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ABSTRACT

Optimal Transport (OT) naturally arises in many machine learning applications,
where we need to handle cross-modality data from multiple sources. Yet the heavy
computational burden limits its wide-spread uses. To address the scalability is-
sue, we propose an implicit generative learning-based framework called SPOT
(Scalable Push-forward of Optimal Transport). Specifically, we approximate the
optimal transport plan by a pushforward of a reference distribution, and cast the
optimal transport problem into a minimax problem. We then can solve OT prob-
lems efficiently using primal dual stochastic gradient-type algorithms. We also
show that we can recover the density of the optimal transport plan using neural
ordinary differential equations. Numerical experiments on both synthetic and real
datasets illustrate that SPOT is robust and has favorable convergence behavior.
SPOT also allows us to efficiently sample from the optimal transport plan, which
benefits downstream applications such as domain adaptation.

1 INTRODUCTION

The Optimal Transport (OT) problem naturally arises in a variety of machine learning applications,
where we need to handle cross-modality data from multiple sources. One example is domain adap-
tation: We collect multiple datasets from different domains, and we need to learn a model from a
source dataset, which can be further adapted to target datasets (Ganin & Lempitsky, 2014; Courty
et al., 2017b; Damodaran et al., 2018). Another example is resource allocation: We want to assign a
set of assets (one data source) to a set of receivers (another data source) so that an optimal economic
benefit is achieved (Santambrogio, 2010; Galichon, 2017). Recent literature has shown that both
aforementioned applications can be formulated as optimal transport problems.

The optimal transport problem has a long history, and its earliest literature dates back to Monge
(1781). Since then, it has attracted increasing attention and been widely studied in multiple com-
munities such as applied mathematics, probability, economy and geography (Villani, 2008; Carlier,
2012; Gross et al., 2016). Specifically, we consider two sets of data, which are generated from two
different distributions denoted by X ∼ µ and Y ∼ ν.1 We aim to find an optimal joint distribution
γ of X and Y , which minimizes the expectation on some ground cost function c, i.e.,

γ∗ = arg minγ∈Π(µ,ν) E(X,Y )∼γ [c(X,Y )], (1)
The constraint γ ∈ Π(µ, ν) requires the marginal distribution of X and Y in γ to be identical to µ
and ν, respectively. The cost function cmeasures the discrepancy between inputX and Y . For cross-
modality structured data, the form of c incorporates prior knowledge into optimal transport problem.
Existing literature often refers to the optimal expected cost W∗(µ, ν) = E(X,Y )∼γ∗ [c(X,Y )] as
Wasserstein distance when c is a distance, and γ∗ as the optimal transport plan. For domain adap-
tation, the function c measures the discrepancy between X and Y , and the optimal transport plan γ∗
essentially reveals the transfer of the knowledge from source X to target Y . For resource allocation,
the function c is the cost of assigning resource X to receiver Y , and the optimal transport plan γ∗
essentially yields the optimal assignment.

Since equation 1 is an optimization problem over the space of distributions, the problem is infinite
dimensional and generally intractable when µ and ν are continuous distributions. Therefore, exist-
ing literature has resorted to finite dimensional approximations. For example, Cuturi (2013) propose

1The optimal transport can also handle more than two distributions. See Section 3 for more details.
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to discretize the support using a refined grid, and cast equation 1 into a finite dimensional linear
programming problem. However, for complex distributions in high dimensions (e.g., images in do-
main adaptation), the grid size often needs to be exponentially large (e.g., exponential in dimension)
to ensure a small approximation error (due to discretization). Under such a regime, conventional
linear programming algorithms do not scale well, e.g., the interior point method in conjunction with
the Newton’s method takes O(n3 log n) time, where n is the grid size. To ease such a scalability
issue, Cuturi (2013) propose an entropy regularization-based Sinkhorn algorithm, which requires
the computational cost of O(n2), but still fail to scale to large problems.

While there exist several scalable stochastic algorithms for computing Wasserstein distance for con-
tinuous distributions µ and ν (Genevay et al., 2016; Seguy et al., 2017; Yang & Uhler, 2018), they
cannot compute the optimal transport plan γ∗ (see Section 6 for more discussion), which is crucial
in the aforementioned applications.

To address the scalability and efficiency issues, we propose a new implicit generative learning-based
framework for solving optimal transport problems. Specifically, we approximate γ∗ by a generative
model, which maps from some latent variable Z to (X,Y ). For simplicity, we denote[

X
Y

]
= G(Z) =

[
GX(Z)
GY (Z)

]
with Z ∼ ρ, (2)

where ρ is some simple latent distribution andG is some operator, e.g., deep neural network or neural
ordinary differential equation (ODE). Accordingly, instead of directly estimating the probability
density of γ∗, we estimate the mapping G between Z and (X,Y ) by solving

G∗ = arg min
G

EZ∼ρ[c(GX(Z), GY (Z))], subject to GX(Z) ∼ µ, GY (Z) ∼ ν. (3)

We then cast equation 3 into a minimax optimization problem using the Lagrangian multiplier
method. As the constraints in equation 3 are over the space of continuous distributions, the La-
grangian multiplier is actually infinite dimensional. Thus, we propose to approximate the La-
grangian multiplier by deep neural networks, which eventually delivers a finite dimensional gen-
erative learning problem.

