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ABSTRACT

Most of the work on interpretable machine learning has focused on designing
either inherently interpretable models, which typically trade-off accuracy
for interpretability, or post-hoc explanation systems, which lack guaran-
tees about their explanation quality. We explore an alternative to these
approaches by directly regularizing a black-box model for interpretability
at training time. Our approach explicitly connects three key aspects of
interpretable machine learning: (i) the model’s inherent interpretability, (ii)
the explanation system used at test time, and (iii) the metrics that measure
explanation quality. Our regularization results in substantial improvement
in terms of the explanation fidelity and stability metrics across a range of
datasets and black-box explanation systems while slightly improving accu-
racy. Finally, we justify theoretically that the benefits of our regularization
generalize to unseen points.

1 INTRODUCTION

Complex learning-based systems are increasingly shaping our daily lives, and, in order to
monitor and understand these systems, we require clear explanations of model behavior.
While model interpretability has many definitions and is often largely application specific
(Lipton, 2016), local explanations are a popular and powerful tool (Ribeiro et al., 2016).
Recent work on local interpretability in machine learning ranges from proposals of new
models that are interpretable by-design (e.g., Wang and Rudin, 2015; Caruana et al., 2015)
to model-agnostic post-hoc algorithms for interpreting complex, black-box predictors such as
ensembles and deep neural networks (e.g., Ribeiro et al., 2016; Lei et al., 2016; Lundberg
and Lee, 2017; Selvaraju et al., 2017; Kim et al., 2018). Despite the variety of technical
approaches, the underlying goal of all of these works is to develop an interpretable predictive
system that produces two outputs: a prediction and its underlying explanation.

Both interpretability by-design and post-hoc explanation strategies have limitations. On
one hand, the by-design approaches are restricted to working with model families that
provide inherent interpretability, potentially at the cost of accuracy. On the other hand, by
performing two disjoint steps, there is no guarantee that post-hoc explainers applied to an
arbitrary model will produce explanations of suitable quality. Moreover, recent approaches
that claim to overcome this apparent trade-off between prediction accuracy and explanation
quality are in fact by-design proposals that impose certain constraints on the underlying
model families they consider (e.g., Al-Shedivat et al., 2017; Plumb et al., 2018; Alvarez-
Melis and Jaakkola, 2018a). In this work, we propose a novel alternative strategy called
Ezxplanation-based Optimization (ExpO) that aims to address both of these shortcomings by
adding an interpretability reqularizer to the loss function of an arbitrary predictive model.
We illustrate how ExpO can influence the interpretability and accuracy of a model in Figure 1
(left).

Illustration. Consider a situation where Bob’s loan application is denied by a machine
learning system; see the toy illustration in Figure 1 (right). Here, a good local explanation can
help Bob understand how to improve his application in order to get the loan. Unfortunately, a
standard model, a multi-layer perceptron trained with SGD, is not very interpretable because
it has many abrupt changes. Indeed, we can quantitatively measure the local interpretability
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Figure 1: Left: Neighborhood Fidelity of LIME-generated explanations (lower is better) vs.
predictive error of several models trained on the UCI ‘housing’ regression dataset. The values in blue
denote regularization weight of ExpO; note that it can improve both accuracy and interpretability.
Right: The effects of ExpO on a model predicting a hypothetical credit rating. The kinks in the
unregularized model make local linear explanations have lower fidelity and be less stable to small
perturbations. The regularized model is much smoother and more interpretable.

of the model using the standard fidelity (Ribeiro et al., 2016; Plumb et al., 2018) and stability
(Alvarez-Melis and Jaakkola, 2018a) explanation metrics. To make the learned model more
amenable to local explanation, ExpO augments the objective function with fidelity- or
stability-based regularizers, effectively controlling the degree of local explainability.

The specific contributions of our work are as follows:

1. Interpretability regularizers. We introduce two interpretability regularizers associated
with the fidelity and stability explanation metrics. The first, ExpO-Fidelity, is designed for
semantic features and explainers that directly make predictions, such as those in Ribeiro
et al. (2016); Lundberg and Lee (2017); Plumb et al. (2018). The second, ExpO-Stability,
is tailored for non-semantic features (e.g., pixels) and explainers that identify features
that are influential on a prediction, such as saliency maps (Simonyan et al., 2013). Both
regularizers are differentiable and can be used to augment the objective function of an
arbitrary model. In Section 3.1, we discuss how they differ from the classical approaches
for local approximation and function smoothing.

2. Generalizable explanation quality. We analyze the properties of the explanation
quality metrics and show that the benefits of our regularization generalize to unseen
points. Specifically, we derive a bound on the gap between the fidelity of explanations on
training and held out points and connect it with the local variance of the learned model.

Empirical results. We evaluate models trained with and without our regularizers on a
variety of regression and classification tasks with semantic and image features.! Empirically,
they slightly improve predictive performance across the nine datasets we consider (seven
UCI regression tasks, a medical classification task, and MNIST). From an interpretability
perspective, our results demonstrate significant improvement in terms of explanation quality
as measured by the fidelity and stability metrics. In particular, our regularizers improved
explanation fidelity by at least 25% on the UCI datasets and on the medical classification
task while stability on MNIST was improved by orders of magnitude. Additionally, we found,
qualitatively, that our regularizers produce models with simpler and more comprehensible
explanations. In summary, black-box explanation systems work better on models trained with
ExpO and, as an additional benefit, those models tend to be more accurate.

