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Abstract

We elaborate on using importance sampling for causal reasoning, in particular for coun-
terfactual inference. We show how this can be implemented natively in probabilistic pro-
gramming. By considering the structure of the counterfactual query, one can significantly
optimise the inference process. We also consider design choices to enable further opti-
misations. We introduce MultiVerse, a probabilistic programming prototype engine for
approximate causal reasoning. We provide experimental results and compare with Pyro,
an existing probabilistic programming framework with some of causal reasoning tools.

1. Introduction and Related Work

Machine learning has renewed interest in causal tools to aid reasoning (Pearl, 2018). Coun-
terfactuals are particularly special causal questions as they involve the full suite of causal
tools: posterior1 inference and interventional reasoning (Pearl, 2000). Counterfactuals are
probabilistic in nature and difficult to infer, but are powerful for explanation (Wachter
et al., 2017; Sokol and Flach, 2018; Guidotti et al., 2018; Pedreschi et al., 2019), fairness
Kusner et al. (2017); Zhang and Bareinboim (2018); Russell et al. (2017), policy search
(e.g. Buesing et al. (2019)) and are also quantities of interest on their own (e.g. Johansson
et al. (2016)). This has seen counterfactuals applied to medicine (Constantinou et al., 2016;
Schulam and Saria, 2017; Richens et al., 2019; Oberst and Sontag, 2019), advertisement and
search (Bottou et al., 2013; Swaminathan and Joachims, 2015; Li et al., 2015; Gilotte et al.,
2018), translation (Lawrence et al., 2017), and reinforcement learning (Foerster et al., 2018;
Forney et al., 2017; Buesing et al., 2019). Consequently, counterfactual inference generally
requires enhanced tools and inference procedures to incorporate both observation and inter-
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vention. Existing frameworks are not fully equipped to handle them naturally, preventing
both easy interventional reasoning, as well as optimizations that emerge when considering
the full counterfactual query.

1.1. Counterfactual Inference

A counterfactual query is a what-if? question: what would have been the outcome had I
changed an input? More formally: what would have happened in the posterior representation
of a world (given observations) if in that posterior world one or more things had been forced
to change? This is different from observational inference as it (1) fixes the context of the
model to a “posterior world” using observational inference, but (2) then intervenes on one
or more variables in that world by forcing each of them take a value. Interventions in the
“posterior” world can cause variables — previously observed or otherwise — to take new
values (i.e. “counter” to their observed value, or their distribution).

A counterfactual inference query can be expressed as query over P (K ′ | Y = e; do(D =
d)) 2 , given a probabilistic model M = P (X,Y ) that consists of observed variables Y and
latent variables X, evidence values e and intervention values d such that E,D ⊆ X ∪ Y .
Variables K ′ are to be predicted after we intervene in the “posterior world” (explained
below), and they correspond to variables K ⊆ X ∪ Y in the original world. Most often,
variables K ′ are just variables Y ′, and so the query becomes P (Y ′ | Y = e; do(D = d)).
Following Pearl (2000), we evaluate this query in three steps:

1. Abduction (observational inference) — perform the query P (X | Y = e) to
receive the joint posterior over the latent variables given the evidence. This defines
the “posterior world”. The result is model M ′, which has the same structure as model
M but where X has been replaced by the joint posterior X | Y = e. In the new model,
the previously observed variables Y are not observed anymore.

2. Intervention (action) — in modelM ′, we intervene by forcing the values of variables
D to values d. This ignores incoming edges to D. This results in a new model M ′′.
We denote this step via the do-operator (Pearl, 2000).

3. Prediction — we predict the quantities of interest K ′ in M ′′. Any direct or indirect
descendants of D need to be updated prior to estimating a value of interest.

Abduction is the hardest part of the counterfactual procedure as it requires full inference
over the joint distribution of the latents. Abduction by exact inference is possible, but is
usually difficult or intractable. Hence, approximate inference is crucial for counterfactual
inference. There are several approaches for counterfactual inference, including the twin net-
work approach (where approximate inference, e.g. loopy belief propagation, is usually used
as in Balke and Pearl (1994)), single-world intervention graphs (Richardson and Robins,
2013), matching (Li, 2013), and more. We use the standard approach to counterfactual
inference as defined above, with its three steps: abduction, intervention, and prediction.

2. We use the order of operations on the right side of the query (i.e. firstly providing the evidence, and only
then performing do), to emphasise that it is a counterfactual query rather than an observational query
with an intervention. Counterfactual notation may seem contradictory, which we discuss in Section C.5.
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1.2. Probabilistic Programming

Probabilistic programming systems (Gordon et al., 2014; Perov, 2016; van de Meent et al.,
2018) allow a user to: (a) write and iterate over generative probabilistic models as programs
easily, (b) set arbitrary evidence for observed variables, and (c) use out-of-the-box, mostly
approximate, efficient inference methods to perform queries on the models. In most cases,
probabilistic programming frameworks natively support only observational inference.