Our proposed framework has three major benefits: (1) Our formulated minimax optimization prob-
lem can be efficiently solved by primal dual stochastic gradient-type algorithms. Many empirical
studies have corroborated that these algorithms can easily scale to very large minimax problems in
machine learning (Brock et al., 2018); (2) Our framework can take advantage of recent advances
in deep learning. Many empirical evidences have suggested that deep neural networks can effec-
tively adapt to data with intrinsic low dimensional structures (Zhang et al., 2016; Li et al., 2018a).
Although they are often overparameterized, due to the inductive biases of the training algorithms,
the intrinsic dimensions of deep neural networks are usually controlled very well, which avoids the
curse of dimensionality; (3) Our adopted generative models allow us to efficiently sample from the
optimal transport plan. This is very convenient for certain downstream applications such as domain
adaptation, where we can generate infinitely many data points paired across domains (Liu & Tuzel,
2016).

Moreover, the proposed framework can also recover the density of entropy regularized optimal trans-
port plan. Specifically, we adopt the neural Ordinary Differential Equation (ODE) approach in Chen
et al. (2018) to model the dynamics that how Z gradually evolves to G(Z). We then derive the ODE
that describes how the density evolves, and solve the density of the transport plan from the ODE.
The recovery of density requires no extra parameters, and can be evaluated efficiently.

Notations: Given a matrix A ∈ Rd×d, det(A) denotes its determinant, tr(A) =
∑
iAii denotes

its trace, ‖A‖F =
√∑

i,j A
2
ij denotes its Frobenius norm, and |A| denotes a matrix with [|A|]ij =

|Aij |. We use dim(v) to denote the dimension of a vector v.

2 BACKGROUND

We review some background knowledge on optimal transport and implicit generative learning.

Optimal Transport: The idea of optimal transport (OT) originally comes from Monge (1781),
which proposes to solve the following problem,

T ∗ = arg minT (X)∼ν EX∼µ[c(X,T (X))], (4)
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where T (·) is a mapping from the space of µ to the space of ν. The optimal mapping T ∗ is referred
to as Monge map, and equation 4 is referred to as Monge formulation of optimal transport.

Monge formulation, however, is not necessarily feasible. For example, whenX is a constant random
variable and Y is not, there does not exist such a map T satisfying T (X) ∼ ν. The Kantorovich
formulation of our interest in equation 1 is essentially a relaxation of equation 4 by replacing the
deterministic mapping with the coupling between µ and ν. Consequently, Kantorovich formulation
is guaranteed to be feasible and becomes the classical formulation of optimal transport in existing
literature (Benamou et al., 2015; Chizat et al., 2015; Frogner et al., 2015; Solomon et al., 2015).
Implicit Generative Learning: For generative learning problems, direct estimation of a probability
density function is not always convenient. For example, we may not have enough prior knowledge
to specify an appropriate parametric form of the probability density function (pdf). Even when an
appropriate parametric pdf is available, computing the maximum likelihood estimator (MLE) can
be sometimes neither efficient nor scalable. To address these issues, we resort to implicit generative
learning, which do not directly specify the density. Specifically, we consider that the observed vari-
able X is generated by transforming a latent random variable Z (with some known distribution ρ)
through some unknown mapping G(·), i.e., X = G(Z). We then can train a generative model by
estimating G(·) with a properly chosen loss function, which can be easier to compute than MLE.
Existing literature usually refer to the distribution of G(Z) as the push-forward of reference distri-
bution ρ. Such an implicit generative learning approach also enjoys an additional benefit: We only
need to choose ρ that is convenient to sample, e.g., uniform or Gaussian distribution, and we then
can generate new samples from our learned distribution directly through the estimated mapping G
very efficiently.

For many applications, the target distribution can be quite complicated, in contrast to the distribution
ρ being simple. This actually requires the mapping G to be flexible. Therefore, we choose to repre-
sent G using deep neural networks (DNNs), which are well known for its universal approximation
property, i.e., DNNs with sufficiently many neurons and properly chosen activation functions can
approximate any continuous functions over compact support up to an arbitrary error. Early empir-
ical evidence, including variational auto-encoder (VAE, Kingma & Welling (2013)) and generative
adversarial networks (GAN, Goodfellow et al. (2014)) have shown great success of parameterizing
G with DNNs. They further motivate a series of variants, which adopt various DNN architectures
to learn more complicated generative models (Radford et al., 2015; Chen et al., 2016; Zhao et al.,
2016; Dai et al., 2017; Jiang et al., 2018).

Although the above methods cannot directly estimate the density of the target distribution, for certain
applications, we can actually recover the density of G(Z). For example, generative flow methods
such as NICE (Dinh et al., 2014), Real NVP (Dinh et al., 2016), and Glow (Kingma & Dhariwal,
2018)) impose sparsity constraints on weight matrices, and exploit the hierarchical nature of DNNs
to compute the densities layer by layer. Specifically, NICE proposed in Dinh et al. (2014) denotes
the transitions of densities within a neural network as

Z
f0−→ h1

f1−→ h2 · · ·hm fm−−→ G(Z),

where hi represents the hidden units of the i-th layer and fi is the transition function. NICE sug-
gest to restrict the Jacobian matrices of fi’s to be triangular. Therefore, fi’s are reversible and the
transition of density in each layer can be easily computed. More recently, Chen et al. (2018) pro-
pose a neural ordinary differential equation (neural ODE) approach to compute the transition from
Z to G(Z). Specifically, they introduce a dynamical formulation and parameterizing the mapping
G using DNNs with recursive structures: They use an ODE to describe how the input Z gradually
evolves towards the output G(Z) in continuous time,

dz/dt = ξ(z(t), t),

where z(t) denotes the continuous time interpolation of Z, and ξ(·, ·) denotes a feedforward-type
DNN. Without loss of generality, we choose z(0) = Z and z(1) = G(Z). Then under certain
regularity conditions, the mapping G(·) is guaranteed to be reversible, and the density of G(Z) can
be computed in O(d) time, where d is the dimension of Z (Grathwohl et al., 2018).