2 BACKGROUND AND RELATED WORK

Consider a supervised learning problem, where our goal is to estimate a model, f: X — ),
f € F, that maps input feature vectors, x € X, to targets, y € )V, and is trained using
data, {z;,y;},. If the class of functions used for modeling the data is complex, we can

1The code for our regularizers and all experiments is at: https://github.com/ForReview11235/CodeForICLR2020
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understand the behavior of f in some neighborhood, N, € P[X] (where P[X] is the space of
probability distributions over X), by generating a local explanation.

We denote algorithms that produce explanations (i.e., explainers) as e : X x F +— &, where
£ is the set of possible explanations. The choice of £ generally depends on whether or not X
consists of semantic features, and will be defined more precisely next.

2.1 SEMANTIC FEATURES

We call features semantic if people can reason about them and understand what it means
when their values change (e.g., a person’s income, the concentration of a chemical, etc.).
Consequently, local explanations try to predict how the model’s output would change if the
input was perturbed (Ribeiro et al., 2016; Lundberg and Lee, 2017; Plumb et al., 2018).
Thus, we can define the output space of the explainer as & :={g € G| g: X — Y}, where G
is a class of interpretable (typically linear) functions.

Fidelity metric. When the explainer’s output space is &, the explanation is defined
as a function g : X — ), and it is natural to evaluate how accurately g models f in a
neighborhood N, (Ribeiro et al., 2016; Plumb et al., 2018):

F(f,9,N2) i=Epn.[(9(a) — f(2)7], (1)

which we refer to as the neighborhood-fidelity (NF) metric. This metric is sometimes evaluated
with N, as a point mass on = and we call this version the point-fidelity (PF) metric. While
Plumb et al. (2018) argued that point-fidelity can be misleading because it does not measure
generalization of e(z, f) across N, it has been used for evaluation in the prior work (Ribeiro
et al., 2016; Lundberg and Lee, 2017; Ribeiro et al., 2018) and we report it in our experiments
along with the neighborhood-fidelity for completeness.

Black-box explanation systems. Various explainers have been proposed to generate
local explanations of the form g : X — Y, typically assuming that ¢ is linear. In particular,
LIME (Ribeiro et al., 2016), one of the most popular black-box explanation systems?, solves
the following optimization problem:

e(z, f) = argmin F(f, g, Nz) + Q(g), (2)
gEEs

where §2(e) stands for an additive regularizer that encourages certain desirable properties of
the explanations (e.g., sparsity). LIME’s objective function is closely related to the fidelity
metric and subsequently to our proposed ExpO-Fidelity regularizer. Consequently, we expect
our regularizer to improve the quality of LIME-generated explanations. Our experimental
results in Section 4.1 corroborate this hypothesis.

Along with LIME, we consider another black-box explanation tool, called MAPLE (Plumb
et al., 2018). Tt differs substantially from LIME in that its neighborhood function is learned
from the data rather than specified as a parameter. In our experiments, we evaluate the
quality of MAPLE-generated local explanations for models regularized via ExpO-Fidelity, but
do not use MAPLE’s learned neighborhood function to define ExpO-Fidelity. We view this as
a good test case to see how optimizing the fidelity metric for one neighborhood generalizes
to another one (see Section 3 for a more detailed discussion of this point). In Section 4.1, we
see that regularizing for LIME neighborhoods improves MAPLE’s explanation quality.

2.2 NON-SEMANTIC FEATURES

Non-semantic features lack an inherent interpretation, with images being a canonical example.
When X consists of non-semantic inputs, we cannot assign meaning to the difference between
2 and 2, hence it does not make sense to explain the difference between the predictions f(x)
and f(z'). As a result, fidelity is not an appropriate explanation metric. Instead, in this

2SHAP (Lundberg and Lee, 2017) is another popular method that proposes a theoretically-
motivated neighborhood sampling function, but requires explanations to be linear models that act
on binary features. This requirement is too limiting in our case.
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context, local explanations try to identify which parts of the input are particularly influential
on a prediction (Sundararajan et al., 2017). Consequently, we consider explanations of the
form &, := R?, where d is the number of features in X.

Stability metric and saliency maps. When the explainer’s output space is &, the
explanation is a vector in R?, and cannot be directly compared to the underlying model
itself, as in the case of the fidelity metric. Instead, the focus in this setting is on the degree
to which the explanation changes between points in a local neighborhood, which we measure
using the stability metric (Alvarez-Melis and Jaakkola, 2018a):

S(faeaN:E) = Ef/NNm[He(xaf) 76(‘%/7.](‘)”%] (3)

Various explainers (Sundararajan et al., 2017; Zeiler and Fergus, 2014; Shrikumar et al., 2016;
Smilkov et al., 2017; Adebayo et al., 2018) have been proposed to generate local explanations
in &5, with saliency maps (Simonyan et al., 2013) being the approach that we consider in
this work. Saliency maps assign importance weights to image pixels based on the magnitude
of the gradient of the predicted class with respect to the corresponding pixels.

Recent work on model interpretability emphasizes that more stable explanations tend to be
more trustworthy (Alvarez-Melis and Jaakkola, 2018a; Ghorbani et al., 2017; Alvarez-Melis
and Jaakkola, 2018b). Note that the stability metric can also be considered in the context of
semantic features in addition to the fidelity metric.

