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ABSTRACT

Generative models have proven to be an outstanding tool for representing high-
dimensional probability distributions and generating realistic looking images. A
fundamental characteristic of generative models is their ability to produce multi-
modal outputs. However, while training, they are often susceptible to mode col-
lapse, which means that the model is limited in mapping the input noise to only
a few modes of the true data distribution. In this paper, we draw inspiration from
Determinantal Point Process (DPP) to devise a generative model that alleviates
mode collapse while producing higher quality samples. DPP is an elegant prob-
abilistic measure used to model negative correlations within a subset and hence
quantify its diversity. We use DPP kernel to model the diversity in real data as
well as in synthetic data. Then, we devise a generation penalty term that en-
courages the generator to synthesize data with a similar diversity to real data. In
contrast to previous state-of-the-art generative models that tend to use additional
trainable parameters or complex training paradigms, our method does not change
the original training scheme. Embedded in an adversarial training and variational
autoencoder, our Generative DPP approach shows a consistent resistance to mode-
collapse on a wide-variety of synthetic data and natural image datasets including
MNIST, CIFAR10, and CelebA, while outperforming state-of-the-art methods for
data-efficiency, convergence-time, and generation quality. Our code will be made
publicly available.

1 INTRODUCTION

Deep generative models have gained enormous research interest in recent years as a powerful frame-
work to learn high dimensional data in an unsupervised fashion. Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) and Variational AutoEncoders (VAEs) are among the most dom-
inant generative approaches. They consist of training two networks: a generator (decoder) and a
discriminator (encoder), where the generator attempts to map random noise to fake data points that
simulate the probability distribution of real data. . GANs are typically associated with higher quality
images compared to VAEs. Nevertheless, in the process of learning multi-modal complex distribu-
tions, both models may converge to a trivial solution where the generator learns to produce few
modes exclusively, as referred to by mode collapse problem.

To address this, we propose utilizing Determinantal Point Processes (DPP) to model the diversity
within data samples. DPP is a probabilistic model that has been mainly adopted for solving subset
selection problems with diversity constraints (Kulesza & Taskar, 2011), such as video and document
summarization. However, Sampling from a DPP requires quantifying the diversity of 2N subsets,
where N is the size of the ground set. This renders DPP sampling from true data to be computation-
ally inefficient in the generation domain. The key idea of our work is to model the diversity within
real and fake data throughout the training process, which does adds an insignificant computational
cost. Then, We encourage producing samples of similar diversity distribution to the true-data by
back-propagating the DPP metric through the generator. This way, generator explicitly learns to
cover more modes of real distribution, and accordingly alleviates mode collapse.

Recent approaches tackled mode-collapse in one of two different ways: (1) improving the learning of
the system to reach a better convergence point(e.g. Metz et al. (2017); Arjovsky & Bottou (2017)); or
(2) explicitly enforcing the models to capture diverse modes or map back to the true-data distribution
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(e.g. Srivastava et al. (2017); Che et al. (2017)). Here we focus on a relaxed version of the former,
where we use the same learning paradigm of the standard GANs and only change the objective
function. The advantage of such an approach is to avoid adding any extra trainable parameters to
the trained system while maintaining the same back-propagation steps as the standard GANs. Thus,
our model converges faster to a fair equilibrium point where the generator captures the diversity of
the true-data distribution while preserving the quality of generations.

Contribution. We introduce a new loss function, that we denote Generative Determinantal Point
Processes (GDPP) loss. Our loss only assumes an access to a generator G, a feature extraction
function φ(·), and sampler from true data distribution pd. The loss encourages the generator to
diversify generated samples that match the diversity of real data.

This criterion can be considered as a complement to the original adversarial loss which attempts
to learn an indistinguishable distribution from the true-data distribution without being specific to
diverse modes. We assess the performance of GDPP on three different synthetic data environments,
while also verifying the superiority on three real-world images datasets. We compared our approach
with state-of-the-art approaches of more complex architectures and learning paradigms. Exper-
iments show that our method outperforms all competing methods in terms of alleviating mode-
collapse and generations quality.

2 RELATED WORK

Among the tremendous amount of work that tackles the training challenges of Generative Adversar-
ial Networks (GANs), a few methods stood out as significant contributions towards addressing the
problem of mode collapse.

Methods that map the data back to noise. (Donahue et al., 2017; Dumoulin et al., 2017) are one
of the earliest methods that proposed learning a reconstruction network besides learning the deep
generative network. Adding this extra network to the system aims at reversing the action of the
generator by mapping from data to noise. Likelihood-free variational inference (LFVI) (Tran et al.,
2017), merge this concept with learning implicit densities using hierarchical Bayesian modeling.
Ultimately, VEEGAN (Srivastava et al., 2017) used the same concept, but the authors did not base
their reconstruction loss on the discriminator. This has the advantage of isolating the generation
process from the discriminator’s sensitivity to any of the modes. Che et al. (2017) proposed several
ways of regularizing the objective of adversarial learning including geometric metric regularizer,
mode regularizer, and manifold-diffusion training. Mode regularization specifically has shown a
potential into addressing the mode collapse problem and stabilizing the GANs training in general.