1.3. Importance Sampling for Observational Inference

Importance sampling is an approximate inference technique that calculates the posterior
P (X | Y ) by drawing N samples {si} from a proposal distribution Q and accumulating the
prior, proposal, and likelihood probabilities into weights {wi}. Given this information, we
can compute statistics of interests. For more details, see Section C.1.

1.4. Related Languages and Other Related Work for Counterfactual Inference

To the best of the authors’ knowledge, no major probabilistic programming engine natively
supports counterfactual inference. However, there are (at least) three related directions of
work to performing probabilistic causal inference in the settings of probabilistic program-
ming. We provide a brief overview of these directions below, and we expand on them a
little more in Section D.

First, it has been shown (Ness, 2019c,b) that in probabilistic programming languages,
which support the intervention operation, such as Pyro (Bingham et al., 2018) (which has
the do operator; or as it can be implemented in Edward (Tran et al., 2018)), it is possible
to write the abduction-intervention-prediction steps in a compositional fashion to perform
counterfactual inference (or causal inference, using only the intervention step).

Second, an entirely new probabilistic programming language OmegaC (Tavares et al.,
2018) for performing counterfactual inference has been recently presented, focusing on care-
fully considered syntax and semantics.

Third, the use of causal and counterfactual reasoning has been explored in the field of
probabilistic logic programming (Baral and Hunsaker, 2007; Baral et al., 2009; Vennekens
et al., 2009) for probabilistic logic programs, e.g. by the use of the model/query “encoding”.

The design, interface and inference approaches presented in our paper can be employed
and implemented in almost any probabilistic programming system and are mostly language-
independent. The presented MultiVerse engine prototype, which is built upon existing
probabilistic programming ideas and implementations, employs a single, immutable model
approach for causal inference. This makes counterfactual inference more efficient by chang-
ing the inference process, rather than changing the way in which a model is expressed or
modified into other derived models.

2. Methods and Approach

2.1. Importance Sampling for Counterfactual Inference

We can perform inference for the counterfactual query P (K ′ | Y = e, do(D = d)) using im-
portance sampling by modifying the three steps of abduction, intervention, and prediction:

3



MultiVerse: Causal Reasoning using Import. Sampling in Probabilistic Programming

1. Use importance sampling to obtain a representation of the posterior distribution
P (X | Y = e). The key idea is that the posterior distribution is approximately rep-
resented in the form of N samples, s1, . . . , sN , and their weights, w1, . . . , wN . That
is, the set of tuples {si, wi}Ni=1 is a valid approximate representation of the posterior
distribution P (X | Y = e).

2. Do an intervention in each sample si by setting values of all variables D to values d.

3. Propagate the effect of the intervention to any variable that depends on D recursively
(e.g. by re-sampling descendants of D). The new set of tuples {s′i, wi} represents
the intervened samples from the posterior distribution. Finally, compute statistics of
interest, e.g. some function f expected value as Ef(K′) | Y=e,do(D=d) =

∑
i f(s′i)·

wi∑
k wk

.

More details on implementing this algorithm for inference for probabilistic programming
and its brief computational/memory cost analysis is given in Section C.3.

2.2. MultiVerse and Optimisations for Importance Sampling for
Counterfactual Inference

A key contribution of this paper is MultiVerse: a probabilistic programming system for
approximate counterfactual inference that exploits several speed and memory optimisations
as a result of considering the counterfactual query and inference scheme.

We have designed MultiVerse to be a fully “native” probabilistic programming engine
for causal reasoning in the sense that you define all elements abstractly and independently
of each other: a model, observations and interventions, and an inference query, e.g. a
counterfactual one. MultiVerse can perform observational and interventional queries, if
chosen, on the same model as well.

In our system there is no double-sampling: for counterfactual inference, we draw a
sample and calculate a weight from the proposal distribution given prior and observation
likelihood, then we intervene on each sample itself, and predict and estimate its values of
interest. On the other hand, to the best of our understanding, in Pyro3 one might generally
need to redraw samples from the posterior distribution representation and one needs to
manually force values of all variables (except intervened ones) in the model to their posterior
values per each sample (unless using the internals of Pyro traces). The latter resampling
from already approximated representation introduces an additional approximation error.
Also, in our implementation we save on memory and time as we don’t need to define any
new model or inference objects beyond the original and as we don’t need to pass any models
between stages of the inference.

In addition, further optimisations to counterfactual queries can be done by evaluating
only those parts of the probabilistic program execution trace that must be evaluated per
each step of counterfactual inference. Because MultiVerse (MV) allows a version of “lazy”
evaluation, our tests include prototypical experiments with “Optimised MV” where we only
evaluate the necessary parts of the trace per each step. For more info, see Section A.2.