2.3 RELATED METHODS

A few recently proposed approaches to model interpretability are closely related to our
work. First, self-explaining neural networks (SENN) (Alvarez-Melis and Jaakkola, 2018a) (a
variation of contextual explanation networks (Al-Shedivat et al., 2017)) is an interpretable
by-design approach that additionally (indirectly) optimizes their models to produce stable
explanations. Second, “Right For The Right Reasons” (RTFR) (Ross et al., 2017) selectively
penalizes gradients of the output with respect to certain input features at some points to
discourage their use by the model. Finally, a work concurrent with ours (Lee et al., 2019),
which expanded on (Lee et al., 2018), proposed to regularize models of structured data to
encourage explainability in a way that is similar to ExpO but differs substantially in how the
the target explanation for the regularizer is defined and in how the final objective function is
optimized.

From a technical standpoint, SENN and RTFR both assume that the local explanation is
close to the first order Taylor approximation of the model at that point. In Section 3.1, we
demonstrate how Taylor approximations are often quite different from and more difficult to
use than the neighborhood-based local explanations that we use in ExpO. Further, SENN’s
regularizer requires the neural network to have a very particular structure and, therefore,
unlike ExpO, cannot by applied to an arbitrary model. While RTFR’s regularization can be
used with arbitrary models, it is not directly related to a measure of explanation quality
and is defined using specific domain knowledge; on the other hand, ExpO aims to directly
improve quality of explanations with respect to a specific metric and does not require domain
knowledge. In the Appendix A.1, we compare ExpO to simple [y and [ regularization since
other baselines are either model specific or require domain knowledge. We found that they
do not significantly impact model interpretability.

3 EXPLANATION OPTIMIZATION

Running black-box explainers on arbitrary models does not guarantee the quality of the
resulting explanations. To address this, we define regularizers that can be added to the loss
function and used to train an arbitrary model f. Specifically, we want to solve the following
optimization problem:

R 1l re
f= argen]}_m i ;(C(f, zi,yi) + YR(f, N2o¥)) (4)
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where L(f,z;,y;) is a standard predictive loss (e.g., squared error for regression or cross-
entropy for classification), R(f, N;%®) is a regularizer that encourages explainability of f
in the neighborhood of z;, and v > 0 controls the regularization strength. Because our
regularizers are differentiable, we can solve Equation 4 using any standard gradient-based
algorithm; in our case, SGD with Adam.

We define R(f, N:¢) based on either the neighborhood- - —
fidelity, Eq. (1), or the neighborhood-stability, Eq. (3). Algorithm 1 ExpO-Fidelity
In order to compute these metrics exactly, we would input f, «, NioE m
need to run an explainer algorithm, e; this may be non- % Sample: @3, ..., 2y, ~ N
. . . . : Compute predictions:
differentiable or too computationally expensive to use as 9:(0) = fo(z) for j =1,
a regularizer. Thus, for ExpO-Fidelity, we approximate g, P] d 1.” lanation:
N . . . roduce a linear exp. anation:

e using a local linear model fit on points sampled from o om e
N’e9 (Algorithm 1). For ExpO-Stability, we simply require Bz(0) = argming j;(yj(e)*ﬁ z3)
that the model’s output not change too much across Ny output L S (§5(0) — Ba(0)T2))?
(Algorithm 2).3

Choosing the neighborhood. Defining a good regular- Algorithm 2 ExpO-Stability
ization neighborhood, requires considering the following.

..,m

- O input fo, z, N;°¢, m
On one hand, we would like V¢ to be similar to Nz, as  1: Sample: o/, ...,z ~ NI°&
used in Eq. 1 or Eq. 3, so that the neighborhoods used  2: Compute predictions:
for regularization and for evaluation match. On the other 95(0) = fo(xj), for j=1,....m

hand, we also would like N€ to be consistent with the outPut 5327, (7;(0) — fo(x))?
‘local neighborhood’ defined by e internally, which may
differ from N,. For LIME, this is not a problem since the internal definition of the ‘local
neighborhood’ is a hyperparameter that we can set. However for MAPLE, the ‘local neighbor-
hood’ is learned from the data, and hence the regularization and explanation neighborhoods
may differ. Ultimately, we left resolving this tension to future work.

Computational cost. Algorithm 1 could be prohibitively expensive since the number of
samples, m, from N, has to be proportional to the dimension of x, d, resulting in O(d?)
evaluations of f to compute the regularizer at x. So we also test a randomized version of
Algorithm 1, ExpO-1D-Fidelity, that randomly selects one dimension of x to perturb according
to N;°9 and penalizes the error of a local linear model along that dimension. This breaks
the dependence of the computational cost of the regularizer on d and allows us to compute
each gradient step with a O(1) increase in the number of evaluations of f.

3.1 UNDERSTANDING THE PROPERTIES OF EXPO

The goal of this section is to compare the behavior of local linear explanations and our
regularizers to some existing theoretical function approximations and measures of variance
to help develop an intuitive understanding of ExpO. First, we compare neighborhood-based
local linear explanations to first order Taylor approximations to show that they can have
fundamentally very different behaviors. Second, we compare ExpO-Fidelity to the Lipchitz
Constant (LC) and Total Variation (TV) of the learned function.

