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ABSTRACT

Neural embeddings have been used with great success in Natural Language Pro-
cessing (NLP) where they provide compact representations that encapsulate word
similarity and attain state-of-the-art performance in a range of linguistic tasks. The
success of neural embeddings has prompted significant amounts of research into
applications in domains other than language. One such domain is graph-structured
data, where embeddings of vertices can be learned that encapsulate vertex similarity
and improve performance on tasks including edge prediction and vertex labelling.
For both NLP and graph-based tasks, embeddings in high-dimensional Euclidean
spaces have been learned. However, recent work has shown that the appropriate
isometric space for embedding complex networks is not the flat Euclidean space,
but a negatively curved hyperbolic space. We present a new concept that exploits
these recent insights and propose learning neural embeddings of graphs in hy-
perbolic space. We provide experimental evidence that hyperbolic embeddings
significantly outperform Euclidean embeddings on vertex classification tasks for
several real-world public datasets.

1 INTRODUCTION

Embeddings are used to represent complex high-dimensional data in lower-dimensional continuous
spaces (Roweis & Saul, 2000; Belkin & Niyogi, 2001). Embedded representations provide three
principal benefits over sparse schemes: They encapsulate similarity, are compact, and perform better
as inputs to machine learning models (Salton et al., 1975). These benefits are particularly important
for graph-structured data where the native representation is the adjacency matrix, which is typically a
sparse matrix of connection weights.

Neural embedding models are a flavour of embedding where the embedded representation corre-
sponds to a subset of the connection weights in a neural network (see Fig. 2a), which are learned
through backpropagation. Neural embedding models have been shown to improve performance on
many tasks across multiple domains, including word analogies (Mikolov et al., 2013a; Mnih, 2013),
machine translation (Sutskever et al., 2014), document comparison (Kusner et al., 2015), missing
edge prediction (Grover & Leskovec, 2016), vertex attribution (Perozzi & Skiena, 2014), product
recommendations (Grbovic et al., 2015; Baeza-Yates & Saez-Trumper, 2015), customer value predic-
tion (Kooti et al., 2017; Chamberlain et al., 2017) and item categorisation (Barkan & Koenigstein,
2016). In all cases, the embeddings are learned without labels (unsupervised) from a sequence of
tokens. Previous work on neural embedding models has either either explicitly or implicitly (by using
the Euclidean dot product) assumed that the embedding space is Euclidean. However, recent work
in the field of complex networks has found that many interesting networks, particularly those with
a scale-free structure such as the Internet (Shavitt et al., 2008; Boguna et al., 2010) or academic
citations (Clough et al., 2015; Clough & Evans, 2016) can be well described with a geometry which is
non-Euclidean, such as hyperbolic geometry. Even more recently the problem of mapping graphs and
datasets to a low-dimensional hyperbolic space has been addressed in (Nickel & Douwe, 2017) and
(Bläsius et al., 2016). Here we use a neural embedding approach based on the Skipgram architecture
to find hyperbolic embeddings.

There are two reasons why embedding complex networks in hyperbolic geometry can be expected to
perform better than Euclidean geometry. The first is that complex networks exhibit a hierarchical
structure. Hyperbolic geometry provides a continuous analogue of tree-like graphs, and even infinite
trees have nearly isometric embeddings in hyperbolic space (Gromov, 2007). The second property is
that complex networks have power-law degree distributions, resulting in high-degree hub vertices.
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(a) Parallel hyperbolic lines. (b) “Circle Limit 1”, Escher (c) A hub and spoke graph.

Figure 1: Properties of hyperbolic space. a Multiple parallel lines passing through a single point. b
All tiles are of constant area in hyperbolic space, but shrink to zero area at the boundary of the disk in
Euclidean space. c Hub and spokes graph. It is impossible to embed this graph in two-dimensional
Euclidean space and preserve the properties that (1) all spokes are the same distance from the hub,
(2) all spokes are the same distance from each other, and (3) the distance between spokes along the
circumference is more than twice the distance to the hub. In hyperbolic space such embeddings exist.

Fig. 1c shows a simple hub-and-spoke graph where each spoke is a distance R from the hub and 2R
from each other. For an embedding in two-dimensional Euclidean space it is impossible to reproduce
this geometry for more than two spokes. However, in hyperbolic space, large numbers of spokes that
satisfy these geometrical constraints can be embedded because the circumference of a circle expands
exponentially rather than polynomially with the radius.