Methods that provide a surrogate objective function. Chen et al. (2016) on the other hand
propose with InfoGAN an information-theoretic extension of GANs that obtains disentangled rep-
resentation of data by latent-code reconstitution through a penalty term in its objective function.
InfoGAN includes an autoencoder over the latent codes; however, it was shown to have stability
problems similar to the standard GAN and requires stabilization tricks. Ghosh et al. (2018) base the
ModeGAN method on the assumption of the availability of sufficient samples of every mode on the
training data. In particular, if a sample from the true data distribution belongs to a particular mode,
then the generated fake sample is likely to belong to the same mode. The Unrolled-GAN of Metz
et al. (2017) propose a novel objective to update the generator with respect to the unrolled optimiza-
tion of the discriminator. This allows training to be adjusted between using the optimal discriminator
in the generator’s objective. It has been shown to improve the generator training process which in
turn helps to reduce the mode collapse problem. Generalized LS-GAN of Edraki & Qi (2018) define
a pullback operator to map generated samples to the data manifold. BourGAN Xiao et al. (2018),
with a similar philosophy, additionally draws samples from a mixture of Gaussians instead of a
single Gaussian. There is, however, no specific enforcement to diversify samples. Spectral normal-
ization strategies have been recently proposed in the works of Miyato et al. (2018) and SAGAN
(Zhang et al., 2018) to further stabilize the training. We note that these strategies are orthogonal to
our contribution and could be implemented in conjunction with ours to further improve the training
stability of generator models. Finally, improving the Wasserstein GANs of Arjovsky et al. (2017),
WGAN-GP (Gulrajani et al., 2017) introduce a gradient penalization employed in state-of-the-art
systems (Karras et al., 2018).
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Methods use multiple generators and discriminators. One of the popular methods to reduce
mode collapse is using multiple generator networks to provide a better coverage of the true data
distribution. Liu & Tuzel (2016) propose using two generators with shared parameters to learn the
joint distribution of the data. The two generators are trained independently on two domains to en-
sure a diverse generation. However, sharing the parameters guide both the generators to a similar
subspace. Also, Durugkar et al. (2017) propose a similar idea of multiple discriminators that are
being an ensemble, which was shown to produce better quality samples. Recently, Ghosh et al.
(2018) proposed MAD-GAN which is a multi-agent GAN architecture incorporating multiple gen-
erators and one discriminator. Along with distinguishing real from fake samples, the discriminator
also learns to identify the generator that generated the fake sample. The learning of such a system
implies forcing different generators to learn unique modes, which helps in a better coverage of data
modes. DualGAN of Nguyen et al. (2017) improves the diversity within GANs at the additional
requirement of training two discriminators. In contrast to these approaches, our DPP-GAN does not
require the training of extra networks which provides an easier and faster training as well as being
less susceptible to overfitting.

Finally, we also refer to PacGAN Lin et al. (2018) as another approach addressing mode collapse.
They do that by modifying the discriminator input with concatenated samples to better sample the
diversity within real data. Nevertheless, such approach is subject to memory and computational
constraints as a result of the significant increase in batch size.

3 DETERMINANTAL POINT PROCESS (DPP)

DPP is a probabilistic measure that was introduced in quantum physics (Macchi, 1975) and has been
studied extensively in random matrix theory (Hough et al., 2006). It provides a tractable and efficient
means to capture negative correlation with respect to a similarity measure, that in turn can be used to
quantify the diversity within a subset. A key characteristic in DPP that the model is agnostic about
the order of items as pointed out by Gong et al. (2014), and therefore can be used to model data that
is randomly sampled from a certain distribution.

A point process P on a ground set V is a probability measure on the power set of V (i.e., 2N ), where
N = |V| is the size of the ground set. A point process P is called determinantal if, given a random
subset Y drawn according to P , we have for every S ⊆ Y ,

P(S ⊆ Y ) ∝ det(LS) (1)

for some symmetric similarity kernel L ∈ RN×N , where LS is the similarity kernel of subset S. L
must be real, positive semidefinite matrix L � I (all the eigenvalues of L is between 0 and 1); since
it represents a probabilistic measure and all of its principal minors must be non-negative.

L is often referred to as the marginal kernel because it contains all the information needed to compute
the probability of any subset S being selected in V . LS denotes the sub-matrix of L indexed by S,
specifically, LS ≡ [Lij ]; i, j ∈ S. Hence, the marginal probability of including one element ei is
p(ei ∈ Y ) = Lii, and two elements ei and ej is LiiLjj − 2L2

ij = p(ei ∈ Y )p(ej ∈ Y ) − L2
ij .

A large value of Lij reduces the likelihood of both elements to appear together. Kulesza & Taskar
(2010) proposed decomposing the kernel LS as a Gram matrix:

P(S ⊆ Y ) ∝ det(φ(S)>φ(S))
∏
ei∈S

q2(ei), (2)

Here q(ei) ≥ 0 may be seen as a quality score of an item ei in the ground set V , while φi ∈
RD;D ≤ N and ||φi||2 = 1 is used as an `2 normalized feature vector of an item. In this manner,
φ>i φj ∈ [−1, 1] is evaluated as a ”normalized similarity” between items ei and ej of V , and the
kernel LS is guaranteed to be real positive semidefinite matrix.