Local explanations vs. Taylor approximations. A natural question to ask is, Why
should we sample from N, in order to locally approzimate f when there are easier and
theoretically motivated approxrimations? One possible way to do this is via the Taylor
approximation (Alvarez-Melis and Jaakkola, 2018a). The downside of a Taylor approximation-
based approach is that such an approximation cannot readily be adjusted to different
neighborhood scales and its fidelity and stability strictly depend on the learned function.
This can be seen in Figure 2 (left) where the Taylor approximations at two nearby points
are both radically different and not faithful to the model outside of an small neighborhood.

Fidelity regularization and the model’s LC or TV. From a theoretical perspective,
our regularizer is similar to controlling the Lipschitz Constant or Total Variation of f across
N, after removing the part of f explained by e(x, f). From an interpretability perspective,
there is nothing inherently wrong with having a large LC or TV, which is demonstrated in

3 A similar procedure was explored previously in (Zheng et al., 2016) for adversarial robustness.
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Figure 2: Left: A function (blue), its first order Taylor approximations at = 0.4 (green) and
xz = 0.5 (red), and a local explanation of the function (orange) computed with z = 0.5 and N, = [0, 1].
Right (top row): Two functions (blue) and their local linear explanations (orange). The local
explanations were computed with z = 0.5 and N, = [0, 1]. Right (bottom row): The unexplained
portion of the function (residuals).

Figure 2 (right). However, once we take into account what can be explained by e(z, f), then
upper bounding any one of ExpO-Fidelity, the LC, or the TV will upper bound the others.

3.2 GENERALIZATION OF LOCAL LINEAR EXPLANATIONS

To conclude our analysis, we study the quality of local linear explanations in terms of
generalization. Note that ExpO regularization encourages learning models that are explainable
in the neighborhoods of each training point. However, how would this property generalize to
unseen points? We answer this question by providing a generalization bound in terms of
neighborhood-fidelity metric for local linear explanations (see Appendix A.2 for derivations).

Proposition 1 Let the neighborhood sampling function N, be characterized by some param-
eter o (e.g., the effective radius of a neighborhood) and the variance of the trained model f(x)
across all such neighborhoods be bounded by some constant C(a) > 0. Then, the following
bound holds with at least 1 — § probability:

- C2(o)log L
E[“f’w)]é,igr(f,xm SR

(5)

Remark 2 The obtained bound tells us that explainable models with smaller local variances
across the neighborhoods are likely to have explanations of higher fidelity on the held out
points. This further motivates the approximation we used in Algorithm 2.

4 EXPERIMENTAL RESULTS

In our first set of experiments, we demonstrate the effec-

K ) . . Dataset 1 di

tiveness of ExpO-Fidelity and ExpO-1D-Fidelity on datasets 11 e # Sampg;: # lm:
with semantic features using seven regression problems :gn?;ﬁ)fisties 1993 102
from the UCT collection (Dheeru and Karra Taniskidou, day 731 14
2017) as well as an in-hospital mortality classification housing 506 11

bl Dat t statisti in Table 1. O d music 1059 69
problem. Dataset statistics are in Table 1. Our second ex- 00 uality-red 1599 11
periment demonstrates the effectiveness of ExpO-Stability MsSD 515345 90
for creating saliency maps (Simonyan et al., 2013) on ig\ﬁg?RT? 63(1)83 72111
MNIST (LeCun, 1998). We found that a model trained =

with our regularizers is more interpretable than a model
trained without them because black-box explainers pro-
duce quantitatively better explanations for them; further, they are often more accurate.
Finally, we demonstrate qualitatively that the explanations for the regularized model tend
to be simpler.

Table 1: Statistics of the datasets.
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4.1 NEIGHBORHOOD-FIDELITY REGULARIZATION

We compare models trained with our regularizers to models trained without them. We report
accuracy and three interpretability metrics: Point-Fidelity (PF), Neighborhood-Fidelity (NF),
and Stability (S). The interpretability metrics are evaluated for two black-box explanation
systems: LIME and MAPLE. Consequently, the “MAPLE-PF” label corresponds to the
Point-Fidelity Metric for explanations produced by MAPLE.

Experimental setup. All of the inputs to the model were standardized to have mean zero
and variance one (including the response variable for regression problems). The network
architectures and hyper-parameters were chosen using a simple grid search. For the final
results, we set N, to be N (z,0) with o = 0.1 and N1 to be N(x,0) with ¢ = 0.5. In the
Appendix A.3, we discuss how these values were chosen.

UCI regression experiments. The effects of ExpO-Fidelity and  Feature X Unreg. ExpO
ExpO-1D-Fidelity on model accuracy and interpretability are in  crim 25 -0.05 -0.03
Table 3. ExpO-Fidelity frequently improved the interpretability y0X° 00 5% %
metrics by over 50%, with the smallest improvements being around = RM 14 022 02
25%. Further, it lowered the prediction error on the ‘communities’, [A)?SE R
‘day’, and ‘MSD’ datasets, which lets us conclude that it has a I%ﬁ)? 16 8;? 83
small positive effect on accuracy as well. ExpO-1D-Fidelity generally — prratio 08 011 014
had a similar effect on the interpretability metrics. Pear 01 koo