3 SCALABLE OT WITH PUSHFORWARD
For better efficiency and scalability, we propose a new framework — named SPOT (Scalable
Pushforward of Optimal Transport) — for solving the optimal transport problem. Before we
proceed with the derivation, we first introduce some notations and assumptions. Recall that
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we aim to find an optimal joint distribution γ given by equation 1. For simplicity, we assume
that the two marginal distributions X ∼ µ and Y ∼ ν have densities pX(x) and pY (y) for
X ∈ X and Y ∈ Y with compact X and Y , respectively. Moreover, we assume that the
joint distribution γ has density pγ . Then we rewrite equation 1 as the following integral form,

G

�X

�Y

c

GX(Z)

GY (Z)

X

Y

Z L

Figure 1: An illustration of SPOT.

p∗γ = arg min
pγ

∫
x∈X ,y∈Y

c(x, y)pγ(x, y)dxdy. (5)

s.t.
∫
x∈X

pγ(x, y)dx− pY (y) = 0, ∀ y ∈ Y∫
y∈Y

pγ(x, y)dy − pX(x) = 0, ∀ x ∈ X

We then convert equation 5 into a minmax optimization
problem using the Lagrangian multiplier method. Note
that equation 5 contains infinitely many constraints, i.e.,
the equality constraints need to hold for every x ∈ X and y ∈ Y . Therefore, we need infinitely many
Lagrangian multipliers. For notational simplicity, we denote the Lagrangian multipliers associated
with x and y by two functions λX(x) : X → R and λY (y) : Y → R, respectively. Eventually we
obtain

p∗γ = arg min
pγ

max
λX ,λY

∫
x∈X ,y∈Y

c(x, y)pγ(x, y)dxdy

+

∫
y∈Y

λY (y)

(∫
x∈X

pγ(x, y)dx− pY (y)

)
dy

+

∫
x∈X

λX(x)

(∫
y∈Y

pγ(x, y)dy − pX(x)

)
dx. (6)

As mentioned earlier, solving pγ in the space of all continuous distributions is generally intractable.
Thus, we adopt the push-forward method, which introduces a mapping G from some latent variable
Z to (X,Y ). Recall that we denote (X,Y ) = G(Z) = (GX(Z), GY (Z)) as shown in equation 2.
The latent variable Z follows some distribution ρ that is easy to sample. We then rewrite equation 6
as

min
G

max
λX ,λY

EZ∼ρ[c(GX(Z), GY (Z))] + EZ∼ρ[λX(GX(Z))]

− EX∼µ[λX(X)] + EZ∼ρ[λY (GY (Z))]− EY∼ν [λY (Y )]. (7)
Note that we have replaced the integrals with expectations, since

∫
x∈X pγ(x, y)dx,

∫
y∈Y pγ(x, y)dy,

pX(x), and pY (y) are probability density functions. Then we further parameterize G, λX , and λY
with neural networks2. We denote G as the class of neural networks for parameterizing G and
similarly FX and FY as the classes of functions for λX and λY , respectively.

Although G, FX , and FY are finite classes, our parameterization of G cannot exactly represent
any continuous distributions of (X,Y ) (only up to a small approximation error with sufficiently
many neurons). Then the marginal distribution constraints, GX(Z) ∼ µ and GY (Z) ∼ ν, are
not necessarily satisfied. Therefore, the equilibrium of equation 7 does not necessarily exist, since
the Lagrangian multipliers can be unbounded. Motivated by Arjovsky et al. (2017), we require
the neural networks for parameterizing λX and λY to be η-Lipschitz, denoting as FηX and FηY ,
respectively. Here η can be treated as a tuning parameter, and provides a refined control of the
constraint violation. Since each η-Lipschitz function can be represented by ηf with f being 1-
Lipschitz, we rewrite equation 7 as

min
G∈G

max
λX∈F1

X ,λY ∈F1
Y

EZ∼ρ[c(GX(Z), GY (Z))]

+ η
(
EZ∼ρ[λX(GX(Z))]− EX∼µ[λX(X)]

+ EZ∼ρ[λY (GY (Z))]− EY∼ν [λY (Y )]
)
. (8)

We apply alternating stochastic gradient algorithm to solve equation 8: in each iteration, we perform
a few steps of gradient ascent on λX and λY , respectively for a fixed G, followed by one-step

2Using a single neural network to parameterize G encourages parameter sharing between GX and GY . In
fact, we can also parameterize GX and GY with different neural networks.
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gradient descent on G for fixed λX and λY . We use Spectral Normalization (SN, Miyato et al.
(2018)) to control the Lipschitz constant of λX and λY being smaller than 1. Specifically, SN
constrains the spectral norm of each weight matrix W by SN(W ) = W/σ(W ) in every iteration,
where σ(W ) denotes the spectral norm of W . Note that σ(W ) can be efficiently approximated by
a simple one-step power method (Golub & Van der Vorst, 2001). Therefore, the computationally
intensive SVD can be avoided. We summarize the algorithm in Algorithm 1 with SN omitted.