The starting point for our model is the celebrated Skipgram architecture (Mikolov et al., 2013a;b)
shown in Fig. 2a. Skipgram is a shallow neural network with three layers: (1) An input projection
layer that maps from a one-hot-encoded token to a distributed representation, (2) a hidden layer, and
(3) an output softmax layer. Skipgram is trained on a sequence of words that is decomposed into
(input word, context word)-pairs. The model uses two separate vector representations, one for the
input words and another for the context words, with the input representation comprising the learned
embedding. The (input word, context word)-pairs are generated by running a fixed length sliding
window over a word sequence. Words are initially randomly allocated to vectors within the two vector
spaces. Then, for each training word pair, the vector representations of the observed input and context
words are pushed towards each other and away from all other words (see Fig. 2b). The model can be
extended to network structured data using random walks to create sequences of vertices. Vertices are
then treated exactly analogously to words in the NLP formulation. This was originally proposed as
DeepWalk (Perozzi & Skiena, 2014). Extensions varying the nature of the random walks have been
explored in LINE (Tang et al., 2015) and Node2vec (Grover & Leskovec, 2016).

Contribution In this paper, we introduce the new concept of neural embeddings in hyperbolic
space. We formulate backpropagation in hyperbolic space and show that using the natural geometry of
complex networks improves performance in vertex classification tasks across multiple networks. At
the same time, Nickel & Douwe (2017) independently proposed a hyperbolic embedding algorithm
that has similarities to ours. The key differences are that Nickel & Douwe (2017) try to fit the
hyperbolic distance between nodes using cartesian coordinates in the Poincaré disk, whereas we use a
modified cosine distance in a spherical hyperbolic coordinate system. Our approach does not require
a numerical constraint to prevent points from ‘falling off’ the edge of the disk and becoming infinitely
distant from the others.

2 HYPERBOLIC GEOMETRY

Hyperbolic geometry emerged through a relaxation of Euclid’s fifth geometric postulate (the parallel
postulate). In hyperbolic space, there is not just one, but an infinite number of parallel lines that pass
through a single point. This is illustrated in Fig. 1a where every fine line is parallel to the bold, blue
line, and all pass through the same point. Hyperbolic space is one of only three types of isotropic
space that can be defined entirely by their curvature. The most familiar is flat Euclidean space. Space
with uniform positive curvature has an elliptic geometry (e.g. the surface of a sphere) and space with
uniform negative curvature has a hyperbolic geometry, which is analogous to a saddle-like surface.
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Unlike Euclidean space, in hyperbolic space even infinite trees have nearly isometric embeddings,
making the space well suited to model complex networks with hierarchical structure. Additionally,
the defining features of complex networks, such as power-law degree distributions, strong cluster-
ing and community structure, emerge naturally when random graphs are embedded in hyperbolic
space (Krioukov et al., 2010).

One of the defining characteristics of hyperbolic space is that it is in some sense larger than Euclidean
space; the 2D hyperbolic plane cannot be isometrically embedded into Euclidean space of any
dimension, unlike elliptic geometry where a 2-sphere can be embedded into 3D Euclidean space
etc. The hyperbolic area of a circle or volume of a sphere grows exponentially with its radius, rather
than polynomially. This property allows low-dimensional hyperbolic spaces to provide effective
representations of data in ways that low-dimensional Euclidean spaces cannot. Fig. 1c shows a
hub-and-spoke graph with four spokes embedded in a two-dimensional Euclidean plane so that each
spoke sits on the circumference of a circle surrounding the hub. Each spoke is a distance R from the
hub and 2R from every other spoke, but in the embeddings the spokes are a distance of R from the
hub, but only R

√
2 from each other. Complex networks often have small numbers of vertices with

degrees that are orders of magnitude greater than the median. These vertices approximate hubs. The
distance between spokes tends to the distance along the circumference s = 2πR

n as the number of
spokes n increases, and so the shortest distance between two spokes is via the hub only when n < π.
However, for embeddings in hyperbolic space, we get n < sinhR

R , such that an infinite number of
spokes can satisfy the property that they are the same distance from a hub, and yet the path that
connects them via the hub is shorter than along the arc of the circle. As hyperbolic space can not
be isometrically embedded in Euclidean space, there are many different representations that each
conserve some geometric properties, but distort others. In this paper, we use the Poincaré disk model
of hyperbolic space.