3. Note that we believe that the optimisation that we describe here can be implemented in future ver-
sions of Pyro (i.e. by further supporting counterfactual inference more natively) and other probabilistic
programming frameworks as well.
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2.3. Introducing a New Class of Observable Probabilistic Procedures

Probabilistic programming frameworks handle well OBSERVE(variable, value) statements
for observational inference: they incorporate the likelihood of the variables given observa-
tions. However, for counterfactual inference, it is generally necessary to represent the noise
variables as explicit random variables in the trace because the noise variables should be part
of the joint posterior that is received after the abduction step. In MultiVerse, we introduce
“Observable” Random Procedures that are similar to regular Random Procedures but also
(a) have an explicit noise variable that is the part of the program trace, and (b) have an
inverse function that proposes that variable to a specific value to “match” the hyperparam-
eters of the random procedure and the observation. For more details, see Section E.

3. Experiments

To evaluate the performance of different versions of MultiVerse (i.e. non-optimised and
optimised) in terms of speed of sampling and convergence to the true counterfactual query
values, we ran counterfactual queries for 1,000 Structural Causal Models which we generated
for this experiment. For comparison, we also ran the same queries in Pyro. In total,
we compared four approximate inference systems: “MultiVerse”, “MultiVerse Optimised”,
Pyro without a smart proposal (“guide”), and Pyro with a smart proposal. As discussed in
Sections 2.3 and E, the smart proposal forces the inference procedure to set each “noise”
exogenous variable to a particular value such that the predicted value for an observed
endogenous variable – which follows a Delta distribution – is the same as the observed
value. This characteristic is important to prevent significant rejection and is a consequence
of the nature of the Structural Causal Model paradigm.

Our experiments show that each system converges but MultiVerse converges in less
time (in terms of the constant factor) and more efficiently (in terms of the per-sample
inference efficiency) than Pyro (see Section A.2 for more info). MultiVerse also has the
benefit of not needing to pass or store any new model objects. As expected, Pyro with a
smart proposal converges more efficiently than Pyro without one. Additionally, optimised
MultiVerse performs faster than regular MultiVerse.

See Section A for more details on experiments and figures.

4. Conclusion

In this paper we discuss how to perform counterfactual queries using importance sampling.
Further, we introduce MultiVerse, a probabilistic programming system for causal reasoning
that optimises approximate counterfactual inference. For future work, we aim towards an
approximate causal inference engine for any counterfactual query expressed in a probabilistic
program, taking advantage of the structure of counterfactual queries to optimise the process
of the inference and to choose one of many approximate inference methods. As causal queries
become more used in machine learning, we believe so will flexible and optimised tools that
perform these types of inference.
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Appendix A. Experiments

We randomly generated 1,000 Structural Causal Models (Pearl, 2000) (with 15 probabilistic
procedures each not counting Delta-distribution procedures), their corresponding Bayesian
networks in the form of probabilistic programs, as well as a counterfactual query of the form
{Y,D,K ′} for each model. On a 16-core EC2 instance m4.4xlarge, we calculated the exact
counterfactual value of interest using enumeration, and then compared four approximate
systems: “MultiVerse” (i.e. not optimised), “MultiVerse Optimised”, Pyro without a smart
proposal (“guide”), and Pyro with a smart proposal.

In the experiments, each system converges but both versions of MultiVerse experiments
produce the same number of samples in less time than Pyro; for example in the experiments
for 5,000 samples, “MultiVerse” produces 5,000 samples, on average, 92.8% faster4 than
Pyro. Additionally, “MultiVerse Optimised” performs computationally (i.e. in terms of the
speed of producing the same number of samples) 26.1% faster5 than regular “MultiVerse”
on average, when compared on generating 1,000,000 samples per run.

In terms of statistical inference convergence quality (i.e. in terms of how well a sampler
approximates a statistic of interest), both “MultiVerse” experiments have better inference
convergence as well: for example, in the experiments for 5,000 samples, the mean absolute
error of predicted values, when compared to the ground truth, for “MultiVerse Optimised”6

is 0.00539, while for Pyro it is 0.00723; hence “MultiVerse Optimised” inference convergence
performance is 25.4% more efficient7. See Section A.3 for figures and details.

A.1. Test models and counterfactual queries

The 1,000 Structural Causal Models and their corresponding Bayesian networks with binary
variables in the form of probabilistic programs were generated similar to the randomDAG
procedure in Kalisch et al. (2012). Each Bayesian network contains 15 blocks, where each
block can be of two types:

1. A “prior” exogenous Bernoulli variable with a constant hyperparameter p ∼ Uniform-

Continuous[0.3, 0.7] that is randomly chosen during network generation.

