predicted label
distribution, from a larger pre-trained teacher model.

However, a significant bottleneck that has been overlooked by previous efforts is the input vocabu-
lary size and its corresponding word embedding matrix, often accounting for a significant proportion
of all model parameters. For instance, the embedding table of the BERTgasg model, comprising over
30K WordPiece tokens (Wu et al., [2016b)), accounts for over 21% of the model size. While there
has been existing work on reducing NLP model vocabulary sizes (Sennrich et al.l 2016)), distillation
techniques cannot utilize these, since they require the student and teacher models to share the same
vocabulary and output space. This profoundly limits their potential to further reduce model sizes.

We present two novel ideas to improve the effectiveness of knowledge distillation, in particular for
BERT, with the focus on bringing down model sizes to as much as a few mega-bytes. Our model
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is among the first to propose to use a significantly smaller vocabulary for the student model learned
during distillation. In addition, instead of distilling solely on the teacher model’s final-layer outputs,
our model leverages layer-wise teacher model parameters to directly optimize the parameters of the
corresponding layers in the student model. Specifically, our contributions are:

e Dual Training: Our teacher and student models have different vocabularies and incompatible to-
kenizations for the same sequence. To address this during distillation, we feed the teacher model
a mix of teacher vocabulary-tokenized and student vocabulary-tokenized words within a single
sequence. Coupled with the masked language modeling task, this encourages an implicit align-
ment of the teacher and student WordPiece embeddings, since the student vocabulary embedding
may be used as context to predict a word tokenized by the teacher vocabulary and vice versa.

e Shared Variable Projections: To minimize the loss of information from reducing the hidden
state dimension, we introduce a separate loss to align the teacher and student models’ trainable
variables. This allows for more direct layer-wise transfer of knowledge to the student model.

Using the combination of dual training and shared variable projections, we train a 12-layer highly-
compressed student BERT model, achieving a maximum compression ratio of ~61.94x (with 48
dimension size) compared to the teacher BERTgasg model. We conduct experiments for measuring
both generalized language modeling perspective and for downstream tasks, demonstrating competi-
tive performance with high compression ratios for both families of tasks.

2 RELATED WORK

Research in neural network model compression has been concomitant with the rise in popularity of
neural networks themselves, since these models have often been memory-intensive for the hardware
of their time. Work in model compression for NLP applications falls broadly into four categories:
matrix approximation, parameter pruning/sharing, weight quantization and knowledge distillation.

A family of approaches (Sindhwani et al., 2015} Tulloch & Jia, |2017) seeks to compress the matrix
parameters of the models by low-rank approximation i.e. the full-rank matrix parameter is approxi-
mated using multiple low-rank matrices, thereby reducing the effective number of model parameters.
Another line of work explores parameter pruning and sharing-based methods (Li et al., 2016; |Luo
et al.l|2017;/Anwar et al.,[2017;[See et al.,2016), which explore the redundancy in model parameters
and try to remove redundant weights as well as neurons, for a variety of neural network architectures.

Model weight quantization techniques (Chen et al., 2015; |Lin et al., 2017; [Wu et al., [2016a; Zhou
et al., 2018)) focus on mapping model weights to lower-precision integers and floating-point num-
bers. These can be especially effective with hardware supporting efficient low-precision calcula-
tions. More recently, Shen et al.| (2019) apply quantization to BERT-based transformer models.

Knowledge distillation (Ba & Caruanal |2014} |Hinton et al.| |2015) differs from the other discussed
approaches: the smaller student model may be parametrized differently from the bigger teacher
model, affording more modeling freedom. Teaching a student model to match the soft output label
distributions from a larger model alongside the hard ground-truth distribution works well for many
tasks, such as machine translation (Kim & Rush, |2016) and language modeling (Yu et al., 2018).

Not limited to the teacher model outputs, some approaches perform knowledge distillation via atten-
tion transfer (Zagoruyko & Komodakis| [2016), or via feature maps or intermediate model outputs
(Romero et al.,2014; Yim et al., 2017;|Huang & Wang} 2017). More relevant to current work, Tang
et al.|(2019) and |Sun et al.|(2019) employ variants of these techniques to BERT model compression
by reducing the number of transformer layers. However, as explained before, these approaches are
not immediately applicable to our setting due to incompatible teacher and student model vocabular-
ies, and do not focus sufficiently on the embedding matrix size (Joulin et al.,[2016).