We ran experiments on the ‘MSD’ dataset* to understand the Table 2: LIME’s ex-
scalability of ExpO to larger tasks. On this dataset, evaluating planation coefficients for
the interpretability metrics using MAPLE was fairly slow, and unregularized and ExpO-
hence we only evaluate them using LIME on the first 1000 testing regularized models.
points. Both ExpO-Fidelity and ExpO-1D-Fidelity improved LIME’s
interpretability metrics by at least 50% and both improved the
model accuracy.

i

Uy

Medical classification experiments. The ‘support2’ dataset®
is used for in-hospital mortality prediction. Because the output
layer of our models is the softmax over logits for two classes, we run
each explanation system on each of the individual logits. Table 4
presents the results. We observe that ExpO-Fidelity improved the
interpretability metrics by 50% or more. ExpO-1D-Fidelity slightly
decreased accuracy and improved the interpretability metrics by
at least 25%.

e

€5 ™o

A qualitative example on the UCI ‘housing’ dataset. While
we have demonstrated quantitatively that black-box explainers pro-
duce better explanations for ExpO-regularized models, here we
qualitatively analyze the changes in the explanations. More exam-
ples, that show similar effects, are available in the Appendix A.4.

.
L
v e,

Figure 3: Original im-
Consider the UCI ‘housing’ dataset, a regression problem to predict ages (left) and saliency
housing prices in the Boston area. After sampling a random point maps of an unregularized
z, we use LIME to generate a local linear explanation at this (middle) and regularized
point for a model trained without regularization (“unregularized (right) models.
explanation”) and for a model trained with ExpO-1D-Fidelity (“regularized explanation”).
The unregularized and regularized explanations are shown in Table 2.

Quantitatively, using ExpO-1D-Fidelity decreased the LIME-NF metric from 1.15 to 0.02; i.e.
ExpO produced a model that is much more accurately modeled by the explanation around x.
Note that the regularized explanation has fewer significant coefficient (those with absolute
value greater than 0.1), and hence it is simpler as the effect is attributed to fewer features.

4The task is to predict release year of song from a set of acoustic features, treated as a regression
problem as in Bloniarz et al. (2016)
*http://biostat.mc.vanderbilt.edu/wiki/Main/SupportDesc.
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Table 3: Uregularized model vs. the same model trained with ExpO-Fidelity or ExpO-1D-Fidelity
on the UCI regression datasets. Results are shown across 20 trials (with the standard error in
parenthesis). Statistically significant improvement (p = 0.05) due to Fidelity is denoted in bold and
due to 1D-Fidelity is underlined.

Metric Regularizer ‘ autompgs communities day' (107%) housing music winequality.red MSD
None 0.14 (0.03) 0.49 (0.05) 1.000 (0.300 0.14 (0.05) 0.72 (0.09) 0.65 (0.06) 0.583 (0.018)
MSE Fidelity 0.13 (0.02) 0.46 (0.03) 0.002 (0.002) 0.15 (0.05) 0.67 (0.09) 0.64 (0.06) 0.557 (0.0162)
1D-Fidelity 0.13 (0.02) 0.55 (0.04) 5.800 (8.800) 0.15 (0.07) 0.74 (0.07) 0.66 (0.06) 0.548 (0.0154
None 0.040 (0.011) 0.100 (0.013) 1.200 (0.370) 0.14 (0.036) 0.110 (0.037) 0.0330 (0.0130) 0.116 (0.0181)
LIME-PF Fidelity 0.011 (0.003) 0.080 (0.007) 0.041 (0.007) 0.057 (0.017) 0.066 (0.011) 0.0025 (0.0006) 0.0293 (0.00709)
1D-Fidelity 0.029 (0.007) 0.079 (0.026) 0.980 (0.380) 0.064 (0.017) 0.080 (0.039) 0.0029 (0.0011) 0.057 (0.0079)
None 0.041 (0.012) 0.110 (0.012) 1.20 (0.36) 0.140 (0.037) 0.112 (0.037) 0.0330 (0.0140) 0.117 (0.0178)
LIME-NF Fidelity 0.011 (0.003) 0.079 (0.007) 0.04 (0.07) 0.057 (0.018)  0.066 (0.011) 0.0025 (0.0006) 0.029 (0.007)
1D-Fidelity 0.029 (0.007 0.080 (0.027 1.00 (0.39) 0.064 (0.017) 0.080 (0.039) 0.0029 (0.0011) 0.0575 (0.0079)
None 0.0011 (0.0006) 0.022 (0.003) 0.150 (0.021) 0.0047 (0.0012) 0.0110 (0.0046) 0.00130 (0.00057) 0.0368 (0.00759)
LIME-S Fidelity 0.0001 (0.0003) 0.005 (0.001) 0.004 (0.004) 0.0012 (0.0002) 0.0023 (0.0004) 0.00007 (0.00002) 0.00171 (0.00034)
1D-Fidelity 0.0008 (0.0003) 0.018 (0.008) 0.100 (0.047) 0.0025 (0.0007) 0.0084 (0.0052) 0.00016 (0.00005) 0.0125 (0.00291)
None 0.0160 (0.0088) 0.16 (0.02) 1.0000 (0.3000) 0.057 (0.024) 0.17 (0.06) 0.0130 (0.0078)
MAPLE-PF  Fidelity 0.0014 (0.0006) 0.13 (0.01) 0.0002 (0.0003) 0.028 (0.013) 0.14 (0.03) 0.0027 (0.0010)
1D-Fidelity 0.0076 (0.0038) 0.092 (0.03) 0.7600 (0.3000) 0.027 (0.012) 0.13 (0.05) 0.0016 (0.0007)
None 0.0180 (0.0097) 0.31 (0.04)  1.2000 (0.3200) 0.066 (0.024) 0.18 (0.07) 0.0130 (0.0079) —
MAPLE-NF  Fidelity 0.0015 (0.0006) 0.24 (0.05) 0.0003 (0.0004) 0.033 (0.014) 0.14 (0.03) 0.0028 (0.0010) =
1D-Fidelity 0.0084 (0.0040) 0.16 (0.05) 0.9400 (0.3600) 0.032 (0.013) 0.14 (0.06) 0.0017 (0.0008)
None 0.0150 (0.0099) 1.2 (0.2) 0.0003 (0.0008) 0.18 (0.14) 0.08 (0.06) 0.0043 (0.0020) —
MAPLE-S  Fidelity 0.0017 (0.0005) 0.8 (0.4)  0.0004 (0.0004) 0.10 (0.08) 0.05 (0.02) 0.0009 (0.0004)
1D-Fidelity 0.0077 (0.0051) 0.6 (0.2) 1.2000 (0.6600) 0.09 (0.06) 0.04 (0.02) 0.0004 (0.0002) —