2. A dependent endogenous Delta-distribution variable j that has a binary functional
output g(f(. . .), εj) and a related “noise” exogenous Bernoulli variable εj . Func-

tion f(xpa1 , . . . , xpaNj
) = 1[

∑Nj

k=1 θj,kxpak > 0.5]8 depends on Nj parent variables

xpa1 , . . . , xpaNj
. The exogenous noise variable εj with predefined probability q flips

(i.e. maps from 1 to 0 and vice versa) the value of f if εj = 1. Probability q is sampled
such that q ∼ UniformContinuous[0.3, 0.7] during network generation. Vector θj

is a vector with elements θj,k ∼ Beta(5, 5) sampled randomly during network genera-
tion and then unit normalised.

4. Computed as (Pyro - MV) / Pyro. In other words, Pyro / MV = 14.0 times faster.
5. Computed as (MV - MVOpt) / MV. In other words, MV / MVOpt = 1.35 times faster.
6. For “MultiVerse (not optimised)” the mean absolute error for 5,000 samples has been just slightly lower:

0.00527.
7. Computed as (Pyro - MVOpt) / Pyro. In other words, Pyro / MVOpt = 1.34 times more efficient.
8. Note that function 1(. . .) is an indicator function that outputs 1 if the predicate is true or 0 otherwise.
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Note that every block type contains one and only one “non-trivial” probabilistic proce-
dure (i.e. excluding Delta-distribution procedures). An example of a network with similar
structure is provided in Figure 1.

Figure 1: An example of a network with similar structure to the networks which were
used for the experiments. Nodes N1 and N2 are “prior” exogenous Bernoulli variables.
Nodes N3 and N4 are “dependent” endogenous Delta-distribution variables, where parents
of those variable include its own “exogenous noise variable” εj .

A structure of a corresponding Structural Causal Model is the same, except there is one
more intermediate endogenous variable that deterministically propagates, as an identity
function, the values of “prior” exogenous Bernoulli variables. Each counterfactual query
consists of a model G as defined above on which to run the query, which consists of: an
evidence set Y (a set of approximately 30% of all nodes, chosen randomly) with evidence
value e set to a random value in {0, 1}), a single-node intervention for one node D (chosen
randomly) with value d set to a random value in {0, 1} or the flip of Yi if D = Yi), and a node
of interest K (chosen randomly from all nodes except for the first two in the topological
order) such that there is an active path between K and D with D being before K in the
topological order.

We ran experiments with networks with only binary nodes because it simplifies the
computation of the exact value of the counterfactual query result (i.e. the ground truth of
it). However, it is without any loss of generality and can be extended to continuous spaces.
Both Pyro and MultiVerse support both discrete and continuous variables. An example of
a Gaussian model with continuous variables and code for it can be found in Section B.

12
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A.2. Different implementations that were tested

We run four different versions of experiments:

1. “MultiVerse”, which runs the counterfactual query as described in Section C.3.

2. “Optimised MultiVerse”, where we calculate only variables that needs to be evaluated
for abduction, intervention and prediction steps. We define lazy evaluations in our
probabilistic model in Python using recursive calls. That is, we start from the variables
that we must predict, observe or intervene, and evaluate only those variables and their
ancestors recursively.

Note that for intervened variables, we rely on MultiVerse to replace those variables
with Delta-distributions with the intervened values, and we don’t need to evaluate
the parents of those intervened variables during the prediction step. An illustrative
example of using MultiVerse methods for such optimisations with more details is
provided in Section F.1.

3. “Pyro without guide”, in which we define a model as a probabilistic program but
we don’t define any guide. Because we have observations on Delta variables, this
implementation leads to a lot of samples rejected.

4. “Pyro with guide”, in which we define a guide (proposal model) for “noise” Bernoulli
variables {εi}. That guide forces the values of the noise variables to ensure that each
observed variable is flipped or not flipped accordingly given the other parents of the
observed variable and given its realised observations (i.e. to match those observations).

Note that for Pyro we:

1. Used Python Pyro package pyro-ppl==0.4.1.

2. Performed two sampling steps: one for the abduction step, and another one for the
intervention step where samples are drawn from the posterior. That approach of
doing counterfactual inference in Pyro was also suggested in (Ness, 2019a), to the
best of our understanding. Another, more efficient way, would be to re-use Pyro
traces directly; that way we can avoid the second sampling step (e.g. by using
vectorised importance weights which might make it significantly more efficient
computationally as well). The latter approach would be then similar to the coun-
terfactual importance sampling inference that we suggest in this paper and that is
defined in Section C.3.

3. Used one processor, as to the best of our knowledge, parallelisation is not natively
supported for importance sampling in Pyro.

4. Pass the posterior presentation of the abducted model for intervention step as an
EmpiricalMarginal object. In general, for very large models this might involve extra
computational time/network/memory costs.

5. For “Pyro without guide”, if all samples for the abduction step had zero weights, we
repeated that step again until at least one sample had non-zero weight.