3 METHODOLOGY

Our knowledge distillation approach is centered around reducing the number of WordPiece tokens
in the model vocabulary. In this section, we first discuss the rationale behind this reduction and the
challenges it introduces, followed by our techniques, namely dual training and shared projection.
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Figure 1: Knowledge Distillation on BERT with smaller student vocabulary. (Left) A pre-trained
teacher BERT model with default BERT parameters (e.g., 30K vocab, 768 hidden state dimension).
(Right) A student BERT model trained from scratch with smaller vocab (5K) and hidden state di-
mension (e.g., 48). During distillation, the teacher model randomly selects a vocabulary to segment
each input word. The red and green square nexts to the transformer layers indicate trainable pa-
rameters for both the student and teacher models - note that our student models have smaller model
dimensions. The projection matrices U and V, shown as having representative shapes, are shared
across all layers for model parameters that have the same dimensions.

3.1 OPTIMAL SUBWORD EMBEDDINGS VIA KNOWLEDGE DISTILLATION

We follow the general knowledge distillation paradigm of training a small student model from a large
teacher model. Our teacher model is a 12-layer uncased BERTgasg, trained with 30522 WordPiece
tokens and 768-dimensional embeddings and hidden states. We denote the teacher model parameters
by 6;. Our student model consists of an equal number of transformer layers with parameters denoted
by 6, but with a smaller vocabulary as well as embedding/hidden dimensions, illustrated in Figure
[1l Using the same WordPiece algorithm and training corpus as BERT, we obtain a vocabulary of
4928 WordPieces, which we use for the student model.

WordPiece tokens (Wu et al.,2016b) are sub-word units obtained by applying a greedy segmentation
algorithm to the training corpus: a desired number (say, D) of WordPieces are chosen such that the
segmented corpus is minimal in the number of WordPieces used. A cursory look at both vocabularies
reveals that 93.9% of the WordPieces in the student vocabulary also exist in the teacher vocabulary,
suggesting room for a reduction in the WordPiece vocabulary size from 30K tokens.

Since we seek to train a general-purpose student language model, we elect to reuse the teacher
model’s original training objective to optimize the student model, i.e., masked language modeling
and next sentence prediction, before any fine-tuning. In the former task, words in context are ran-
domly masked, and the language model needs to predict those words given the masked context. In
the latter task, given a pair of sentences, the language model predicts whether the pair is consistent.

However, since the student vocabulary is not a complete subset of the teacher vocabulary, the two
vocabularies may tokenize the same words differently. As a result, the outputs of the teacher and
student model for the masked language modeling task may not align. Even with the high overlap
between the two vocabularies, the need to train the student embedding from scratch, and the change
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in embedding dimension precludes existing knowledge distillation techniques, which rely on the
alignment of both models’ output spaces. As a result, we explore two alternative approaches that
enable implicit transfer of knowledge to the student model, which we describe below.

3.2 DUAL TRAINING

During distillation, for a given training sequence input to the teacher model, we propose to mix the
teacher and student vocabularies by randomly selecting (with a probability ppr, a hyperparameter)
tokens from the sequence to segment using the student vocabulary, with the other tokens segmented
using the teacher vocabulary. As illustrated in Figure[I] given the input context [ ‘I’, ‘like’, ‘ma-
chine’, ‘learning’], the words ‘I’ and ‘machine’ are segmented using the teacher vocabulary (in
green), while ‘like’ and ‘learning’ are segmented using the student vocabulary (in blue). Similar
to cross-lingual training in |[Lample & Conneau| (2019)), this encourages alignment of the represen-
tations for the same word as per the teacher and student vocabularies. This is effected through the
masked language modeling task: the model now needs to learn to predict words from the student
vocabulary using context words segmented using the teacher vocabulary, and vice versa.

The expectation is that the student embeddings can be learned effectively this way from the teacher
embeddings as well as model parameters 6;. Note that we perform dual training only for the teacher
model inputs: the student model receives words segmented exclusively using the student vocabulary.
Also, during masked language modeling, the model uses different softmax layers for the teacher and
the student vocabularies depending on which one was used to segment the word in question.

3.3 SHARED PROJECTIONS

Relying solely on teacher model outputs to train the student model may not generalize well (Sun
et al.| 2019). Therefore, some approaches utilize and try to align the student model’s intermediate
predictions to those of the teacher (Romero et al., 2014)). In our setting, however, since the student
and teacher model output spaces are not identical, intermediate model outputs may prove hard to
align. Instead, we seek to directly minimize the loss of information from the teacher model param-
eters 6; to the student parameters 6 with smaller dimensions. We achieve this by projecting the
model parameters into the same space, to encourage alignment.