Algorithm 1 Mini-batch Primal Dual Stochastic Gradient Algorithm for SPOT

Require: Datasets {xi}Ni=1 ∼ µ, {yj}Mj=1 ∼ ν; Initialized networks G, λX , and λY with parame-
ters w, θ, and β, respectively; α, the learning rate; ncritic, the number of gradient ascent for λX
and λY ; n, the batch size
while w not converged do

for t = 1, 2, · · · , ncritic do
Sample mini-batch {xi}ni=1 from {xi}Ni=1, {yj}nj=1 from {yj}Mj=1, {zk}nk=1 from ρ

gθ ← ∇θ(η 1
n

∑n
k=1 λX,θ(GX,w(zk))− η 1

n

∑n
i=1 λX,θ(xi))

gβ ← ∇β(η 1
n

∑n
k=1 λY,β(GY,w(zk))− η 1

n

∑n
i=1 λY,β(yi))

θ ← θ + αgθ, β ← β + αgβ
end for
Sample mini-batch {zk}nk=1 from ρ
gw ← ∇w( 1

n

∑n
k=1 c(GX,w(zk), GY,w(zk))

+η 1
n

∑n
k=1 λX,θ(GX,w(zk)) + η 1

n

∑n
k=1 λY,β(GY,w(zk))

w ← w + αgw
end while

Connection to Wasserstein Generative Adversarial Networks (WGANs): Our proposed frame-
work equation 8 can be viewed as a multi-task learning version of Wasserstein GANs (Liu & Tuzel,
2016; Liu et al., 2018). Specifically, the mapping G can be viewed as a generator that generates
samples in the domains X and Y . The Lagrangian multipliers λX and λY can be viewed as discrim-
inators that evaluate the discrepancies of the generated sample distributions and the target marginal
distributions. By restricting λX ∈ F1

X , EZ∼ρ[λX(GX(Z))] − EX∼µ[λX(X)] essentially approx-
imates the Wasserstein distance between the distributions of GX(Z) and X under the Euclidean
ground cost (Villani (2008), the same holds for Y ). Denote

R(GX , GY ) = EZ∼ρ[c(GX(Z), GY (Z))], and
dw(GX , X) = max

λX∈F1
X

EZ∼ρ[λX(GX(Z))]− EX∼µ[λX(X)].

Let dw(GY , Y ) defined analogously as dw(GX , X). We can rewrite equation 8 as

min
G∈G

η
(
dw(GX , X) + dw(GY , Y )

)
+R(GX , GY ), (9)

which essentially learns two Wasserstein GANs with a joint generator G through the regularizerR.
Extension to Multiple Marginal Distributions: Our proposed framework can be straightforwardly
extended to more than two marginal distributions. Consider the ground cost function c taking m
inputs X1, . . . , Xm with Xi ∼ µi for i = 1, . . . ,m. Then the optimal transport problem equation 1
becomes the multi-marginal problem (Pass, 2015):

γ∗ = arg minγ∈Π(µ1,µ2,··· ,µm) Eγ [c(X1, X2, · · · , Xm)], (10)

where Π(µ1, µ2, · · · , µm) denotes all the joint distributions with marginal distributions satisfying
Xi ∼ µi for all i = 1, . . . ,m. Following the same procedure for two distributions, we cast equa-
tion 10 into the following form

min
G∈G

max
λXi∈F

η
Xi

EZ∼ρ[c(GX1
(Z), · · · , GXm(Z))]

+
∑m
i=1 (EZ∼ρ[λXi(GXi(Z))]− EXi∼µi [λXi(Xi)]) ,

where G and λXi ’s are all parameterized by neural networks. Existing methods for solving the
multi-marginal problem equation 10 suggest to discretize the support of the joint distribution using a
refined grid. For complex distributions, the grid size needs to be very large and can be exponential in
m (Villani, 2008). Our parameterization method actually only requires at most 2m neural networks,
which further corroborates the scalability and efficiency of our framework.
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4 REGULARIZED DENSITY RECOVERY

Existing literature has shown that entropy-regularized optimal transportation outperforms the un-
regularized counterpart in some applications (Erlander & Stewart, 1990; Cuturi, 2013). This is
because the entropy regularizer can tradeoff the estimation bias and variance by controlling the
smoothness of the density function.

We demonstrate how to efficiently recover the density pγ of the transport plan with entropy regular-
ization. Instead of parameterizing G by a feedforward neural network, we choose the neural ODE
approach, which uses neural networks to approximate the transition from input Z towards output
G(Z) in the continuous time. Specifically, we take z(0) = Z and z(1) = G(Z). Let z(t) be the
continuous interpolation of Z with density p(t) varying according to time t. We split z(t) into z1(t)
and z2(t) such that dim(z1) = dim(X) and dim(z2) = dim(Y ). We then write the neural ODE as

dz1/dt = ξ1(z(t), t), dz2/dt = ξ2(z(t), t), (11)
where ξ1 and ξ2 capture the dynamics of z(t). We parameterize ξ = (ξ1, ξ2) by a neural network
with parameter w. We describe the dynamics of the joint density p(t) in the following proposition.

Proposition 1. Let z, z1, z2, ξ1 and ξ2 be defined as above. Suppose ξ1 and ξ2 are uniformly
Lipschitz continuous in z (the Lipschitz constant is independent of t) and continuous in t. The log
joint density satisfies the following ODE:

∂ log p(t)

∂t
= −

(
tr

(
∂ξ1
∂z1

)
+ tr

(
∂ξ2
∂z2

))
, (12)

where ∂ξ1
∂z1

and ∂ξ2
∂z2

are Jacobian matrices of ξ1 and ξ2 with respect to z1 and z2, respectively.

Proposition 1 is a direct result of Theorem 1 in Chen et al. (2018). We can now recover the joint
density by taking pγ = p(1), which further enables us to efficiently compute the entropy regularizer
defined as

H(pγ) = EG(Z)∼γ [log pγ(G(Z))].