13
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A.3. Results

As shown in Figure 2, both MultiVerse (MV) and Pyro implementations seem to converge
to the ground truth that has been calculated using exact enumeration. Implementations
“MV”, “MV optimised” have the same inference schema and hence are expected to converge
similarly, inference-wise, with the same number of samples, on average. “Pyro with guide”
is expected to converge, on average, slightly slower because of the double sampling in
abduction and prediction steps as discussed in Section A.2; the experimental results confirm
that. Note that “Pyro without guide” converges, inference-wise, much slower than all three
other implementations; that is expected because without a proposal (guide), a lot of samples
are rejected since the observed variables don’t match their observations during the abduction
step.
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Figure 2: Convergence performance for MultiVerse and Pyro. X-axis: number of samples,
Y-axis: performance that as measured by statistics computed on the absolute errors i.e. dif-
ferences between predicted probabilities of the variable of the interest in the counterfactual
query and the ground truth values of such queries calculated using exact enumeration. The
statistics are: mean absolute errors (solid lines), as well as the 10th to 90th percentile range
of absolute errors (shaded areas). The statistics are calculated across 1,000 experiments.

Both MultiVerse implementations are significantly more efficient in terms of speed per
sample than Pyro9 (see Figure 3). The “Pyro with guide” takes slightly longer (but not

9. Note that potential gains in computational efficiency might be explored in the future work by using
vectorised sampling in Pyro. In our experiments, however, we aimed to use both Pyro and MultiVerse
similarly to how a basic user of probabilistic programming would use them: i.e. by just writing their
model as a Python program without vectorisation, at least for the first iteration over that model.
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Figure 3: Inference time for MultiVerse and Pyro: X-axis: number of samples, Y-axis: time
in seconds.

significantly longer) than “Pyro without guide”, although the former is superior in terms
of inference efficiency as mentioned above.

Both MultiVerse implementations support parallel importance sampling, and so both of
them benefited from the fact that experiments were run on a Amazon Web Services EC2
machine with 16 cores. At the same time, as mentioned earlier, we could not find a simple
way to run importance sampling in parallel in Pyro10. However, if we compute average per-
sample time and take into the account the number of cores (i.e. by dividing Pyro’s time by
16), MultiVerse is still faster: based on experiments with 5,000 samples11, the average time
to run 1 sample for “Pyro w/ guide” is 1.03833 milliseconds (already divided by 16), while
for “MultiVerse” it is 0.07431 milliseconds and for “MultiVerse Optimised” it is 0.05692
milliseconds. For 1,000,000 samples, the average time to run 1 sample for “MV” is 0.06616
milliseconds and for “MV” Optimised‘ it is 0.04890 milliseconds.

Appendix B. An Example Continuous Model in MultiVerse and in Pyro

In this Section we provide code snippets in MultiVerse and Pyro for an example model and a
counterfactual query for it. The model is a simple Gaussian model with two latent variables
X and Z and one emission variable Y with additional Gaussian noise ε. It is the same as in
Figure 4b. The counterfactual query is query E(Y ′ | Y = 1.2342, do(Z = −2.5236)). That
is, this counterfactual query answers the question: what would be the expected value of Y
if we observed Y to be equal to 1.2342 and, in that world, we have intervened Z to be equal
to −2.5236?

B.1. Counterfactual query model example with MultiVerse

import t i m e i t

10. We came to this conclusion based on the available documentation (Uber AI Labs, 2019). It appears
there is a way to run parallel chains using MCMC but not importance sampling, to the best of our
understanding. Note that someone in principal might run importance sampling samplers in parallel, but
that requires additional wrappers/helpers to be implemented.

11. As discussed earlier in the paper, for Pyro this number of samples is used twice, once for abduction step
and another for prediction step.
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NUM SAMPLES = 1000

from mul t i ve r s e import (
NormalERP ,
ObservableNormalERP ,
DeltaERP ,
observe ,
do ,
pred i c t ,
run in f e r enc e ,

)

from u t i l s import c a l c u l a t e e x p e c t a t i o n

def base program ( ) :
X = NormalERP(0 , 1)
Z = NormalERP(0 , 1)
Y = ObservableNormalERP (

X. value + Z . value ,
2 ,
depends on =[X, Z ] ,

)
return X, Z , Y

def program with data ( ) :
X, Z , Y = base program ( )

observe (Y, 1 .2342)
do (Z , −2.5236)
p r e d i c t (Y. value , p r e d i c t c o u n t e r f a c t u a l=True )

s t a r t = t i m e i t . d e f a u l t t i m e r ( )
r e s u l t s = r u n i n f e r e n c e ( program with data , NUM SAMPLES)
stop = t i m e i t . d e f a u l t t i m e r ( )
print ( 'Time : ' , s top − s t a r t )
r e s u l t = c a l c u l a t e e x p e c t a t i o n ( r e s u l t s )
print ( ' Pred i c t i on : ' , r e s u l t )