Geometric interpretation: det(φ(S)>φ(S)) =
∏

i λi, where λi is the ith eigen value of the ma-
trix φ(S)>φ(S). Hence, we may visualize that DPP models diverse representations of data because
the determinant of φ(S)>φ(S) corresponds to the volume in n-D represented by the multiplication
of the variances of the data (i.e., the eigen values).

DPP in literature: DPP has proven to be a tremendously valuable tool when addressing the prob-
lem of diversity enforcing such as document summarization (e.g., Kulesza & Taskar (2011); Hong
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(a) Given a generator G, and feature extraction
function φ, the diversity kernel is constructed as
LS = φ> · φ. We use the last feature map of the
discriminator in GAN or the encoder in VAE as
the feature representation φ of a fake/real batch.

(b) Using φ obtained from generated samples, we
model their diversity using LSB . We also model
the diversity of a real batch by extracting its fea-
tures and constructing its diversity kernel LDB .
Adversarial loss aims at generating similar data
points to the real, and diversity loss aims at match-
ing fake data diversity kernelLSB to real data di-
versity kernel LDB .

Figure 1: We draw inspiration from DPP to model a subset diversity using a kernel. During training, we extract
the feature representation of real and fake batches φreal and φfake. Then, we construct their diversity kernels:
LSB , LDB . Our loss encouragesG to synthesize data of a diversity LSB similar to the real data diversity LDB .

& Nenkova (2014)), pose estimation (e.g., Gupta (2015)) and video summarization (e.g., Gong et al.
(2014); Mahasseni et al. (2017)). For instance, Zhang et al. (2016) proposed to learn the two param-
eters q, φ in eq. 2 to quantify the diversity of the kernel LS using MLPs based on spatio-temporal
features of the video to perform summarization. Recently, Hsiao & Grauman (2018) proposed to use
DPP to automatically create capsule wardrobes, i.e. assemble a minimal set of items that provide
maximal mix-and-match outfits given an inventory of candidate garments.

4 GENERATIVE DETERMINANTAL POINT PROCESSES

As illustrated in Fig. 1b, our GDPP loss encourages the generator to sample fake data of diversity
similar to real data diversity. The key challenge is to model the diversity within real data and fake
data. We discussed in Sec. 3 how DPP is used to model the negative correlation within a discrete
data distribution, which is commonly employed as a measure of diversity. Thus, we construct a DPP
kernel for both the real data and the generated samples at every iteration of the training process as
shown in Fig. 1a. Then, we encourage the network to generate samples that have a similar diversity
kernel to that of the training data. To simplify the optimization process, we choose to match the
eigenvalues and eigenvectors of the fake data DPP kernel with their corresponding of the real data
DPP kernel. Eigenvalues and vectors capture the manifold structure of both real and fake data, and
hence renders the matching problem simpler.

During training, a generative model G produces a batch of samples SB = {e1, e2, · · · eB}, where
B is the batch size. Our aim is to produce SB that is probabilistically sampled following the DPP
which satisfies:

P(SB ⊆ Y ) ∝ det(LSB
), (3)

such that Y is a random variable representing a subset drawn with a generative point process P , and
LSB

is the kernel matrix of the subset indexed by S, as detailed in Sec. 3. Connecting DPP to the
data generation, we assume that G is the point process sampler that generates subset SB according
to P . Let φ(SB) ∈ Rd×B be a feature representation of the generated subset SB , where φ(·) is a
feature extraction function. Therefore, the DPP kernel is constructed as follows:

LSB
= φ(SB)

>φ(SB); SB = G(zB), (4)

where zB ∈ Rdz×B is noise vector inputted to the generator G resulting in the generated sub-
set SB . Let us denote φ(SB) a feature representation of a generated batch and φ(DB) a feature
representation of a true batch. Our aim is to match P(SB ⊆ Y ) ∝ [det(LSB

) =
∏

i λ
i
fake] to
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P(DB ∼ pd) ∝ [det(LDB
) =

∏
i λ

i
real], where λireal and λifake are the ith eigenvalues of LDB

and LSB
respectively. Thus, our problem is reduced to learn a fake diversity kernel LSB

close to
the real diversity kernel LDB

. We choose to match those kernels using their major characteristics:
eigenvalues and eigenvectors.

Our GDPP loss is composed of two components: diversity magnitude loss Lm, and diversity struc-
ture loss Ls as follows:

LDPP
g = Lm + Ls =

∑
i

‖λireal − λifake‖2 −
∑
i

λ̂ireal cos(v
i
real, v

i
fake) (5)

where vifake and vireal are the ith eigenvectors of LDB
and LSB

respectively. λ̂ireal are the min-max
normalized version of its corresponding eigenvalues λireal. We note that λ ≥ 0 for both fake and
real data, since both LSB

and LDB
are guaranteed to be positive semidefinite matrices.