More specifically, as in Figure [I} we project each trainable variable in 6; to the same shape as the
corresponding variable in €. For example, for all the trainable variables 6; with shape 768 x 768, we
learn two projection matrices U € R%* 768 and V € R7%8* (o project them into the corresponding
space of the student model variable 6}, where d is the student model’s hidden dimension. U and
'V are common to all BERT model parameters of that dimensionality; in addition, U and V are not
needed for fine-tuning or inference after distillation. In order to align the student variable and the
teacher variable’s projection, we introduce a separate mean square error loss defined in Equation [T}
where | stands for down projection (since the projection is to a lower dimension).

Li= Y |uev-d|’ M

04,07,C0s,05

The above loss function aligns the trainable variables in the student space. Alternatively, we can
project trainable variables in 6, to the same shape as in ;. This way, the loss function in Equation
(1 denotes up projection) can compare the trainable variables in the teacher space.

b= Y |6 -veu|’ 2)

04,07,C0y,05

3.4 OPTIMIZATION OBJECTIVE

Our final loss function includes, in addition to an optional projection loss, masked language mod-
eling cross-entropy losses for the student as well as the teacher models, since the teacher model is
trained with dual-vocabulary inputs and is not static. P(y; = ¢|6,) and P(y; = ¢|6;) denote the stu-
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dent and teacher model prediction probabilities for class ¢ respectively, and 1 denotes an indicator
function. Equations andbelow define the final loss L f;yq;, where € is a hyperparameter.

Lee = > () [y =clog Py = cl0)] + Y [L1y,)—c log P(y; = ¢[6,)]) 3)

i cCC cCC
Lfinal = Lp + € X Lce (4)

4 EXPERIMENTS

To evaluate our knowledge distillation approach, we design two classes of experiments. First, we
evaluate the distilled student language models using the masked word prediction task on an unseen
evaluation corpus, for an explicit evaluation of the language model. Second, we fine-tune the lan-
guage model by adding a task-specific affine layer on top of the student language model outputs, on
a suite of downstream sentence and sentence pair classification tasks. This is meant to be an implicit
evaluation of the quality of the representations learned by the student language model. We describe
these experiments, along with details on training, implementation and our baselines below.

4.1 LANGUAGE MODEL TRAINING

During the distillation of the teacher BERT model to train the student BERT language model, we
utilize the same corpus as was used to train the teacher i.e. BooksCorpus (Zhu et al., 2015) and
English Wikipedia, with whitespaces used tokenize the text into words. We only use the masked
language modeling task to calculate the overall distillation loss from Section [3.3] since the next
sentence prediction loss hurt performance slightly. Dual training is enabled for teacher model inputs,
with ppr, the probability of segmenting a teacher model input word using the student vocabulary,
set to 0.5. For experiments including shared projection, the projection matrices U and V utilized
Xavier initialization (Glorot & Bengio, 2010). The loss weight coefficient € is set to 1 after tuning.

It is worth noting that in contrast to a number of existing approaches, we directly distill the teacher
BERT language model, not yet fine-tuned on a downstream task, to obtain a student language model
that is task-agnostic. For downstream tasks, we fine-tune this distilled student language model.

Distillation is carried out on Cloud TPUs in a 4x4 pod conﬁguratiorﬂ (32 TPU cores overall). We
optimized the loss using LAMB (You et al., 2019) for 250K steps, with a learning rate of 0.00125
and batch size of 4096. Depending on the student model dimension, training took between 2-4 days.

4.2 MODELS AND BASELINES

We evaluate three variants of our distilled student models: with only dual training of the teacher and
student vocabularies (DualTrain) and with dual training along with down-projection (DualTrain +
SharedProjDown) or up-projection (DualTrain + SharedProjUp) of the teacher model parameters.
For each of these configurations, we train student models with embedding and hidden dimensions 48,
96 and 192, for 9 total variants, each using a compact 5K-WordPiece vocabulary. Table [T| presents
some statistics on these models’ sizes: our smallest model contains two orders of magnitude fewer
parameters, and requires only 1% floating-point operations when compared to the BERTgAsg model.

For the language modeling evaluation, we also evaluate a baseline without knowledge distillation
(termed NoKD), with a model parameterized identically to the distilled student models but trained
directly on the teacher model objective from scratch. For downstream tasks, we compare with NoKD
as well as Patient Knowledge Distillation (PKD) from |Sun et al.| (2019), who distill the 12-layer
BERTgasg model into 3 and 6-layer BERT models by using the teacher model’s hidden states.