fThe relationship between inputs and targets on the ‘day’ dataset is very close to linear and hence all errors are

orders of magnitude smaller than across other datasets.

Table 4: Uregularized model vs. the same model trained with ExpO-Fidelity or ExpO-1D-Fidelity on
the ‘support2’ binary classification dataset. Each explanation metric was computed for both the
positive and the negative class logits. Results are shown across 10 trials (with the standard error in
parenthesis). Improvement due to Fidelity and 1D-Fidelity over unregularized model is statistically
significant (p = 0.05) for all of the metrics.

Output Regularizer LIME-PF LIME-NF LIME-S MAPLE-PF MAPLE-NF MAPLE-S
None 0.177 (0.063) 0.182 (0.065) 0.0255 (0.0084) 0.024 (0.008) 0.035 (0.010) 0.34 (0.06)
Positive Fidelity 0.050 (0.008)  0.051 (0.008)  0.0047 (0.0008) 0.013 (0.004)  0.018 (0.005)  0.13 (0.05)
1D-Fidelity 0.082 (0.025) 0.085 (0.025) 0.0076 (0.0022) 0.019 (0.005) 0.025 (0.005) 0.16 (0.03)
None 0.198 (0.078) 0.205 (0.080) 0.0289 (0.0121) 0.028 (0.010) 0.040 (0.014) 0.37 (0.18)
Negative  Fidelity 0.050 (0.008)  0.051 (0.008)  0.0047 (0.0008) 0.013 (0.004)  0.018 (0.005)  0.13 (0.03)
1D-Fidelity 0.081 (0.026) 0.082 (0.027) 0.0073 (0.0021) 0.019 (0.006) 0.024 (0.007) 0.16 (0.06)

Accuracy (%): None: 83.0 £ 0.3, Fidelity: 83.4 4 0.4, 1D-Fidelity: 82.0 £ 0.3.

4.2 STABILITY REGULARIZATION

For this experiment, we compared a normally trained convolutional neural network on
MNIST to one trained using ExpO-Stability. Then, we evaluated the quality of saliency map
explanations for these models. Both N, and N2¢9 where defined as Unif(x — 0.05, z + 0.05).
Both the normally trained model and model traiend with ExpO-Stability achieved the same
accuracy of 99%. This demonstrates one of the practical differences between SENN and
ExpO: SENN places strict structural constraints on the network and subsequently lowers
the testing accuracy to roughly 97%. Quantitatively, training the model with ExpO-Stability
decreased the stability metric from 6.94 to 0.0008. Qualitatively, training the model with
ExpO-Stability made the resulting saliency maps look much better by focusing them on the
presence or absence of certain pen strokes (Figure 3).

5 CONCLUSION

In this work, we have introduced the novel idea of directly regularizing arbitrary models to
be more interpretable with respect to a general metric. We contrasted our regularizers to
classical approaches for function approximation and smoothing and provided a generalization
bound for them. We demonstrated, across a variety of problem settings and explainers, that
our regularizers slightly improve model accuracy and improve the interpretability metrics
by somewhere from 25% to orders of magnitude. We believe that potential future work
may focus on three areas: (1) exploring alternative neighborhood functions, N7, that
match those used by other black-box explanation systems, (2) exploring how to regularize
for non-local interpretability metrics, and finally (3) exploring the interaction between the
regularizers and the optimization process, e.g., progressively changing the importance of the
regularization during training or using the regularization as an additional training step.
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A  APPENDIX

A.1 COMPARISON OF EXPO TO BASELINE METHODS

Although there are related methods to ExpO, none are necessarily appropriate to act as a
baseline for comparison:

e SENN (Alvarez-Melis and Jaakkola, 2018a) requires that the model has a specific
structure. ExpO makes no assumptions about the model’s structure.

e RTFR (Ross et al., 2017) requires that we have the domain knowledge to specify
that “Feature ‘i’ should not be relevant to the prediction for point ‘x’ 7. ExpO does
not require this or any other domain knowledge.

e Finally, the regularizers defined by (Lee et al., 2019) are designed for structured
data types. ExpO is designed to work with semantic features or images, so there
isn’t a common experiment that we could run.