Scaling the structure loss aims to induce noise invariance within the eigenvectors similarity learning.
This can be seen as alleviating the effect of outlier structures that intrinsically exist within the real
data on learning the diversity kernel of fake data. We note that all the eigenvalues of LSB

and LSD

will be real non-negative since both of the kernels are symmetric semi-positive definite. Therefore,
the kernels represent a probability measure since none of the principal minors will be negative.

Integrating GDPP loss with GANs. For a primary benchmark, we integrate our GDPP loss
with GANs. Since our aim is to avoid adding any extra trainable parameters, we utilize features
extracted by the discriminator. We choose to use the hidden activations before the last layer as our
feature extraction function φ(.). We apply `2 normalization on the obtained features that guarantees
constructing a positive semi-definite matrix according to eq. 2. We finally integrate LDPP

g into the
GAN objective by only modifying the generator loss of the standard adversarial loss (Goodfellow
et al., 2014) as follows:

Lg = Ez∼pz
[log(1−D(G(z)))] + LDPP

g . (6)

Integrating GDPP loss with VAEs. A key property of our loss is its generality to any generative
model. Beside incorporating our loss in GANs, we prove it can be also embedded within Variational
Auto-Encoders (VAEs) proposed in Kingma & Welling (2013). We use the decoder network as our
generator G and the final hidden activations within the encoder network as our feature extraction
function φ(.).To compute LDPP at the training time, we feed an input training batch DB to the
encoder constructing LDB

. We also feed a random Gaussian noise to the decoder that generates a
fake batch SB , which we then feed to the encoder to construct LSB

. Finally, we compute LDPP as
stated in eq. 2 using the `2 normalized features, then add it to the original VAE loss at the training
time as follows:

LV AE = Ez∼p(z|x)[log{p(x|z)}] +KL[p(z|x)||p(z)] + LDPP . (7)

5 EXPERIMENTS

In our experiments, we target evaluating the generation based on two criteria: mode collapse and
generated samples quality. Due to the intractability of log-likelihood estimation, this problem tends
to be non-trivial in real data. Therefore, we start by analyzing our method on synthetic data where
we can accurately evaluate the performance. Then, we demonstrate the effectiveness of our method
on real data using standard evaluation metrics. We use the same architecture and data on all the
competing methods (See appendix A for details).

5.1 SYNTHETIC DATA EXPERIMENTS

Mode collapse and the quality of generations can be explicitly evaluated on synthetic data since the
true distribution is well-defined. In this section, we evaluate the performance of the methods on
mixtures of Gaussian of known mode locations and distribution (See appendix B for details). We
use the same architecture for all the models, which is the same one used by Metz et al. (2017) and
Srivastava et al. (2017). We note that the first four rows in Table 1 are obtained from Srivastava
et al. (2017), since we are using the same architecture and training paradigm. Fig. 2 illustrates the
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2D Ring 2D Grid 1200D Synthetic
Modes

(Max 8)
% High Quality

Samples
Modes

(Max 25)
% High Quality

Samples
Modes

(Max 10)
% High Quality

Samples
GAN (Goodfellow et al., 2014) 1 99.3 3.3 0.5 1.6 2.0
ALI (Dumoulin et al., 2017) 2.8 0.13 15.8 1.6 3 5.4
Unrolled GAN (Metz et al., 2017) 7.6 35.6 23.6 16.0 0 0.0
VEE-GAN (Srivastava et al., 2017) 8.0 52.9 24.6 40.0 5.5 28.3
WGAN-GP (Gulrajani et al., 2017) 6.8 59.6 24.2 28.7 6.4 29.5
GDPP-GAN 8.0 71.7 24.8 68.5 7.4 48.3

Table 1: Sample quality and degree of mode collapse on mixtures of Gaussians. GDPP-GAN consistently
captures the highest number of modes and produces better samples.

effect of each method on the 2D Ring and Grid data. As shown by the vanilla-GAN in the 2D
Ring example (Fig. 2a), it can generate the highest quality samples however it only captures a single
mode. On the other extreme, the WGAN-GP on the 2D grid (Fig. 2k) captures almost all modes
in the true distribution, but this is only because it generates highly scattered samples that do not
precisely depict the true distribution. GDPP-GAN (Fig. 2f,l) creates a precise representation of the
true data distribution reflecting that the method learned an accurate structure manifold.

Performance Evaluation: At every iteration, we sample fake points from the generator and real
points from the given distribution. Mode collapse is quantified by the number of real modes recov-
ered in fake data, and the generation quality is quantified by the % of High-Quality Samples. A
generated sample is counted as high-quality if it was sampled within three standard deviations in
case of 2D Ring or Grid, and ten standard deviations in case of the 1200D data. We train all models
for 25K iterations, except for VEEGAN which is trained for 100K iterations to properly converge.
At inference time, we generate 2500 samples from each of the trained models and measure both met-
rics. We report the numbers averaged over five runs with different random initialization in Table 1.
GDPP-GAN clearly outperforms all other methods, for instance on the most challenging 1200D
dataset that was designed to mimic a natural data distribution, bringing a 63% relative improvement
in high-quality samples and 15% in mode detection over its best competitor WGAN-GP.