2.1 POINCARÉ DISK MODEL

The Poincaré disk models the infinite two-dimensional hyperbolic plane as a unit disk. For simplicity
we work with the two-dimensional disk, but it is easily generalised to the d-dimensional Poincaré
ball, where hyperbolic space is represented as a unit d-ball. Hyperbolic distances grow exponentially
towards the edge of the disk. The boundary of the disk represents infinitely distant points as the
infinite hyperbolic plane is squashed inside the finite disk. This property is illustrated in Fig. 1b where
each tile is of constant area in hyperbolic space, but rapidly shrink to zero area in Euclidean space.
Although volumes and distances are warped, the Poincaré disk model is conformal. Straight lines in
hyperbolic space intersect the boundary of the disk orthogonally and appear either as diameters of
the disk, or arcs of a circle. Fig. 1a shows a collection of straight hyperbolic lines in the Poincaré
disk. Just as in spherical geometry, shortest paths appear curved on a flat map, hyperbolic geodesics
also appear curved in the Poicaré disk. This is because it is quicker to move close to the centre of the
disk, where distances are shorter, than nearer the edge. In our proposed approach, we will exploit
both the conformal property and the circular symmetry of the Poincaré disk. The geometric intuition
motivating our approach is that vertices embedded near the middle of the disk can have more ‘near’
neighbours than they could in Euclidean space, whilst vertices nearer the edge of the disk can still be
very far from each other.

2.2 SIMILARITIES, ANGLES, AND DISTANCES

The distance metric in Poincaré disk is a function only of the radius. Exploiting the angular symmetries
of the model using polar coordinates considerably simplifies the mathematical description of our
approach and the efficiency of our optimiser. Points in the disk are x = (re, θ), with re ∈ [0, 1) and
θ ∈ [0, 2π). The distance from the origin, rh is given by

rh = 2arctanh re (1)

and the circumference of a circle of hyperbolic radius R is C = 2π sinhR. Note that as points
approach the edge of the disk, re = 1, the hyperbolic distance from the origin rh tends to infinity. In
Euclidean neural embeddings, the inner product between vector representations of vertices is used to
quantify their similarity. However, unlike Euclidean space, hyperbolic space is not a vector space and
there is no global inner product. Instead, given points x1 = (r1, θ1) and x2 = (r2, θ2) we define a
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Figure 2: a The skipgram architecture. The model predicts the context vertices from a single input
vertex. The final embedding is the set of learned weights W. b In the model updates, the vector
representation of the context vertex v′(new)

wO is moved closer (blue) to the vector representation of the
input vertex vI , while all other vectors v′(new)

wj move further away (red). The magnitude of the change
is proportional to the prediction error.

cosine similarity weighted by the hyperbolic distance from the origin as

〈x1,x2〉H = ‖x1‖‖x2‖ cos(θ1 − θ2) = 4 arctanh r1 arctanh r2 cos(θ1 − θ2). (2)

It is this function that we will use to quantify the similarity between points in the embedding. We
note that using a cosine distance in this way does lose some properties of hyperbolic space such as
conformality. Our goal is to learn embeddings that perform well on downstream tasks and the key
properties of hyperbolic space that permit this are retained. Trade-offs like this are common in the
embeddings literature such as the use of negative sampling (Mnih & Teh, 2012; Mnih, 2013).

3 NEURAL EMBEDDING IN HYPERBOLIC SPACE

We adopt the notation of the original Skipgram paper (Mikolov et al., 2013a) whereby the input
vertex is wI and the context / output vertex is wO. The corresponding vector representations are vwI

and v′wO
, which are elements of the two vector spaces shown in Fig. 2a, W and W′ respectively.

Skipgram has a geometric interpretation, shown in Fig. 2b for vectors in W′. Updates to v′wj
are

performed by simply adding (if wj is the observed output vertex) or subtracting (otherwise) an
error-weighted portion of the input vector. Similar, though slightly more complicated, update rules
apply to the vectors in W. Given this interpretation, it is natural to look for alternative geometries
that improve on Euclidean geometry.