The code above in MultiVerse illustrates that MultiVerse allows the user to use “na-
tive” probabilistic programming in the sense that it allows him/her to “abstractly” and
independently define a model, provide observations and interventions and perform the de-
sired inference query (be it an observational, interventional or counterfactual query). After
all of that is defined, the probabilistic programming implementation will do all inference
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for the user automatically. There is no need to define a new model M ′ or store and pass a
posterior P (X | Y = e).
B.2. Counterfactual query model example with Pyro

This is a general way to perform counterfactual inference in Pyro using its interventional
do operator, similar to that suggested in Ness (2019a):

import pyro
import torch
import numpy
import t i m e i t

NUM SAMPLES = 1000 # f o r both abduct ion and
# i n t e r v e n t i o n / p r e d i c t i o n

ROUND DIGIT APPR = 1 # d i s c r e t i s a t i o n to avoid
# ' i n f i n i t e r e j e c t i o n sampling '
# f o r cont inuous v a r i a b l e s

GUIDE TO USE = None

l a t e n t p r o c e d u r e s i t e s = [ 'X ' , 'Z ' , ' Y eps i l on ' ]

def rounder ( va l ) :
i f ROUND DIGIT APPR i s None :

# Don ' t round :
return torch . t enso r ( f loat ( va l ) )

else :
return torch . t enso r (

round( f loat ( va l ) , ROUND DIGIT APPR)
)

def e x t r a c t o b s i f a n y ( data , var name ) :
i f data i s not None and var name in data :

return data [ var name ]
else :

None

def model ( data=None , p o s t e r i o r d i s t r i b u t i o n=None ) :
i f (

p o s t e r i o r d i s t r i b u t i o n i s not None
and 'X ' in p o s t e r i o r d i s t r i b u t i o n

) :
# I f we are re−us ing a sample from a p o s t e r i o r ,
# we j u s t shou ld use the v a l u e f o r t h i s v a r i a b l e
# d i r e c t l y :
X = p o s t e r i o r d i s t r i b u t i o n [ 'X ' ]

else :
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X = pyro . sample (
'X ' , pyro . d i s t r i b u t i o n s . Normal (0 , 1 ) ,
obs=e x t r a c t o b s i f a n y ( data , 'X ' )

)
i f (

p o s t e r i o r d i s t r i b u t i o n i s not None
and 'Z ' in p o s t e r i o r d i s t r i b u t i o n

) :
Z = p o s t e r i o r d i s t r i b u t i o n [ 'Z ' ]

else :
Z = pyro . sample (

'Z ' , pyro . d i s t r i b u t i o n s . Normal (0 , 1 ) ,
obs=e x t r a c t o b s i f a n y ( data , 'Z ' )

)
i f (

p o s t e r i o r d i s t r i b u t i o n i s not None
and ' Y eps i l on ' in p o s t e r i o r d i s t r i b u t i o n

) :
Y eps i l on = p o s t e r i o r d i s t r i b u t i o n [ ' Y eps i l on ' ]

else :
Y eps i l on = pyro . sample (

' Y eps i l on ' , pyro . d i s t r i b u t i o n s . Normal (0 , 2)
)

d i s c r e t e Y = rounder (X + Z + Y eps i l on )

# We must ( re−) e v a l u a t e d e t e r m i n i s t i c v a r i a b l e s in any case :
Y = pyro . sample (

'Y ' ,
pyro . d i s t r i b u t i o n s . Delta (

torch . t enso r ( d i s c r e t e Y ) ) ,
obs=e x t r a c t o b s i f a n y ( data , 'Y ' )

)
return X, Z , Y eps i lon , Y

data = { 'Y ' : rounder ( 1 . 2 3 4 2 ) , 'X ' : None , 'Z ' : None}

s t a r t = t i m e i t . d e f a u l t t i m e r ( )

# 1. Abduction
p o s t e r i o r = pyro . i n f e r . Importance (

model ,
guide=GUIDE TO USE,
num samples=NUM SAMPLES

) . run ( data=data )
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print ( ' Abduction ESS : ' , p o s t e r i o r . get ESS ( ) )

p o s t e r i o r = pyro . i n f e r . Empir ica lMarginal (
p o s t e r i o r ,
s i t e s=l a t e n t p r o c e d u r e s i t e s

)

# 2. I n t e r v e n t i o n
i n t e r v e n t i o n = { 'Z ' : −2.5236}
i n t e r v e n e d p o s t e r i o r = pyro . do ( model , i n t e r v e n t i o n )

# 3. P r e d i c t i o n
pred i c t i on s Y = [ ]
for sample index in range (NUM SAMPLES) :

# We are drawing a sample from the p o s t e r i o r world :
p o s t e r i o r s a m p l e v e c t o r = p o s t e r i o r . sample ( )