Ablation Study: We run a study on the 2D Ring and Grid data to show the individual effects of each
component in our loss. As shown in Table 2, optimizing the determinant detLS directly increases
the diversity generating the highest quality samples. This works best on the 2D Ring since the true
data distribution can be represented by a repulsion model. However, for more complex data such as
the 2D Grid, optimizing the determinant fails because it does not well-represent the real manifold
structure but aims at repelling the fake samples from each other. Learning the unnormalized structure
is prone to outlier structures introduced by the noise in the data and in the learning process. However,
when scaling the structure loss by the true-data eigenvalues seems to better disengage the model from
noise that exists within the true-data features and only focus on learning the prominent structure.

Data-Efficiency: We evaluate the amount of training data needed by each method to reach the same
local optima as evaluated by our two metrics on both the 2D Ring and Grid data. Since we are
sampling the true-data from a mixture of Gaussians, we can generate an infinite size of training data.

GAN ALI Unrolled-GAN VEE-GAN WGAN-GP GDPP-GAN

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 2: Scatter plots of the true data(green dots) and generated data(blue dots) from different GAN methods
trained on mixtures of Gaussians arranged in a ring (top) or a grid (bottom).
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(a) Examining the effect of training batch size B
given the same number of training iterations.
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(b) Monitoring convergence at different itera-
tions given the same training data size.

Figure 3: Evaluating the models on the 2D Ring and Grid datasets in terms of (a) data-efficiency and (b)
time-efficiency. GDPP-GAN tends to converge faster and require the least amount of training data.

Therefore, we can quantify the amount of the training data by using the batch-size while fixing the
number of back-propagation steps. In this experiment (Fig. 3a), we run all the methods for the same
number of iterations (25,000) and vary the batch size. However, WGAN-GP tends to capture higher
quality samples with fewer data. In the case of 2D Grid data, GDPP-GAN performs on par with
other methods for small amounts of data, yet it tends to significantly outperform other methods on
the quality of generated samples once trained on enough data.

Time-Efficiency: Another property of interest is which method converges faster given the same
amount of training data. In this experiment, we fix the batch size at 512 and train the models for a
variable number of iterations (Fig. 3b). For the 2D Ring, Only VEE-GAN captures a higher number
of modes before GDPP-GAN, however, they are of much lower quality than the ones generated by
GDPP-GAN. In the 2D Grid data, GDPP-GAN performs on par with unrolled-GAN for the first
5,000 iterations while the others are falling behind. After that, our method significantly outperforms
all the methods with respect to both the number of captured modes and the quality of generated
samples. We also shows that the GDPP-GAN has an indistinguishable time cost over the DCGAN
in Table 6, rendering it the fastest over other baselines.

5.2 IMAGE GENERATION EXPERIMENTS

We use the experimental setting of state-of-the-art (Gulrajani et al., 2017) and (Metz et al., 2017)
for evaluating models on the Stacked MNIST and CIFAR10. On CelebA, we use the experimental
setting of state-of-the-art (Karras et al., 2017). Nonetheless, we investigated the robustness of our
method by using a more challenging setting proposed by (Srivastava et al., 2017) and we show
its results in Table 5 of Appendix C. In our evaluation, we focus on comparing with state-of-the-
art method that adopt a change in the original adversarial loss. Nevertheless, many of them can
be deemed orthogonal to our contribution, and can enhance the generation if integrated with our
approach. We also show that our method is robust to random initialization in Section C.1. Finally,
we show that our loss is generic to any generative model by incorporating it within Variational
AutoEncoder (VAE) Kingma & Welling (2013).

2D Ring 2D Grid
Modes

(Max 8)
% High Quality

Samples
Modes

(Max 25)
% High Quality

Samples
Exact determinant: (det [LSB ]) 8 82.9 12.6 21.7
Only diversity magnitude: (Lm) 8 67.0 20.4 15.9
Only diversity structure: (Ls) 8 65.2 18.2 35.2
GDPP with unnormalized Ls: (Lm + Lu

s ) 7.2 81.2 20.6 68.8
Final GDPP-loss: (Lm + Ls) 8 71.7 24.8 68.5

Table 2: GDPP loss Ablation study on GAN. Lu
s is the same as Ls without min-max eigen value normalization
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Stacked-MNIST CIFAR-10
#Modes (Max 1000) KL div. Inception score IvO

DCGAN (Radford et al., 2016) 427 3.163 5.26 ± 0.13 0.0911
DeLiGAN (Gurumurthy et al., 2017) 767 1.249 5.68 ± 0.09 0.0896
Unrolled-GAN (Metz et al., 2017) 817 1.430 5.43 ± 0.21 0.0898
RegGAN (Che et al., 2017) 955 0.925 5.91 ± 0.08 0.0903
WGAN (Arjovsky et al., 2017) 961 0.140 5.44 ± 0.06 0.0891
WGAN-GP (Gulrajani et al. (2017)) 995 0.148 6.27 ± 0.13 0.0891
GDPP-GAN (Ours) 1000 0.135 6.58 ± 0.10 0.0883
VAE (Kingma & Welling, 2013) 341 2.409 1.190 ± 0.02 0.543
GDPP-VAE (Ours) 623 1.328 1.32 ± 0.03 0.203

