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Abstract

Histochemical staining of tissue samples is required for the diagnosis of many diseases, in-
cluding cancer; however, the staining process is often time consuming, slow, costly, and does
not support tissue preservation for advanced molecular analysis of the sample. Recently, we
presented a deep learning framework that can perform virtual histochemical staining, in sil-
ico, of unlabeled tissue sections using a single autofluorescence image, emanating from the
tissues endogenous fluorophores(Rivenson et al., 2019b). We validated the success of this
technique through a direct comparison between the virtually and histochemically stained
slides, as well as by a blind study performed by a panel of board-certified pathologists.
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1. Introduction

A wide variety of diseases are diagnosed through histological analysis. It is typically done
through a long and labor-intensive process which involves sectioning a tissue sample into
a thin slice, mounting it to a microscope slide, and labeling it chemically. Following these
steps, the labeled tissue section can be microscopically studied by pathologist using a bright-
field microscope. In recent years there have been several attempts to change this process
and eliminate the need for chemical labeling. These attempts have used methods such
as Raman scattering(Ji et al., 2013) second harmonic generation(Tao et al., 2014), or a
combination of different imaging modalities(Tu et al., 2016). Furthermore, some of these
imaging modalities have been augmented with pseudo-hematoxylin and eosin (HE) stain-
ing, to accommodate for the diagnostic gold-standard(Tao et al., 2014), (Giacomelli et al.,
2016). However, most of these methodologies scan slowly and require high-end equipment.
Pseudo-staining procedures were limited to HE, with simplified approximations to the dye
concentration and studies mostly limited to one type of tissue. Recently(Rivenson et al.,
2019b), we demonstrated that using a single autofluorescence image of a tissue section,
captured with a standard fluorescence microscope, we can create a virtually-stained image
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using deep learning, matching the brightfield image of the histologically stained version of
the same tissue sample. We demonstrated the efficacy of this approach with various tissue
and stain combinations that were examined by a panel of board-certified pathologist.

2. Methods

For each tissue and stain type, an image dataset made up of co-registered autofluorescence
images of label-free tissue samples and the corresponding brightfield histochemically stained
tissue images were created. The unlabeled tissue slides were first imaged using the autoflu-
orescence emission from near-UV excitation and then histochemically stained and imaged
again using a brightfield microscope. Following that, the images were registered using a se-
ries of steps beginning with a coarse matching of the fields of view, determined by cropping
out the area with the highest correlation and then correcting for size and rotation. To finely
register the images, a network was first trained to perform a rough transformation between
the images. An elastic registration algorithm was then used to match the histochemical
stained labels with the output of the network at a subpixel level.

In order to generate the virtually stained images of label-free tissue samples, a genera-
tive adversarial network (GAN)(Goodfellow et al., 2014) was used in conjunction with an
L1 and total variation loss(Rudin et al., 1992) as regulaizers. A U-net architecture was
used as the generator(Ronneberger et al., 2015), while a VGG style classifier(Simonyan and
Zisserman, 2015) was used as the discriminator. A diagram of the network structures can
be seen in Figure 1.

Figure 1: Diagram of the network structure. a) Diagram of the generator network. b)
Diagram of the discriminator network. Scale bar indicates 50 µm.

3. Results

We performed the virtual staining using our approach with a variety of tissue and stain
combinations. Three examples of these can be seen in Figure 2, which demonstrates a com-
parison between the networks output and the ground truth histochemically stained tissue
samples. This figure demonstrates the networks ability to accurately transform three dif-
ferent tissue types (salivary gland, liver, kidney) and three different stains (HE, Massonss
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trichrome, Jones stain). Other tissue types such as lung, prostate, and skin were also used
for diagnostic validation of our images(Rivenson et al., 2019b).

In addition to direct comparisons between the images, our technique was further vali-
dated in a diagnostic setting by a panel of four board-certified pathologists. During a blind
test, the pathologists were given 15 tissues to diagnoses. This analysis indicated that there
were no clinically significant difference between the diagnoses made with virtually stained
images vs. the standard histochemically stained ones(Rivenson et al., 2019b). An addi-
tional blind study performed by 6 pathologists was used to judge the quality of the staining
technique. These pathologists were given a series of virtually stained whole slide images
(WSIs) and the corresponding histochemically stained images. They rated different aspects
of the staining quality for both slides, and no clear preference was found for either staining
technique(Rivenson et al., 2019b).

An added benefit to virtually staining tissues is that the process is more repeatable than
manually prepared histochemical staining. This lack of variation can be helpful for both
pathologists and any software used for e.g., automated analysis and classification.