Then we consider the entropy regularized Wasserstein distance Lc(G,λX , λY ) + εH(pγ) where
Lc(G,λX , λY ) is the objective function in equation 8. Note that here G is a functional operator
of ξ, and hence parameterized with w. The training algorithm follows Algorithm 1, except that
updating G becomes more complex due to involving the neural ODE and the entropy regularizer.

To update G, we are essentially updating w using the gradient gw = ∂(Lc+ εH)/∂w, where ε is the
regularization coefficient. First we compute ∂Lc/∂w. We adopt the integral form from Chen et al.
(2018) in the following

∂Lc
∂w

= −
∫ 1

0

a(t)>
∂ξ(z(t), t)

∂w
dt, (13)

where a(t) = ∂Lc/∂z(t) is the so-called “adjoint variable”. The detailed derivation is slightly
involved due to the complicated terms in the chain rule. We refer the readers to Chen et al. (2018)
for a complete argument. The advantage of introducing a(t) is that we can compute a(t) using the
following ODE,

da(t)

dt
= −a(t)>

∂ξ(z(t), t)

∂z
.

Then we can use a well developed numerical method to compute equation 13 efficiently (Davis
& Rabinowitz, 2007). Next, we compute ∂H/∂w in a similar procedure with a(t) replaced by
b(t) = ∂H/∂ log p(t). We then write

∂H
∂w

= −
∫ 1

0

b(t)>
∂ log p(t)

∂w
dt.

Using the same numerical method, we can compute ∂H/∂w, which eventually allows us to compute
gw and update w.

5 EXPERIMENTS

We evaluate the SPOT framework on various tasks: Wasserstein distance approximation, density
recovery, paired sample generation and domain adaptation. All experiments are implemented with
PyTorch using one GTX1080Ti GPU and a Linux desktop computer with 32GB memory, and we
adopt the Adam optimizer with configuration parameters 0.5 and 0.999 (Kingma & Ba, 2014).
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5.1 WASSERSTEIN DISTANCE (WD) APPROXIMATION

We first demonstrate that SPOT can accurately and efficiently approximate the Wasserstein distance.
We take the Euclidean ground cost, i.e. c(x, y) = ‖x − y‖. Then EG(Z)∼γ∗ [c(GX(Z), GY (Z))]
essentially approximates the Wasserstein distance. We take the marginal distributions µ and ν as two
Gaussian distributions in R2 with the same identity covariance matrix. The means are (−2.5, 0)>

and (2.5, 0)>, respectively. We find the Wasserstein distance between µ and ν equal to 5 by eval-
uating its closed-form solution. We generate n = 105 samples from both distributions µ and ν,
respectively. Note that naively applying discretization-based algorithms by dividing the support
according to samples requires at least 40 GB memory, which is beyond the memory capability.

We parameterize GX , GY , λX , and λY with fully connected neural networks without sharing pa-
rameters. All the networks use the Leaky-ReLU activation Maas et al. (2013). GX and GY have 2
hidden layers. λX and λY have 1 hidden layer. The latent variable Z follows the standard Gaussian
distribution in R2. We take the batch size equal to 100.

WD vs. Number of Epochs. We compare the algorithmic behavior of SPOT and Regularized
Optimal Transport (ROT, Seguy et al. (2017)) with different regularization coefficients. For SPOT,
we set the number of units in each hidden layer equal to 8 and η = 104. For ROT, we adopt the code
from the authors3 with only different input samples, learning rates, and regularization coefficients.

Figure 2 shows the convergence behavior of SPOT and ROT for approximating the Wasserstein
distance between µ and ν with different learning rates. We observe that SPOT converges to the
true Wasserstein distance with only 0.6%, 0.3%, and 0.3% relative errors corresponding to Learning
Rates (LR) 10−3, 10−4, and 10−5, respectively. In contrast, ROT is very sensitive to its regulariza-
tion coefficient. Thus, it requires extensive tuning to achieve a good performance.

(a) LR =10−3 (b) LR =10−4 (c) LR =10−5

Figure 2: Comparison of convergence between SPOT and ROT. All the curves are averaged over 50
runs with different random seeds, and the shaded areas represent the standard deviation.

Figure 3: Box plots of relative errors of
the estimated Wasserstein distance with
respect to the number of hidden units
per layer. The results are averaged over
50 independent runs.

WD vs. Number of Hidden Units. We then explore the
adaptivity of SPOT by increasing the network size, while
the input data are generated from some low dimensional
distribution. Specifically, the number of hidden units per
layer varies from 2 to 210. Recall that we parameterize
G with two 2-hidden-layer neural networks, and λX , λY
with two 1-hidden-layer neural networks. Accordingly,
the number of parameters in G varies from 36 to about
2 × 106, and that in λX or λY varies from 12 to about
2, 000. The tuning parameter η also varies corresponding
to the number of hidden units in λX , λY . We use η = 105

for 21, 22 and 23 hidden units per layer, η = 2×104 for 24, 25 and 26 hidden units per layer, η = 104

for 27 and 28 hidden units per layer, η = 2× 103 for 29, and 210 hidden units per layer.
Figure 3 shows the estimated WD with respect to the number of hidden units per layer. For large
neural networks that have 29 or 210 hidden units per layer, i.e., 5.2 × 105 or 2.0 × 106 parameters,
the number of parameters is far larger than the number of samples. Therefore, the model is heavily
overparameterized. As we can observe in Figure 3, the relative error however, does not increase as
the number of parameters grows. This suggests that SPOT is robust with respect to the network size.