Table 3: Performance of various methods on real datasets. Stacked-MNIST is evaluated using the number of
captured modes (Mode Collapse) and KL-divergence between the generated class distribution and true class
distribution (Quality of generations). CIFAR-10 is evaluated by Inference-via-Optimization (Mode-Collapse)
and Inception-Score (Quality of generations).

Figure 4: Real images and their nearest generations of
CIFAR-10. Nearest generations are obtained by opti-
mizing the input noise to minimize the reconstruction
error of the generated image.

Figure 5: Adding GDPP loss to DCGAN sta-
bilizes adversarial training and generates high
quality samples earliest on CIFAR-10.

Stacked-MNIST A variant of MNIST (LeCun, 1998) designed to increase the number of discrete
modes in the data. The data is synthesized by stacking three randomly sampled MNIST digits along
the color channel resulting in a 28x28x3 image. In this case, Stacked MNIST has 1000 discrete
modes corresponding to the number of possible triplets of digits. Following (Gulrajani et al., 2017),
we generate 50,000 images that are later used to train the networks. We train all the models for
15,000 iterations, except for DCGAN and unrolled-GAN that need 30,000 iterations to converge to
a reasonable local-optima.

We follow (Srivastava et al., 2017) to evaluate methods on the number of recovered modes and the
divergence between the true and fake distributions. We sample 26000 fake images for all the models.
We identify the mode of each generated image by using the classifier mentioned in (Che et al.,
2017) that is trained on the standard MNIST dataset to classify each channel of the fake sample.
The quality of samples is evaluated by computing the KL-divergence between the generated label
distribution and the training labels distribution. GDPP-GAN captures all the modes and generates a
fake distribution that has the lowest KL-Divergence with the true-data. Moreover, when applied on
the VAE, it doubles the number of modes captured (623 vs 341) and cuts the KL-Divergence to half
(1.3 vs 2.4).

We note that we run a separate experiment on MNIST in Section C.4 to assess the severity of mode
collapse following (Richardson & Weiss, 2018).

CIFAR-10 We evaluate the methods on CIFAR-10 after training all the models for 100K itera-
tions. Unlike Stacked-MNIST, the modes are intractable in this dataset. To assess the performance
on this dataset, we use two metrics: Inception Score for the generation quality and Inference-via-
Optimization for diversity. As shown in the Quantitative results on CIFAR and Stacked MNIST
(Table 3), GDPP-GAN consistently outperforms all other methods in both mode collapse and devel-
oping higher quality samples. When applying the GDPP on the VAE, it reduces the IvO by 63%,
however, we note that both the inception-scores are considerably low which is also observed by
Shmelkov et al. (2018) when applying the VAE on CIFAR-10.
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Inference-via-optimization (Metz et al., 2017), has been used to assess the severity of mode collapse
in the generator by providing a metric to compare real images with the nearest generated image. In
the case of mode collapse, there are some real images for which this distance is large. We measure
this metric by sampling a real image x from the test set of real data. Then we optimize the `2 loss
between x and generated imageG(z) by modifying the noise vector z. If a method attains low MSE,
then it can be assumed that this method captures more modes than ones that attain a higher MSE.
Fig. 4 presents some real images with their nearest optimized generations. Randomly generated
sample images can be seen in Appendix D. As demonstrated by (Srivastava et al., 2017), this metric
can be fooled by producing blurry images out of the optimization. That is why the inception score
is necessary for this evaluation.

Inception score (Salimans et al., 2016) is widely used as a metric for assessing the quality of images.
It bases its validity from the premise that every realistic image should be recognizable by a standard
architecture(e.g., Inception Network). Ideally, meaning that the score distribution for it must be
dominated by one class. We also assess the stability of the training, by calculating the inception
score at different stages while training on CIFAR-10 (Fig. 5). Evidently, DCGAN has the least
stable training with a high variation. However, by only adding GDPP penalty term to the generator
loss, model generates high-quality images the earliest on training with a stable increase.

CelebA Finally, to evaluate the performance of our loss on large-scale Ad-
versarial training, we train Progressive-Growing GANs (Karras et al., 2017).

Avg. SWD Min. SWD

DCGAN 0.0906 0.0241
WGAN-GP 0.0186 0.0115
GDPP-GAN 0.0163 0.0075

Table 4: Average and Minimum Sliced Wasserstein
Distance over the last 10K iterations.