To embed a graph in hyperbolic space we replace Skipgram’s two Euclidean vector spaces (W and
W′ in Fig. 2a) with two Poincaré disks. We learn embeddings by optimising an objective function
that predicts context vertices from an input vertex, but we replace the Euclidean dot products used in
Skipgram with (2). A softmax function is used for the conditional predictive distribution

p(wO|wI) = exp(〈v′wO
, vwI
〉H)/

∑V

i=1
exp(〈v′wi

, vwI
〉H) , (3)

where vwi
is the vector representation of the ith vertex, primed indicates context vectors (see Fig. 2a)

and 〈·, ·〉H is given in (2). Directly optimising (3) is computationally demanding as the sum in
the denominator is over every vertex in the graph. Two commonly used techniques for efficient
computation are replacing the softmax with a hierarchical softmax (Mnih & Hinton, 2009; Mikolov
et al., 2013a) and negative sampling (Mnih & Teh, 2012; Mnih, 2013). We use negative sampling as
it is faster.

3.1 MODEL LEARNING

We learn the model using backpropagation with Stochastic Gradient Descent (SGD). Optimisation is
conducted in polar native hyperbolic coordinates where r ∈ (0,∞), θ ∈ (0, 2π]. For optimisation,
this coordinate system has two advantages over the cartesian Euclidean system used by Nickel &
Douwe (2017). Firstly there is no need to constrain the optimiser s.t. ‖x‖ < 1. This is important as
arbitrarily moving points a small Euclidean distance inside the disk equates to an infinite hyperbolic
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(a) Hyperbolic embeddings
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(b) Euclidean embedding

Figure 3: Comparison between the embeddings of a complete 4-ary tree with three levels. Hyperbolic
embeddings are able to represent the trees branching factor and position the root at the location of the
shortest path length. The Euclidean embedding can not reproduce the isometries of the tree.

distance. Secondly, polar coordinates result in update equations that are simple modifications of the
Euclidean updates, which avoids evaluating the metric tensor for each data point. The negative log
likelihood using negative sampling is

E = − log σ(〈v′wO
, vwI
〉H)−

∑
wj∈Wneg

log σ(−〈v′wj
, vwI
〉H) (4)

= − log σ(uO)−
∑

wj∈Wneg

Ewj∼Pn
[log σ(−uj)] (5)

where vwI
, v′wO

are the vector representation of the input and context vertices, uj = 〈v′wj
, vwI
〉H ,

Wneg is a set of samples drawn from the noise distribution and σ is the sigmoid function. The first
term represents the observed data and the second term the negative samples. To draw Wneg, we
specify the noise distribution Pn to be the unigram distribution of the vertices in the input sequence
raised to 3/4 as in (Mikolov et al., 2013a). The gradient of the negative log-likelihood in (5) w.r.t. uj
is given by

∂E

∂uj
= εj =


σ(uj)− 1, if wj = wO
σ(uj), if wj ∈Wneg

0, otherwise
. (6)

The derivatives w.r.t. the components of vectors in W′ (in natural polar hyperbolic coordinates) are
∂E

∂(r′j)k
=
∂E

∂uj

∂uj
∂(r′j)k

=
∂E

∂uj
rI cos(θI − θ′j),

∂E

∂(θ′j)k
=
∂E

∂uj
r′jrI sin(θI − θ′j) , (7)

such that the Jacobian is∇rE = ∂E
∂r r̂+

1
sinh r

∂E
∂θ θ̂ . This leads to

r
′new
j =

{
r
′old
j − ηεjrI cos(θI − θ′j), if wj ∈ χ
r
′old
j , otherwise

(8)

θ
′new
j =

{
θ
′old
j − ηεj rIrj

sinh rj
sin(θI − θ′j), if wj ∈ χ

θ
′old
j , otherwise

(9)

where χ = wO ∪Wneg , η is the learning rate and εj is the prediction error defined in (6). Calculating
the derivatives w.r.t. the input embedding follows the same pattern, and we obtain

∂E

∂rI
=

∑
j:wj∈χ

∂E

∂uj
r′j cos(θI − θ′j) ,

∂E

∂θI
=

∑
j:wj∈χ

− ∂E
∂uj

rIr
′
j sin(θI − θ′j) . (10)

The corresponding update equations are

rnewI = roldI − η
∑

j:wj∈χ
εjr
′
j cos(θI − θ′j) , θnewI = θoldI − η

∑
j:wj∈χ

εj
rIr
′
j

sinh rI
sin(θI − θ′j) , (11)
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(b) hyperbolic embeddings
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(c) Euclidean embeddings.