"https://cloudplatform.googleblog.com/2018/06/Cloud-TPU-now-offers-preemptible-pricing-and-global-
availability.html
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Model Type Vocab Size Hidden Dim # Params Model Size (MB) FLOPS ratio

48 1,775,910 6.8 1.3%
BERTpisTILLED 4928 96 5,665,926 22 1.32%
192 19,169,094 73 4.49%
BERTgAsE 30522 768 | 110,106,428 420 100%

Table 1: A summary of our student models’ sizes compared to BERTpasg. #Params indicates the
number of parameters in the student model, model size is measured in megabytes, and FLOPS ratio
measures the relative ratio of floating point operations required for inference on the model.

4.3 EVALUATION TASKS AND DATASETS

For explicit evaluation of the generalized language perspective of the distilled student language
models, we use the Reddit dataset (Al-Rfou et al.,[2016) E]to measure word mask prediction accuracy
of the student models, since the language used on Reddit is different from that in the training corpora.
The dataset is preprocessed similarly to the training corpora, except we do not need to tokenize it
using the teacher vocabulary, since we only run and evaluate the student models.

For implicit evaluation on downstream language understanding tasks, we fine-tune and evaluate the
distilled student models on three tasks from the GLUE benchmark (Wang et al., [2019):

e Stanford Sentiment Treebank (SST-2) (Socher et al., 2013)), a two-way sentence sentiment classi-
fication task with 67K training instances,

e Microsoft Research Paraphrase Corpus (MRPC) (Dolan & Brockett, 2005), a two-way sentence
pair classification task to identify paraphrases, with 3.7K training instances, and

e Multi-Genre Natural Language Inference (MNLI) (Williams et al., 2018)), a three-way sentence
pair classification task with 393K training instances, to identify premise-hypothesis relations.
There are separate development and test sets for genre-matched and genre-mismatched premise-
hypothesis pairs; we tune our models solely on the genre-matched development set.

For all downstream task evaluations, we fine-tune for 10 epochs using LAMB with a learning rate of
0.0002 and batch size of 32. Since our language models are trained with a maximum sequence length
of 128 tokens, we do not evaluate on reading comprehension datasets such as SQuAD (Rajpurkar,
et al.| 2016) or RACE (Lai et al.l 2017), which require models supporting longer sequences.

Model | Hidden dimension — | 48 96 192

NoKD Baseline 28.83 33.70 40.01
DualTrain 29.51 34.59 40.58
DualTrain + SharedProjDown | 29.55 34.71 40.59
DualTrain + SharedProjUp 29.89 34.74 40.64

Table 2: Masked language modeling task accuracy for the distilled student models and a fine-tune-
from-scratch baseline. We observe consistently better performance for our proposed approaches.

5 RESULTS

Table [2| contains masked word prediction accuracy figures for the different models and the NoKD
baseline. We observe that dual training significantly improves over the baseline for all model di-
mensions, and that both shared projection losses added to dual training further improve the word
prediction accuracy. It is interesting to note that for all model dimensions, SharedProjUp projecting
into the teacher space outperforms SharedProjDown, significantly so for dimension 48. Expectedly,
there is a noticeable performance drop going from 192 to 96 to 48-dimensional hidden state models.

2We use the test partition of the dataset, which is 6,400 instances.



Under review as a conference paper at ICLR 2020

Model Hidden | Vocab | Compress| MRPC MNLI-m MNLI-mm SST-2
Dim Size Factor (F1/Acc) (Acc) (Acc) (Acc)
Teacher BERTgasE 768 | 30522 1x 88.5/84.3 84.0 82.8 93.5
PKD, 6 layers (Sun et al.|[2019) 768 130522 1.64x 85.0/79.9 81.5 81.0 92.0
PKD, 3 layers (Sun et al.|[2019) 2.40x 80.7/72.5 76.7 76.3 87.5
NoKD Baseline ) 82.6/74.1 774 76.5 87.1
DualTrain 82.5/76.6 78.1 77.3 88.4
DualTrain + SharedProjDown 192 | 4928 574 83.6/76.9 78.2 71.7 88.4
DualTrain + SharedProjUp 84.9/78.5 77.5 76.7 88.0
NoKD Baseline 84.6/77.3 76.2 75.1 85.4
DualTra%n . 96 4928 19.41x 86.1/80.5 76.1 74.7 85.4
DualTrain + SharedProjDown 83.7/71.5 76.5 75.2 85.6
DualTrain + SharedProjUp 84.9/78.1 76.4 75.2 84.7
NoKD Baseline 76.3/66.1 70.9 70.2 79.5
DualTra¥n . 43 4928 | 61.94x 77.5/66.8 70.6 69.9 79.8
DualTrain + SharedProjDown 78.0/68.2 71.3 70.4 80.0
DualTrain + SharedProjUp 79.3/68.6 71.0 70.8 82.2

Table 3: Results of the distilled models, the teacher model and baselines on the downstream language
understanding task test sets, obtained from the GLUE server, along with the size parameters and
compression ratios of the respective models compared to the teacher BERTgasg. MNLI-m and
MNLI-mm refer to the genre-matched and genre-mismatched test sets for MNLI.