As a result, we consider two standard regularization techniques: Iy and [ regularization.
These regularizers may make the network smoother or simpler (due to sparser weights),
which may make it more amenable to local explanation. The results of this experiment are in
Table 5; notice that neither of these regularizers had a significant effect on the interpretability
metrics compared to ExpO.

Metric Regularizer ‘ autompgs communities day housing music winequality.red
MSE None 0.14 0.49 0.001 0.14 0.72 0.65
L2 0.13 0.47  0.00012 0.15 0.68 0.67
L1 0.12 0.46  1.7e-05 0.15 0.68 0.67
MAPLE-PF None 0.016 0.16 0.001 0.057 0.17 0.013
L2 0.015 0.17  3.2e-05 0.05 0.17 0.02
L1 0.014 0.17  1.6e-05 0.054 0.17 0.015
MAPLE-NF None 0.018 0.31  0.0012 0.066 0.18 0.013
L2 0.016 0.32  4.3e-05 0.058 0.17 0.021
L1 0.016 0.32  2.6e-05 0.065 0.18 0.016
MAPLE-Stability None 0.015 1.2 2.6e-07 0.18  0.081 0.0043
L2 0.011 1.3 3.2e-06 0.17  0.065 0.0058
L1 0.013 1.2 3e-07 0.21  0.072 0.004
LIME-PF None 0.04 0.1  0.0012 0.14 0.11 0.033
L2 0.037 0.12  0.00014 0.12  0.099 0.047
L1 0.035 0.12  0.00017 0.13 0.1 0.034
LIME-NF None 0.041 0.11  0.0012 0.14 0.11 0.033
L2 0.037 0.12  0.00015 0.12  0.099 0.047
L1 0.036 0.12  0.00018 0.13 0.1 0.034
LIME-Stability None 0.0011 0.022 0.00015  0.0047 0.011 0.0013
L2 0.00097 0.032  1.7e-05 0.004 0.011 0.0021
L1 0.0012 0.03 3e-05  0.0048 0.011 0.0016

Table 5: Using l2 or [; regularization has very little impact impact on the interpretability of the
learned model.

A.2 DETAILS ON THE GENERALIZATION OF LOCAL LINEAR EXPLANATIONS

Here, we provide a derivation of the bound (5) on the explanation fidelity. First, we assume
that local linear explanations, (., are obtained by solving the ordinary least squares regression
problem (as given in Algorithm 1):

B, = [X'XT] T X F(X), (6)

where each column of X’ denotes a sample from the neighborhood N, and f(X’) is a
column-vector of the corresponding function values. The expected fidelity of the explanation
B can be computed analytically:

r(f,7) = En, [f(2')?] —En, [f(«)2] Ew, [[#'2'T]] " En, [f(z)o] (7)

where expectation Ey, [-] is taken with respect to 2’ over the neighborhood N,. Note
the equality in (7) is the expected value of the squared residual between f(z) and the

11
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Figure 4: A comparison showing the effects of the o parameter of N, and N3 on the UCI Housing
dataset. The LIME-NF metric grows slowly with o for N, as expected. Despite being very large,
using o = 0.5 for N9 is generally best for the LIME-NF metric and possibly for accuracy.

optimal local linear explanation, which is upper-bounded by the variance of the model in
the corresponding neighborhood:

0<r(f,2) En, [f(2)°] —En, [f(2")]" = Vary, [f(2')] (8)

For instance, if f(x) is L-Lipschitz and the neighborhood N, is defined a uniform distribution
within a o-ball centered at z, then the variance of f(z) within the neighborhood can be
further bounded by 4L202, hence r(f,z) < 4L%02.

For the explanations to generalize, we would like to make sure that the gap between the
average fidelity on the training set and the expected fidelity is small with high probability.
More formally, the following inequality should hold:

P (E r(f,2)] - %Zr(f, i) > 5) < 6n(e) )

i=1

The following is a restatement of Proposition 1 with a short proof.

Proposition 3 Let the neighborhood sampling function N, be characterized by some param-
eter o (e.g., the effective radius of a neighborhood) and the variance of the trained model f(x)
across all such neighborhoods be bounded by some constant C(c) > 0. Then, the following
bound holds with at least 1 — § probability:

Blr(fa)) < 3 0r(r) + | D ES

n-
i=1

Proof. By assumption, the variance of the model f(z) is bounded in each local neighborhood
specified by N,. Then (7) implies that each residual is bounded as 0 < r(f,z) < C(0).
Applying Hoeffding’s inequality, we get:

n —9, 2
p (E LIRS ST ) <en{ s}

Inverting the inequality gives us the bound. |

A.3 CHOOSING ¢ FOR N, AND N %Y
In Figure 4, we see that the choice of o for N, was not critical (the value of LIME-NF only

increased slightly with o) and that this choice of ¢ for N produced slightly more accurate
and interpretable models.

12
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A.4 MOoRE EXAMPLES OF EXPO’s EFFECTS

Here, we demonstrate the effects of ExpO-Fidelity on more examples from the UCI ‘housing’
dataset (Table 6). Observe that the same general trends hold true:

e The regularized explanation more accurately reflects the model (LIME-NF metric)

e The regularized explanation generally considers fewer features to be relevant. Again,
a feature is ‘significant’ if its absolute values is 0.1 or greater.

e Neither model appears to be heavily influenced by CRIM or INDUS. The regularized
model generally relies more on LSTAT and less on DIS, RAD, and TAX to make its

predictions.