Figure 4: The two factions of the Zachary karate network are linearly separable when embedded
in 2D hyperbolic, but not Euclidean space. Both embeddings were run for 5 epochs on the same
intermediate random walks.

where tj is an indicator variable s.t. tj = 1 iff wj = wO, and tj = 0 otherwise. Following
optimisation, the vectors are mapped back to Euclidean coordinates on the Poincaré disk through
θh → θe and rh → tanh rh

2 . The asymptotic runtimes of the update equations (8)–(9) and (11) are
the same as Euclidean Skipgram, i.e., the hyperbolic embedding does not add computational burden.

4 EXPERIMENTAL EVALUATION

In this section, we assess the quality of hyperbolic embeddings and compare them to embeddings
in Euclidean spaces. Firstly we perform a qualitative assessment of the embeddings on a synthetic
fully connected tree graph and a small social network. It is clear that embeddings in hyperbolic space
exhibit a number of features that are superior to Euclidean embeddings. Secondly we run experiments
on a number of public benchmark networks, producing both Euclidean and hyperbolic embeddings
and contrasting the performance of both on a downstream vertex classification task. We provide a
TensorFlow implementation and datasets to replicate our experiments in our github repository 1.

4.1 QUALITATIVE ASSESSMENT

To illustrate the usefulness of hyperbolic embeddings we visually compare hyperbolic embeddings
with Euclidean plots. In all cases, embeddings were generated using five training epochs on an
intermediate dataset of ten-step random walks, one originating at each vertex. Figures 3 and 4 show
hyperbolic embeddings in the 2D Poincaré model of hyperbolic space where the circles of radius 1
is the infinite boundary and Euclidean embeddings in R2. Fig. 3 shows embeddings of a complete
4-ary tree with three levels. The vertex numbering is breadth first with one for the root and 2, 3, 4,
5 for the second level etc. The hyperbolic embedding has the root vertex close to the origin of the
disk, which is the position with the shortest average path length. The leaves are all located in close
proximity to their parents, and there are clearly four clusters representing the tree’s branching factor.
The Euclidean embedding is incapable of representing the tree structure with adjacent vertices at
large distances (such as 1 and 3) and vertices that are maximally separated in the tree appearing close
in the embedding (such as 19 and 7).

Table 1: Experimental datasets. ‘Largest class’
gives the fraction of the dataset composed by the
largest class and thereby provides the benchmark
for random prediction accuracy.

name |V| |E| |y| largest class Labels

karate 34 77 2 0.53 Factions
polbooks 105 441 3 0.46 Affiliation
football 115 613 12 0.11 League
adjnoun 112 425 2 0.52 Part of Speech
polblogs 1,224 16,781 2 0.52 Affiliation

Fig. 4a shows the 34-vertex karate network, which
is split into two factions. Fig. 4b shows the hyper-
bolic embedding of this network where the two
factions can be clearly separated. In addition, the
vertices (5, 6, 7, 11, 17) in Fig. 4a are the junior
instructors, who are forbidden by the instructor
(vertex 1) from socialising with other members of
the karate club. For this reason they form a commu-
nity that is only connected through the instructor.
This community is clearly visible in Fig. 4b to the

1https://github.com/anonymous/authors
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Table 2: Average F1 scores across experiments. HB is HyBed, P is Poincaré and D indicates a
Deepwalk embedding. ‘All’ gives a global average across the five experiments.

experiment HB P D2 D4 D8 D16 D32 D64 D128

karate 0.91 0.90 0.37 0.37 0.36 0.36 0.37 0.37 0.38
polbooks 0.62 0.59 0.27 0.24 0.21 0.21 0.21 0.21 0.21
football 0.22 0.14 0.03 0.03 0.04 0.04 0.04 0.04 0.04
adjnoun 0.49 0.47 0.53 0.50 0.44 0.38 0.36 0.36 0.36
polblogs 0.90 0.91 0.63 0.64 0.67 0.64 0.63 0.55 0.51

All 0.63 0.60 0.37 0.35 0.34 0.33 0.32 0.30 0.30

right of the graph. The Euclidean embedding in Fig. 4c fails to capture these important features of the
underlying graph.