5.2 DENSITY RECOVERY

We demonstrate that SPOT can effectively recover the joint density with entropy regularization.
We adopt the neural ODE approach as described in Section 4. Denote φ(a, b) as the density

3https://github.com/vivienseguy/Large-Scale-OT
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Figure 5: Generated samples of SPOT and CoGAN on the MNIST-MNISTM task.
of the Gaussian distribution N(a, b). We take the marginal distributions µ and ν as (1) Gaus-
sian distributions φ(0, 1) and φ(2, 0.5); (2) mixtures of Gaussian 1

2φ(−1, 0.5) + 1
2φ(1, 0.5) and

1
2φ(−2, 0.5)+ 1

2φ(2, 0.5). The ground cost is the Euclidean square function, i.e., c(x, y) = ‖x−y‖2.
We run the training algorithm for 6× 105 iterations and in each iteration, we generate 500 samples
from µ and ν, respectively. We parameterize ξ with a 3-hidden-layer fully-connected neural network
with 64 hidden units per layer, and the latent dimension is 2. We take η = 106.

Figure 4: Visualization of the marginal dis-
tributions and the joint density of the optimal
transport plan.

Figure 4 shows the input marginal densities and heat
maps of output joint densities. We can see that a
larger regularization coefficient ε yields a smoother
joint density for the optimal transport plan. Note
that with continuous marginal distributions and the
Euclidean square ground cost, the joint density of
the unregularized optimal transport degenerates to
a generalized impulse function (i.e., a generalized
Dirac δ function that has nonzero value on a man-
ifold instead of one atom, as shown in Rachev (1985); Onural (2006)). Entropy regularization pre-
vents such degeneracy by enforcing smoothness of the density.

5.3 SAMPLE GENERATION

We show that SPOT can generate paired samples (GX(Z), GY (Z)) from unpaired data X and Y
that are sampled from marginal distributions µ and ν, respectively.

Figure 6: Visualization of input samples and
generated samples. The black lines represent
the paired relation.

Synthetic Data. We take the squared Euclidean
cost, i.e. c(x, y) = ‖x−y‖2, and adopt the same im-
plementation and sample size as in Section 5.1 with
learning rate 10−3 and 32 hidden units per layer.
Figure 6 illustrates the input samples and the gener-
ated samples with two sets of different marginal dis-
tributions: The upper row corresponds to the same
Gaussian distributions as in Section 5.1. The lower
row takes X as Gaussian distribution with mean
(−2.5, 0)> and covariance 0.5I , Y as (sin(Y1) +
Y2, 2Y1− 3)>, where Y1 follows a uniform distribu-
tion on [0, 3], and Y2 follows a Gaussian distribution
N(2, 0.1). We observe that the generated samples
and the input samples are approximately identically
distributed. Additionally, the paired relationship is
as expected – the upper mass is transported to the
upper region, and the lower mass is transported to the lower region.
Real Data. We next show SPOT is able to generate high quality paired samples from two unpaired
real datasets: MNIST (LeCun et al., 1998) and MNISTM (Ganin & Lempitsky, 2014). The hand-
written digits in MNIST and MNISTM datasets have different backgrounds and foregrounds (see
Figrue 5). The digits in paired images however, are expected to have similar contours. We leverage
this prior knowledge4 by adopting a semantic-aware cost function (Li et al., 2018b) to extract the
edge of handwritten letters, i.e., we use the following cost function

c(x, y) =
∑2
i=1

∑3
j=1 ‖|Ci ∗ xj | − |Ci ∗ yj |‖F ,

where C1 and C2 denote the Sobel filter (Sobel, 1990), and xj’s and yj’s are the three channels of
RGB images. The operator ∗ denotes the matrix convolution. We set

C1 =

[−1 0 1
−2 0 2
−1 0 1

]
and C2 =

[
1 2 1
0 0 0
−1 −2 −1

]
,

with C1 and C2 defining two extraction directions.

4For OT problems, c can be viewed as a way to add prior knowledge to the problem (Peyré et al., 2017).
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Figure 7: Generated samples of SPOT on Photos-Monet and Sketches-Shoes datasets.
We now use separate neural networks to parameterize GX and GY instead of taking GX and GY
as outputs of a common network. Note that GX and GY does not share parameters. Specifically,
we use two 4-layer convolutional layers in each neural network for GX or GY , and two 5-layer
convolutional neural networks for λX and λY . More detailed network settings are provided in
Appendix A.2. The batch size is 32, and we train the framework with 2 × 105 iterations until the
generated samples become stable.

Figure 5 shows the generated samples of SPOT. We also reproduce the results of CoGAN with
the code from the authors5. As can be seen, with approximately the same network size, SPOT
yields paired images with better quality than CoGAN: The contours of the paired results of SPOT
are nearly identical, while the results of CoGAN have no clear paired relation. Besides, the images
corresponding toGY (Z) in SPOT have colorful foreground and background, while in CoGAN there
are only few colors. Recall that in SPOT, the paired relation is encouraged by ground cost c, and in
CoGAN it is encouraged by sharing parameters. By leveraging prior knowledge in ground cost c,
the paired relation is more accurately controlled without compromising the quality of the generated
images.

We further test our framework on more complex real datasets: Photo-Monet dataset Zhu et al. (2017)
and Edges-Shoes dataset Isola et al. (2017). We adopt the Euclidean cost function for Photo-Monet
dataset, and the semantic-aware cost function as in MNIST-MNISTM for Edges-Shoes dataset.
Other implementations remain the same as the MNIST-MINSTM experiment.