# We drew t h a t sample in a v e c t o r form ;
# now we need to transform
# i t to a d i c t i o n a r y o f v a r i a b l e s .
p o s t e r i o r s a m p l e = {}
for index , var name in enumerate(

l a t e n t p r o c e d u r e s i t e s
) :

i f var name in i n t e r v e n t i o n :
# We must ensure t h a t we don ' t
# use i n t e r v e n e d v a r i a b l e s
# from i t s p o s t e r i o r :
pass

else :
p o s t e r i o r s a m p l e [ var name ] = (

p o s t e r i o r s a m p l e v e c t o r [ index ]
)

X, Z , Y eps i lon , Y = i n t e r v e n e d p o s t e r i o r (
p o s t e r i o r d i s t r i b u t i o n=p o s t e r i o r s a m p l e

)
p r ed i c t i on s Y . append (Y)

stop = t i m e i t . d e f a u l t t i m e r ( )
print ( 'Time : ' , s top − s t a r t )

expected Y = numpy . mean( p r ed i c t i on s Y )

print ( ' Pred i c t i on : ' , expected Y )

Note that we have to implement the counterfactual inference using a combination of
the different Pyro tools, rather than just rely on the engine and its abstractions to do
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it. While that is not necessarily a disadvantage, it does require a user to implement a
counterfactual inference query themselves. It also requires a model to be modified and
provided with the posterior values in prediction step. Further, implementing it as described
above in Pyro enforces modularity and the abduction, intervention, and prediction steps
are done in isolation; they are prevented from communicating optimisations because they
are individually ignorant of the full query. Also, as mentioned in Section A.2, two sampling
steps are required: one for the abduction sampling step, and one for prediction step.

In addition, note that in the example above, we have to operate in a discretised contin-
uous space for the emission variable and its observations. We achieve this with the function
rounder and global variable ROUND DIGIT APPR that defines how many digits should be used
when rounding the number. We have to discretise the space because otherwise it is almost
impossible for the sampled value of the emission variable to match its observation.

B.3. Using “guide” for more efficient counterfactual inference in Pyro

There is an alternative to the discretisation of the space. The alternative is to force the
explicit noise variable ε to a value that allows emission variable Y = X + Z + ε to match
its observation.12 This is very similar to the idea of implemented ObserverableERPs in
MultiVerse (see Section E). An example of such a guide for Pyro for this Gaussian model
is provided below:

def o b s e r v e d n o r m a l n o i s e i n v e r t f u n c t i o n (mean , obse rved va l ) :
return torch . t enso r ( obse rved va l − mean)

def my guide ( data ) :
X = pyro . sample ( 'X ' , pyro . d i s t r i b u t i o n s . Normal (0 , 1 ) )
Z = pyro . sample ( 'Z ' , pyro . d i s t r i b u t i o n s . Normal (0 , 1 ) )

observed Y = data [ 'Y ' ]

Y eps i l on = pyro . sample (
' Y eps i l on ' ,
pyro . d i s t r i b u t i o n s . Delta (

o b s e r v e d n o r m a l n o i s e i n v e r t f u n c t i o n (
X + Z ,
observed Y

)
)

)
d i s c r e t e Y = rounder (X + Z + Y eps i l on )

# We must ( re−) e v a l u a t e d e t e r m i n i s t i c v a r i a b l e s in any case :

12. In this example, ε is additive. In reality, it can enter in the Structural Causal Model in any form so long
as there is a function observed noise invert function fε such that fε(Y,X,Z) = ε (it can also return
none (i.e. leading to rejection) or multiple (i.e. additional sampling must be made) appropriate ε-s). In
the case of this example, ε = fε(Y,X,Z) = Y −X − Z.
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Y = pyro . sample ( 'Y ' , pyro . d i s t r i b u t i o n s . Delta ( d i s c r e t e Y ) )

return X, Z , Y eps i lon , Y

Finally, to enable the guide (and disable the rounding over float values since with the perfect
guide we have we don’t need it anymore), we need to set configuration variables as follows:

ROUND DIGIT APPR = None
GUIDE TO USE = my guide

To compare the different options described above, we computed the effective sample size
estimator (Kish, 1965) of the sample weights

ESS =
(
∑N

i=1wi)
2∑N

i=1w
2
i

for Pyro without and with a guide, as well as for MultiVerse. We ran 100 runs, each with
1,000 samples, for each option of three. The results are provided in the table below. The
results illustrate that having a proposal (as a guide in Pyro) or an Observable ERP (as in
MultiVerse) is crucial for efficient inference with observations and explicit noise variables.