4.2 VERTEX ATTRIBUTE PREDICTION

We quantitatively evaluate the success of neural embeddings in hyperbolic space by using the learned
embeddings to predict held-out labels of vertices in networks. In our experiments, we compare our
embedding to Euclidean embeddings of dimensions 2, 4, 8, 16, 32, 64 and 128 and the hyperbolic
embeddings of Nickel & Douwe (2017). To generate embeddings we first create an intermediate
dataset by taking a series of random walks over the networks. For each network we use a set of
ten-step random walks with one walk originating at each vertex.

The embeddings are all trained using the same parameters and intermediate random walk dataset.
For Euclidean embeddings we use the gensim (Rehurek & Sojka, 2010) python package, while the
HyBed embeddings and our implementation of Nickel & Douwe (2017) are written in TensorFlow. In
both cases, we use five training epochs, a context width of five (giving 10 context vertices per input
vertex) and a linearly decaying SGD optimiser with initial learning rate of 0.2. We do not prune any
vertices.

We report results on five publicly available network datasets for the problem of vertex attribution.
1. Karate: Zachary’s karate club contains 34 vertices divided into two factions (Zachary, 1977); 2.
Polbooks: A network of books about US politics published around the time of the 2004 presidential
election and sold by the online bookseller Amazon.com. Edges between books represent frequent
co-purchasing of books by the same buyers; 3. Football: A network of American football games
between Division IA colleges during regular season Fall 2000 (Girvan & Newman, 2002); 4. Adjnoun:
Adjacency network of common adjectives and nouns in the novel David Copperfield by Charles
Dickens (Newman, 2006); 5. Polblogs: A network of hyperlinks between weblogs on US politics,
recorded in 2005 (Adamic & Glance, 2005). Statistics for these datasets are recorded in Table 1.

The results of our experiments together with the HyBed and 2D Deepwalk embeddings used to derive
them are shown in Fig. 5. The vertex colours of the embedding plots indicate different values of the
vertex labels. The legend shown in Fig. 5a applies to all line graphs. The line graphs show macro F1
scores against the percentage of labelled data used to train a logistic regression classifier with the
embeddings as features. Here we follow the method for generating multi-label F1 scores described
in (Liu et al., 2006). The error bars show one standard error from the mean over ten repetitions. The
blue lines show HyBed hyperbolic embeddings, the yellow lines give the 2D Poincaré embeddings of
Nickel & Douwe (2017) while the red lines depict Deepwalk embeddings at various dimensions.

As we use one-vs-all logistic regression with embedding coordinates as features, good embeddings
are those that can linearly separate one class from all other classes. Figure 5 shows that HyBed
embeddings tend to cluster together similar classes so that they are linearly separable from other
classes, unlike the Euclidean embeddings.

Table 2 gives the average F1 score for each experiment. The hyperbolic methods are greatly superior to
Euclidean methods and HyBed is best in three of the five experiments with the highest global average
F1 score. The only experiment in which the performance of Euclidean embeddings is comparable
with hyperbolic methods is the Word Adjacency dataset and in this case Figures 5j shows that the
error bars are wide and overlapping.
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Figure 5: Each row contains a line plot of macro F1 score for predicting held-out vertex labels
from embedded representations using logistic regression together with the HyBed and 2D Euclidean
embeddings. Error bars are standard errors from the mean over ten repetitions.
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5 CONCLUSION

We have introduced the concept of neural embeddings in hyperbolic space. Our model is based on
the Skipgram with negative sampling architecture and optimises embeddings in native spherical
hyperbolic coordinates. Hyperbolic space has the property that power-law degree distributions, strong
clustering and hierarchical community structure emerge naturally when random graphs are embedded
in hyperbolic space. It is therefore logical to exploit the structure of the hyperbolic space for useful
embeddings of complex networks. We have demonstrated that when applied to the task of classifying
vertices of complex networks, hyperbolic space embeddings significantly outperform embeddings in
Euclidean space. Furthermore, the neural hyperbolic approach we develop here performs well when
compared to the most comparable method, that of Poincaré embeddings.
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