Figure 2: Demonstration of deep learning-based virtual staining using three different stains
and tissue types. a) salivary gland tissue, b) liver tissue, c) kidney tissue. Scale
bar indicates 50 µm.

4. Conclusions

This presented technique has the potential to transform histopathology workflow by elim-
inating the need for histochemical staining of tissues, which will reduce costs, enable his-
totechnologists to perform more advanced analysis on the preserved tissue and allow overall
faster diagnoses. The technique can also benefit from additional wavelengths of autofluo-
rescence(Rivenson et al., 2019b) and can be generalized to other imaging modalities, such
as phase imaging(Rivenson et al., 2019a). Furthermore, the staining standardization can
foster more accurate and reliable diagnosis for both human experts and machine learning
tools(Liu et al., 2017).

3



Virtual histological staining using deep learning

References

Michael G. Giacomelli, Lennart Husvogt, Hilde Vardeh, Beverly E. Faulkner-Jones, Joachim
Hornegger, James L. Connolly, and James G. Fujimoto. Virtual Hematoxylin and
Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging. PLOS ONE, 11
(8):e0159337, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems (NIPS), pages 2672–2680, 2014.

Minbiao Ji, Daniel A. Orringer, Christian W. Freudiger, Shakti Ramkissoon, Xiaohui Liu,
Darryl Lau, Alexandra J. Golby, Isaiah Norton, Marika Hayashi, Nathalie Y. R. Agar,
Geoffrey S. Young, Cathie Spino, Sandro Santagata, Sandra Camelo-Piragua, Keith L.
Ligon, Oren Sagher, and X. Sunney Xie. Rapid, label-free detection of brain tumors with
stimulated Raman scattering microscopy. Science Translational Medicine, 5(201), 2013.

Yun Liu, Krishna Gadepalli, Mohammad Norouzi, George E. Dahl, Timo Kohlberger, Alek-
sey Boyko, Subhashini Venugopalan, Aleksei Timofeev, Philip Q. Nelson, Greg S. Cor-
rado, Jason D. Hipp, Lily Peng, and Martin C. Stumpe. Detecting Cancer Metastases on
Gigapixel Pathology Images. arXiv:1703.02442, 2017.

Yair Rivenson, Tairan Liu, Zhensong Wei, Yibo Zhang, Kevin Haan, and Aydogan Ozcan.
PhaseStain: the digital staining of label-free quantitative phase microscopy images using
deep learning. Light: Science & Applications, 8(1):23, 2019a.

Yair Rivenson, Hongda Wang, Zhensong Wei, Kevin Haan, Yibo Zhang, Yichen Wu, Harun
Gnaydn, Jonathan E. Zuckerman, Thomas Chong, Anthony E. Sisk, Lindsey M. West-
brook, W. Dean Wallace, and Aydogan Ozcan. Virtual histological staining of unlabelled
tissue-autofluorescence images via deep learning. Nature Biomedical Engineering, 2019b.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted
Intervention (MICCAI), pages 234–241. Springer International Publishing, 2015. ISBN
978-3-319-24574-4.

Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear Total Variation Based Noise
Removal Algorithms. In Proceedings of the Eleventh Annual International Conference of
the Center for Nonlinear Studies on Experimental Mathematics : Computational Issues
in Nonlinear Science: Computational Issues in Nonlinear Science, pages 259–268, New
York, NY, USA, 1992.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-
Scale Image Recognition. In Proceedings of the International Conference on Learning
Representations (ICLR), 2015.

Yuankai K. Tao, Dejun Shen, Yuri Sheikine, Osman O. Ahsen, Helen H. Wang, Daniel B.
Schmolze, Nicole B. Johnson, Jeffrey S. Brooker, Alex E. Cable, James L. Connolly,

4



Virtual histological staining using deep learning

and James G. Fujimoto. Assessment of breast pathologies using nonlinear microscopy.
Proceedings of the National Academy of Sciences, 111(43):15304–15309, 2014.

Haohua Tu, Yuan Liu, Dmitry Turchinovich, Marina Marjanovic, Jens Lyngs, Jesper Lgs-
gaard, Eric J. Chaney, Youbo Zhao, Sixian You, William L. Wilson, Bingwei Xu, Marcos
Dantus, and Stephen A. Boppart. Stain-free histopathology by programmable supercon-
tinuum pulses. Nature Photonics, 10(8):534–540, 2016.

5


	Introduction
	Methods
	Results
	Conclusions