Figure 7 demonstrates the generated samples of both datasets. We observe that the generated images
have a desired paired relation: For eachZ,GX(Z) andGY (Z) gives a pair of corresponding scenery
and shoe. The generated images are also of high quality, especially considering that Photo-Monet
dataset is a pretty small but complex dataset with 6,288 photos and 1,073 paintings.

5.4 DOMAIN ADAPTATION

Optimal transport has been used in domain adaptation, but existing methods are either computation-
ally inefficient (Courty et al., 2017a; Damodaran et al., 2018), or cannot achieve a state-of-the-art
performance (Seguy et al., 2018). Here, we demonstrate that SPOT can tackle large scale domain
adaptation problems with state-of-the-art performance.

In particular, we receive labeled source data {xi} ∼ µ, where each data point is associated with a
label vi, and target data {yj} ∼ ν with unknown labels. For simplicity, we use X and Y to denote
the random vectors following distributions µ and ν, respectively. The two distributions µ and ν can
be coupled in a way that each paired samples of (X,Y ) from the coupled joint distribution are likely
to have the same label. In order to identify such coupling information between source and target
data, we propose a new OT-based domain adaptation method — DASPOT (Domain Adaptation
with SPOT) as follows.

Specifically, we jointly train an optimal transport plan and two classifiers for X and Y (denoted by
DX andDY , respectively). Each classifier is a composition of two neural networks — an embedding
network and a decision network. For simplicity, we denote DX = De,X ◦ Dc,X , where De,X

denotes the embedding network, and Dc,X denotes the decision network (respectively for DY =
De,Y ◦ Dc,Y ). We expect the embedding networks to extract high level features of the source and
target data, and then find an optimal transport plan to align X and Y based on these high level
features using SPOT. Here we choose a ground cost c(x, y) = ‖De,X(x) − De,Y (y)‖2. Let G
denote the generator of SPOT. The Wasserstein distance of such an OT problem can be written as
EZ‖De,X(GX(Z))−De,Y (GY (Z))‖2.

5https://github.com/mingyuliutw/CoGAN
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Meanwhile, we train DX by minimizing the empirical risk 1
n

∑n
i=1[E(DX(xi), vi)], where E de-

notes the cross entropy loss function, and train DY by minimizing
EZ [E(DY (GY (Z)), arg max

k
[DX(GX(Z))]k)], (14)

where [v]k denotes the k-th entry of the vector v. The risk function defined in equation 15 essentially
encourages DX and DY to predict each paired (synthetic) samples of (GX(Z), GY (Z)) to have the
same label.

Eventually, the joint training optimize

min
DX ,DY ,G

max
λX ,λY

Lc(G,λX , λY ) +
ηs

n

n∑
i=1

[E(DX(xi), vi)]

+ηdaEZ [E(DY (GY (Z)), arg max
k

[DX(GX(Z))]k)],

where Lc(G,λX , λY ) is the objective function of OT problem in equation 8 with c defined above,
and ηs, ηda are the tuning parameters. We choose ηs = 103 for all experiments. We set ηda = 0 for
the first 105 iteration to wait the generators to be well trained. Then we set ηda = 10 for the next
3 × 105 iteration. We take totally 4 × 105 iterations, and set the learning rate equal to 10−4 and
batch size equal to 128 for all experiments.

We evaluate DASPOT with the MNIST, MNISTM, USPS (Hull, 1994), and SVHN (Netzer et al.,
2011) datasets. We denote a domain adaptation task as Source Domain→ Target Domain. For the
tasks MNIST→ USPS, USPS→MNIST and MNIST→MNISTM, we use three 4-layer networks
for D,λX ,and λY , and two 5-layer networks for GX and GY . For the task SVHN→ MNIST, we
use three 5-layer downsampling ResNets He et al. (2016) for D,λX , and λY , and two 5-layer up-
sampling ResNets for GX and GY . More detailed implementations are provided in Appendices A.2
and A.3.

Table 1: Domain Adaptation Experiments on multiple
tasks.

Source MNIST USPS SVHN MNIST
Target USPS MNIST MNIST MNISTM
ROT 72.6% 60.5% 62.9% −
StochJDOT 93.6% 90.5% 67.6% 66.7%
DeepJDOT 95.7% 96.4% 96.7% 92.4%
DASPOT 97.5% 96.5% 96.2% 94.9%

We compare the performance of DASPOT
with other optimal transport based do-
main adaptation methods: ROT (Seguy
et al., 2018), StochJDOT (Damodaran
et al., 2018) and DeepJDOT (Damodaran
et al., 2018). As can be seen in Table 1,
DASPOT achieves equal or better perfor-
mances on all the tasks.

Moreover, we show that DeepJDOT is not
as efficient as DASPOT. For example, in
the MNIST→ USPS task, DASPOT requires 169s running time to achieve a 95% accuracy, while
DeepJDOT requires 518s running time to achieve the same accuracy. The reason behind is that
DeepJDOT needs to solve a series of optimal transport problems using Sinkhorn algorithm. The
implementation of DeepJDOT is adapted from the authors’ code6.

6 DISCUSSION

Existing literature shows that several stochastic algorithms can efficiently compute the Wasserstein
distance between two continuous distributions. These algorithms, however, only apply to the dual of
the OT problem equation 1, and cannot provide the optimal transport plan. For example, Genevay
et al. (2016) suggest to expand the dual variables in two reproducing kernel Hilbert spaces. They
then apply the Stochastic Averaged Gradient (SAG) algorithm to compute the optimal objective
value of OT with continuous marginal distributions or semi-discrete marginal distributions (i.e., one
marginal distribution is continuous and the other is discrete). The follow-up work, Seguy et al.
(2017), parameterize the dual variables with neural networks and apply the Stochastic Gradient
Descent (SGD) algorithm to eventually achieve a better convergence. These two methods can only
provide the optimal transport plan and recover the joint density when the densities of the marginal
distributions are known. This is prohibitive in most applications, since we only have access to the
empirical data. Our framework actually allows us to efficiently compute the joint density from the
transformation of the latent variable Z as in Section 4.