Note that because of the differing teacher and student model vocabularies, masked word prediction
accuracy for the teacher BERTgssg model is not directly comparable with the student models.

Table [3] shows results on the downstream language understanding tasks, as well as model sizes, for
our approaches, the BERTgasg teacher model, and the PKD and NoKD baselines. We note that
models trained with our proposed approaches perform strongly and consistently improve upon the
identically parametrized NoKD baselines, indicating that the dual training and shared projection
techniques are effective, without incurring significant losses against the BERTgasg teacher model.
Comparing with the PKD baseline, our 192-dimensional models, achieving a higher compression
rate than either of the PKD models, perform better than the 3-layer PKD baseline and are competitive
with the larger 6-layer baseline on task accuracy while being nearly 5 times as small.

Another observation we make is that the performance drop from 192-dimensional to 96-dimensional
models is minimal (less than 2% for most tasks). For the MRPC task, in fact, the 96-dimensional
model trained with dual training achieves an accuracy of 80.5%, which is higher than even the
PKD 6-layer baseline with nearly 12 times as many parameters. Finally, our highly-compressed
48-dimensional models also perform respectably: the best 48-dimensional models are in a similar
performance bracket as the 3-layer PKD model, a model 25 times larger by memory footprint.

6 DISCUSSION

Shared projections and model performance: We see that for downstream task performance, dual
training still consistently improves upon the direct fine-tuning approach for virtually all experiments.
The effect of shared variable projection, however, is less pronounced, with consistent improvements
visible only for MRPC and for the 48-dimensional models i.e. the smallest dataset and models
respectively in our experiments. This aligns with our intuition for variable projection as a more
direct way to provide a training signal from the teacher model internals, which can assume more
importance for a low-data or small-model scenario. However, for larger models and more data, the
linear projection of parameters may be reducing the degrees of freedom available to the model, since
linear projection is a fairly simple function to align the teacher and student parameter spaces.

A related comparison of interest is between up-projection and down-projection of the model vari-
ables: we note up-projection does visibly better on the language modeling task and slightly better
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on the downstream tasks. The parameters of a well-trained teacher model represent a high-quality
local minimum in the teacher space, which may be easier to search for during up-projection.

Vocabulary size tradeoffs: Issues with input vocabulary size are peculiar to problems in natural
language processing: they do not always apply to other areas such as computer vision, where a
small fixed number of symbols can encode most inputs. There has been some work on reducing input
vocabulary sizes for NLP, but typically not targeting model compression. One concern with reducing
the vocabularies of NLP models is it pushes the average tokenized sequence lengths up, making
model training harder. In this work, however, we consider classification tasks on shorter texts,
which are not as affected by input sequence lengths as, say, tasks such as machine translation are.
Furthermore, many real-world applications revolve around short text inputs, which is why a better
trade-off between vocabulary size and sequence lengths may be worthwhile for such applications.

Order of distillation and fine-tuning: Most of the existing work on distilling language models
such as BERT and reporting results on downstream tasks, including some of the baselines in this
work, first fine-tune a teacher model on the downstream tasks, and then distill this model. Our goal
in this work, however, is to explore the limits to which BERT’s language modeling capacity itself,
and how much of it is driven by its large WordPiece vocabulary. We leave experiments on distilling
fine-tuned teacher models, potentially yielding better results on downstream tasks, to future work.

7 CONCLUSION

We proposed two novel ideas to improve the effectiveness of knowledge distillation for BERT, fo-
cusing on using a significantly smaller vocabulary, as well as smaller embedding and hidden dimen-
sions for the student BERT language models. Our dual training mechanism encourages implicit
alignment of the teacher and student WordPiece embeddings, and shared variable projection allows
for the faster and direct layer-wise transfer of knowledge to the student BERT model. Combining
the two techniques, we trained a series of highly-compressed 12-layer student BERT models. Ex-
periments on these models, to evaluate both generalized language perspective and four standardized
downstream tasks, demonstrate the effectiveness of our proposed methods on both model accuracy
and compression efficiency.

One future direction of interest is to combine our approach with existing work to reduce the number
of layers in the student models and explore other approaches such as low-rank matrix factorization
to transfer model parameters from the teacher space to the student space. In addition, taking into
account the frequency distribution of the WordPiece tokens while training embeddings may help
optimize the model size further.
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