Example Number  Value Shown ‘ CRIM INDUS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT ‘ LIME-NF

1 Feature -0.36 -0.57 -0.86 -1.11 -0.14 095 -0.74 -1.02 -0.22 0.46  0.53
Unregularized Explanation | 0.01 0.03 -0.14 031  -0.1 -0.29 027  -0.26 -0.07 0.13  -0.24 0.0033
Regularized Explanation 0.0 0.01 -0.14 025 0.03 -0.16 0.15 -0.1 -0.12 -0.01  -0.47 0.0033

2 Feature -0.37  -0.82 -0.82 066 -0.77 179 -0.17 -0.72 0.6 045 -0.42 0.0
Unregularized Explanation | 0.01 0.06 -0.15 032 -0.1 -0.29 024 -0.27 -0.12 0.11 -0.24 0.057
Regularized Explanation 0.0 0.0 -0.15 025 0.01 -015 0.15 -0.12 -0.13 0.01  -0.47 0.00076

3 Feature -0.35 -0.05 -0.52 -1.41 0.77 -0.13 -0.63 -0.76 0.1 045 1.64
Unregularized Explanation | -0.01 0.06 -0.16 0.29 -0.08 -0.31 0.27 -0.27 -0.11 0.1 -0.18 0.076
Regularized Explanation -0.03 -0.01 -0.13 019 -0.0 -0.15 0.14 -0.11 -0.12 0.0 -0.43 0.058

4 Feature -0.36 -0.34 -0.26  -0.29 0.73 -0.56 -0.51 -0.12 1.14 044 0.14
Unregularized Explanation | 0.02 0.06 -0.18 029 -0.1 -0.34 031 -0.21 -0.09 0.12  -0.27 0.10
Regularized Explanation -0.02 0.01 -0.13 021 0.02 -0.16 0.17 -0.11 -0.12 -0.0 -0.47 0.013

5 Feature -0.37  -1.14 -0.88 0.45 -0.28 -0.21 -0.86 -0.76 -0.18 0.03 -0.82
Unregularized Explanation | 0.02 0.08 -0.17 033 -0.11 -0.36 0.29 -0.27 -0.08 0.1 -0.28 0.099
Regularized Explanation -0.0 -0.0 -0.14 026 0.0 -0.16 0.15 -0.11 -0.15 0.01  -0.47 0.0021

Table 6: More examples of how regularizing a model using ExpO-Fidelity affects the explanations.
For each example we show, the feature values of the point being explained, the coefficients of the
unregularized explanation, and the coefficients of the regularized explanation. Note that the bias
terms have been excluded from the explanations. We also report the LIME-NF metric of each
explanation.

The same comparison for examples from the UCI ‘winequality-red’ are in Table 7. We can
see that the regularized model depends more on “volatile acidity” and less on “sulphates”
while usually agreeing about the effect of “alcohol”. Further, it is better explained by those
explanations than the unregularized model.

Example Number  Value Shown fixed acidity volatile acidity citric acid _residual sugar _chlorides free sulfur dioxide total sulfur dioxide density pH  sulphates alcohol | LIME-NF
1 Feature -0.28 1.55 -1.31 -0.02 -0.26 3.12 1.35 -0.25 0.41 -0.2 0.29
Unregularized Explanation | 0.02 -0.11 0.14 0.08 0.1 0.05 -0.15 013 001 031 029 [ 0021
Regularized Explanation | 0.08 022 0.01 0.04 -0.04 0.06 -0.12 0.09 001 017 03 6.60-05
2 Feature 1.86 191 1.22 0.87 0.39 11 -0.69 148 022 196 035
Unregularized Explanation | 0.02 -0.15 0.11 0.07 -0.08 0.07 -0.23 20.09 006 03 027 | 0033
Regularized Explanation 0.09 -0.23 0.02 0.04 -0.05 0.06 -0.13 -0.09 -0.0 0.18 0.3 0.0026
3 Feature -0.63 -0.82 0.56 0.11 -0.39 0.72 -0.11 -1.59 0.16  0.42 2.21
Unregularized Explanation | 0.03 0.1 0.13 0.05 -0.06 012 021 019 008 038 029|011
Regularized Explanation | 0.09 022 0.02 0.04 -0.04 0.06 -0.12 009 0.0 018 03 8.20-05
1 Feature 051 -0.66 0.15 0.53 0.43 024 0.04 056 035 02 -0.07
Unregularized Explanation | 0.03 -0.16 0.12 0.05 -0.13 0.09 -0.21 2013 -0.05 035 024|061
Regularized Explanation 0.09 -0.22 0.01 0.04 -0.04 0.06 -0.12 -0.09 -0.01 0.18 0.3 6.8e-05
5 Feature -0.28 0.43 0.1 -0.65 0.61 -0.62 -0.51 0.36 -0.35 5.6 -1.26
Unregularized Explanation | 0.03 -0.12 0.09 0.12 0.1 0.03 -0.19 2013 -0.03 0.3 024|019
Regularized Explanation | 0.08 -0.22 0.02 0.04 -0.05 0.05 -0.13 009 0.0 016 03 0.0082

Table 7: The same setup, but showing examples for the UCI ‘winequality-red’ dataset
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