6https://github.com/bbdamodaran/deepJDOT
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Appendix

A NETWORK ARCHITECTURE

A.1 NO-SHARING NETWORK

The CNN architecture for experiments in Section 5.3. Table 2 shows the architecture of two map-
pings GX and GY . The two mappings have identical architechture.

Table 2: The CNN architecture for experiments of real datasets in Section 5.3.

Input: z ∈ R100 ∼ N (0, I )
Convolution Filter Activation

Deconv: [4 × 4, 512, stride = 1, padding=0] BN, ReLU
Deconv: [4 × 4, 256, stride = 2, padding=1] BN, ReLU
Deconv: [4 × 4, 128, stride = 2, padding=1] BN, ReLU
Deconv: [4 × 4, 64, stride = 2, padding=1] BN, ReLU
Deconv: [4 × 4, 3, stride = 2, padding=1] Tanh

Table 3 shows the architecture of two discriminators λX , λY . The two networks have identical
architechture and do not share parameters.

Table 3: The CNN architecture of λX , λY for experiments of real datasets in Section 5.3.

Input: Image x ∈ R64×64×3 ∼ µ or ν
Convolution Filter Activation

Conv: [4 × 4, 64, stride = 1, padding=0] ReLU
Conv: [4 × 4, 128, stride = 2, padding=1] BN, ReLU
Conv: [4 × 4, 256, stride = 2, padding=1] BN, ReLU
Conv: [4 × 4, 512, stride = 2, padding=1] BN, ReLU
Conv: [4 × 4, 1, stride = 1, padding=0] −

A.2 CONVOLUTIONAL NETWORK

The CNN architecture for USPS, MNIST and MNISTM. PReLU activation is applied He et al.
(2015). Table 4 shows the architecture of two generators GX and GY . The last column in Table 4
means whether GX and GY share the same parameter.

Table 4: The CNN generater architecture for USPS, MNIST and MNISTM. ch = 1 for USPS and
MNIST; ch = 3 for MNISTM.

Input: z ∈ R100 ∼ N (0, I )
Convolution Filter Activation Shared

Deconv: [4 × 4, 1024, stride = 1, padding=0] BN, PReLU True
Deconv: [3 × 3, 512, stride = 2, padding=1] BN, PReLU True
Deconv: [3 × 3, 256, stride = 2, padding=1] BN, PReLU True
Deconv: [3 × 3, 128, stride = 2, padding=1] BN, PReLU True
Deconv: [3 × 6, ch, stride = 1, padding=1] Sigmoid False

Table 5 shows the architecture of two discriminators λX , λY , and two classifiers DX , DY . The last
column in Table 4 uses (·, ·) to denote which group of discriminators share the same parameter.
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Table 5: The CNN discriminator architecture for USPS, MNIST and MNISTM. ch = 1 for USPS
and MNIST; ch = 3 for MNISTM. cho = 1 for λX and λY ; cho = 10 for DX and DY .

Input: Image x ∈ R28×28×ch ∼ µ or ν
Convolution Filter Activation Shared

Conv: [5 × 5, 20, stride = 1, padding=0] MaxPooling(2,2) (λX , DX);(λY , DY )
Conv: [5 × 5, 50, stride = 1, padding=0] MaxPooling(2,2) (λX , λY , DX , DY )
Conv: [4 × 4, 500, stride = 1, padding=0] PReLU (λX , λY , DX , DY )
Conv: [1 × 1, cho, stride = 1, padding=0] − (λX); (λY ); (DX , DY )

A.3 RESIDUAL NETWORK

The ResNet architecture for SVHN → MNIST. Table 6 shows the architecture of two generators
GX and GY . The last column in Table 6 means whether GX and GY share the same parameter. The
Residual block is the same as the one in Miyato et al. (2018).

Table 6: The ResNet generater architecture for SVHN→ MNIST. ch = 1 for MNIST; ch = 3 for
SVHN.

Input: z ∈ R100 ∼ N (0, I )
Layer Size Activation Shared

Linear: 100→ 4 × 4× 128 − True
ResBlocks: [128, Up-sampling] − True
ResBlocks: [128, Up-sampling] − True
ResBlocks: [128, Up-sampling] BN,PReLU True
Conv: [3 × 3, ch, stride = 1, padding =0] Sigmoid False

Table 7 shows the architecture of two discriminators λX , λY , and two classifiers DX , DY . The last
column in Table 7 uses (·, ·) to denote which group of discriminators share the same parameter.

Table 7: The ResNet discriminator architecture for SVHN→ MNIST. ch = 1 for MNIST; ch = 3
for SVHN. cho = 1 for λX and λY ; cho = 10 for DX and DY .

Input: Image x ∈ R28×28×ch ∼ µ or ν
Layer Size Activation Shared

ResBlocks: [128, Down-Sampling] − (λX , DX);(λY , DY )
ResBlocks: [128, Down-Sampling] − (λX , λY , DX , DY )
ResBlocks: [128, Down-Sampling] − (λX , λY , DX , DY )
Conv: [4 × 4, 500, stride = 1, padding=0] PReLU (λX , λY , DX , DY )
Conv: [1 × 1, cho, stride = 1, padding=0] − (λX); (λY ); (DX , DY )
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