We show the effect of embedding our loss in adver-
sarial training by adding it to the WGAN-GP this
time instead of DCGAN loss, which is as well or-
thogonal to our loss. We train the model for 40K
iterations corresponding to 4 scales up to 64 × 64
results on CelebA dataset (Liu et al., 2018). Unlike
CIFAR-10, CelebA dataset does not simulate Im-
ageNet because it only contains faces not natural
scenes/objects. Therefore, using a model trained
on ImageNet as a basis for evaluation (i.e., Incep-
tion Score), will cause inaccurate recognition. On the other hand, IvO operates by optimizing the
noise vector to match real image. However, large scale datasets requires larger noise vector to cover
all the synthetic manifold. This renders the optimization prone to divergence or convergence to poor
local optimas; jeopardizing the metric effectiveness. We follow Karras et al. (2017) to evaluate
the performance on CelebA using Sliced Wasserstein Distance (SWD) (Peyré et al., 2017). A small
Wasserstein distance indicates that the distribution of the patches is similar, which entails that real
and fake images appear similar in both appearance and variation at this spatial resolution. Accord-
ingly, SWD metric can evaluate the quality of images as well as the severity of mode-collapse on
large-scale datasets such as CelebA. Table 4 shows the average and minimum SWD metric across the
last 10K training iterations. We chose this time frame because it shows a saturation in the training
loss for all methods. For qualitative examples, refer to Fig. 11 in Appendix D.

6 CONCLUSION

In this work, we introduce a novel criterion to train generative networks on capturing a similar di-
versity to one of the true data by utilizing Determinantal Point Process(DPP). We apply our criterion
to Generative Adversarial training and the Variational Autoencoder by learning a kernel via fea-
tures extracted from the discriminator/encoder. We train the generator on optimizing a loss between
the fake and real, eigenvalues and eigenvectors of this kernel to simulate the diversity of the real
data. Our GDPP framework accumulates many desirable properties: it does not require any extra
trainable parameters, it operates in an unsupervised setting, yet it consistently outperforms state-
of-the-art methods on a battery of synthetic data and real image datasets as measure by generation
quality and invariance to mode collapse. Furthermore, GDPP-GANs exhibit a stabilized adversarial
training and has been shown to be time and data efficient as compared to state-of-the-art approaches.
Moreover, the GDPP criterion is architecture and model invariant, allowing it to be embedded with
any variants of generative models such as adversarial feature learning or conditional GANs.
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Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. stat, 1050:26, 2017.

Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie Li. Mode regularized generative
adversarial networks. ICLR, 2017.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
NIPS, 2016.
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SUPPLEMENTARY MATERIAL

A NETWORK ARCHITECTURES

The architectures of the generator and discriminator networks employed in our experiments are
given in Figure 6.
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Figure 6: (a) Architectures employed in the synthetic experiments. (b) Architectures employed in our image
generation experiments.
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A.1 HYPERPARAMETERS

In all of our experiments, we use Adam Optimizer with β1 = 0.5 and ε = 1×10−8. For the synthetic
data experiments, we follow the configurations used by (Srivastava et al., 2017) and (Metz et al.,
2017). We use 1× 10−4 for the discriminator learning rate, and 1× 10−3 for the generator learning
rate. For synthetic data we use a batch size of 512. For Stacked-MNIST and CIFAR-10 we use a
batch size of 64. For CIFAR-10, we use a batch size of 16.

For the Stacked MNIST, CIFAR-10 and CelebA datasets, we use 2 × 10−4 as the learning rate for
both of the generator and the discriminator. To relatively stabilize the training of DCGAN, we follow
the protocol in (Gulrajani et al., 2017) to train it by applying a learning rate scheduler. The decay is
to happen with a ratio of 1/(#max− iters) at every iteration.

B SYNTHETIC DATA COLLECTIONS

The first data collection is introduced in (Metz et al., 2017) as a mixture of eight 2D Gaussian
distributions arranged in a ring. This distribution is the easiest to mimic since it only requires the
generated data to have an equal repulsion from the center of the distribution, even if it is not targeted
to the modes. The second and third collections were introduced by (Srivastava et al., 2017). In the
second collection, there is a mixture of twenty-five 2D Gaussian distributions arranged in a grid.
Unlike the first collection, this one requires a more structured knowledge of the true data modes’
locations. The last collection is a mixture of ten 700 dimensional Gaussian distributions embedded
in a 1200 dimensional space. This mixture arrangement mimics the higher dimensional manifolds of
natural images, and demonstrates the effectiveness of each method on manipulating sparse patterns.

C ADDITIONAL EXPERIMENTS

C.1 INVARIANCE TO POOR INITIALIZATION

Since the weights of the generator are being initialized using a random number generator N(0, 1),
the result of a generative model may be affected by poor initializations. In Figure 7 we show
qualitative examples on 2D Grid data, where we use high standard deviation for the random num-
ber generator (> 100) as an example of poor initializations. Evidently, GDPP-GAN respects the
structure of the true data manifold even with poor initializations. On the other extreme, WGAN-GP
tends to map the generated data to a disperse distribution covering all modes but with low quality
generations.

Figure 7: The effect of poor initialization on generations: GDPP-GAN models true manifold structure even
with poor initializations, while WGAN-GP maps noise to disperse distribution covering the modes with low
quality samples.
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C.2 (SRIVASTAVA ET AL., 2017) EXPERIMENTAL SETTING ON REAL DATA

To further show the effectiveness of our approach, we examine it under a more challenging exper-
imental setting. The experimental setting of (Srivastava et al., 2017) entails an architecture and
hyperparameters that produce relatively poor results as compared with the setting of Table 3. For
example, In (Srivastava et al., 2017) setting, DCGAN produces 99 modes, while in our experimental
setting, DCGAN produces 427 modes on Stacked MNIST dataset. We note that our main results in
Table 3 are computed using the same experimental setting suggested by (Gulrajani et al., 2017) and
(Metz et al., 2017) on a more realistic architecture. Our method remains to have a clear advantage
when compared to the rest of the methods for both CIFAR-10 and Stacked-MNIST (e.g., covering
90.6% more modes on Stacked-MNIST from 150 to 286 and at a higher quality) . We obtain the
first four rows from Srivastava et al. (2017).

Stacked-MNIST CIFAR-10
#Modes (Max 1000) KL div. IvO

DCGAN (Radford et al., 2016) 99 3.4 0.00844
ALI (Dumoulin et al., 2017) 16 5.4 0.0067
Unrolled-GAN (Metz et al., 2017) 48.7 4.32 0.013
VEEGAN (Srivastava et al., 2017) 150 2.95 0.0068
GDPP-GAN (Ours) 286 2.12 0.0051

Table 5: Performance on real datasets using the challenging experimental setting of (Srivastava et al., 2017).
GDPP-GAN remains to outperform all baselines on both Stacked-MNIST and CIFAR-10 for all metrics.

C.3 EIGENDECOMPOSITION RUNNING TIME

Eigendecomposition of an n×nmatrix requiresO(n3+n2log2nlogb) runtime within a relative error
bound of 2−b as shown in (Pan & Chen, 1999). In our loss, we perform two eigendecompositions:
LSB

, LDB
corresponding to the fake and true DPP kernels respectively. Therefore, the runtime

analysis of our loss is O(n3), where n is the batch size.

Normally the batch size does not exceed 1024 for most training paradigms due to memory con-
straints. In our experiments, we used 512 for synthetic data and 64 or 16 for real data. Hence, the
eigendecomposition does not account for a significant delay in the method.

To further verify this claim, we measured the relative time that eigendecompositions take of each
iteration time. We obtained 11.61% for Synthetic data, 9.36% for Stacked-MNIST data and 8.27%
for CIFAR-10. We also show the average iteration running time of all baselines in Table 6. We
computed the average of 1000 iterations across 5 different runs. Our method is the closest to the
standard DCGAN running time, and faster than the rest of baselines by a large margin.

DCGAN Unrolled-GAN Reg-GAN WGAN WGAN-GP GDPP-GAN

Avg. Iter.
Time (s) 0.0674 0.2467 0.1357 0.1747 0.4331 0.0746

Table 6: Average Iteration time for each of the baseline methods on CIFAR-10. GDPP-GAN obtains the closest
time to the default DCGAN.

C.4 NUMBER OF STATISTICALLY-DIFFERENT BINS (NDB)

(Richardson & Weiss, 2018) proposed to use a new evaluation metric to assess the severity mode
collapse severity in a generative model. They based their metric on a simple observation: In two sets
of samples that represent the same distribution, number of samples that fall into a given bin should
be the same up to a sampling noise. In other words, if we clustered the true-data distribution and
fake-data distribution to the same number of clusters/bins, then the number of samples from each
distribution in every bin should be similar.
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We follow (Richardson & Weiss, 2018) to compute this metric on MNIST (LeCun, 1998) dataset,
and compare our method with their results in Table 7. We note that we used their open-source
implementation of the metric, and we obtained the first three rows from their paper. We use 20,000
samples from our model and the training data to compute the NDB/K.

Model K=100 K=200 K=300

TRAIN 0.06 0.04 0.05

MFA (Richardson & Weiss, 2018) 0.14 0.13 0.14
DCGAN (Radford et al., 2016) 0.41 0.38 0.46
WGAN (Arjovsky et al., 2017) 0.16 0.20 0.21

GDPP-GAN 0.11 0.15 0.12

Table 7: NDB/K - numbers of statistically different bins, with significance level of 0.05, divided by the number
of bins K (lower is better).

D ADDITIONAL QUALITATIVE RESULTS

(a) GDPP-GAN after 15K iterations. (b) GDPP-VAE after 45K iterations.

Figure 8: Random Samples generated on Stacked-MNIST by GDPP-GAN and GDDP-VAE respectively.
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Figure 9: Random Samples generated by GDPP-GAN after 100K iterations.

Figure 10: Fixed noise qualitative samples progression for different models.
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(b) random samples using WGAN-GP at 200000 iterations

(c) random samples using our GDPP-GAN at 200000 iterations

Figure 11: Comparing the performance of our loss when compared to DCGAN and WGAN-GP loss, using
Progressive-Growing GANs (Karras et al., 2017).
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