Experiment Average of ESS St. Dev. of ESS estimator

Pyro without guide 14.95 3.25
Pyro with guide 822.61 9.37

MultiVerse 884.73 4.71

Appendix C. Details on importance sampling for counterfactual queries
in probabilistic programming

C.1. More details on importance sampling for observational inference

With importance sampling, we can approximate the observational posterior queries P (X | Y )
by generating N samples {si} from a proposal distribution Q and accumulating the prior,
proposal and likelihood probabilities into weights {wi}:

si ∼ QY (X), wi =
prior(X)

proposal(X)
× likelihood(Y | X).

In most cases, X is a vector and it can be sampled forward from the model element
by element. Finally, we calculate statistics of interest using the samples and their weights.
For example, we can compute the expected value of arbitrary function f using the self-
normalised importance sampling:

Ef(X) | Y [f(X)] =
∑
i

f(si) ·
wi∑
k wk

.

Similarly, we can do this in probabilistic programming settings, where a probabilistic
program is a procedure which represents a generative model. Each variable xi ∈ X and yi ∈
Y is represented as a random procedure. To generate a sample si of the whole probabilistic
program, we evaluate the program forward and in the process: (a) for latent (unobserved)
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variables, we sample each variable value from its proposal, and incorporate the likelihood of
prior and proposal into the weight; (b) for observed variables, we incorporate the likelihood
into the weight. Finally, we can compute the statistics of interest given the samples and
weights.

C.2. Note on using amortised inference

Note that, as mentioned in Section 1.1, the most complex step of counterfactual inference
is generally the abduction step, which involves the standard joint posterior inference. The
standard inference techniques for amortised approximate inference (Gu et al., 2015; Ger-
main et al., 2015; Perov et al., 2015; Paige and Wood, 2016a; Perov, 2016; Le et al., 2016;
Morris, 2001; Paige and Wood, 2016b; Ritchie et al., 2016; Le et al., 2017) and in particular
importance sampling inference (Douglas et al., 2017; Walecki et al., 2018) can be used to
facilitate the posterior inference problem.

C.3. Importance sampling for counterfactual queries in probabilistic
programming

To compute N samples from counterfactual query P (K ′ | Y = e, do(D = d)) in probabilistic
programming settings we need to:

0. Execute the program the first time to record what variables are observed, what vari-
ables are intervened, and with what values in both cases. We also need to record
what values should be predicted. The addressing scheme can be similar to the one
in (Wingate et al., 2011). Note that in this work in MultiVerse, by default, it is as-
sumed that the structure of the program (including dependencies between variables)
and the number of random choices is fixed and therefore the addresses of random vari-
ables do not change. That is because MultiVerse is based on the Python language,
and in Python it is hard to track execution traces inside the program itself. Option-
ally, in MultiVerse, a user can also specify their own addressing scheme to account for
complex control flows of the program execution and complex structure of the program.

1. Execute that program N more times without any intervention. As usual with impor-
tance sampling in probabilistic programming, we need to sample X from a proposal,
incorporate the prior and proposal likelihoods of X into the weights, as well as the
likelihoods of observed variables Y .

2. Generate N new samples {s′i} based on samples {si}. For each sample si, we need to
re-evaluate the program but instead of sampling random variables, for each random
variable we just re-use a value that was sampled for that random variable, unless that
variable is in D or it is any descendent variable of any variable in D. If the variable
is in D, we just force the value to be the value of d. If the variable is an descendent
(direct or indirect) of any variable in D, then we need to re-evaluate it (or, if it is a
probabilistic procedure, to resample it).

Note that in this step, weights don’t need to be updated because they already represent
the posterior space along with the samples. The “counterfactual’s intervention” is
intended to operate in exactly that posterior space defined by the samples and the
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weights13,14. (Let us remark that the “counterfactual’s intervention” is neither an
inference proposal nor an observation.)

3. Predict the counterfactual variable(s) of interest. For example, for expected values it
means taking the normalised weighted averages for the variable(s) of interest in the
samples, as described in Clause 3 in Section 2.1.

Based on the algorithm above, we can note that we will need 2N + 1 evaluations of the
program. Hence, the memory and computational complexity of importance sampling for
counterfactual queries is the same in terms of O-notation as the complexity of importance
sampling for “observational” queries as we need to evaluate each program twice. However,
it takes two times more in terms of constant factor. We also can calculate s′i immediately
after we calculate si rather than firstly calculating all {si} and only then calculating {s′i};
that way the memory asymptotic complexity should be the same as for “observational”
queries.

As with most sampling methods, we can carry out the counterfactual queries in parallel.
As for the memory optimisations, instead of keeping full samples in the memory, we can
discard all but predicted values for K ′ (or, even further, we can only accumulate requested
statistics of interest, e.g. a mean or variance).

We employed the optimisations mentioned in Section 2.2 by using “lazy” variable eval-
uation in “MultiVerse Optimised” in the experiments as discussed in Sections A.2 and
illustrated in Section F.1. Similar to other probabilistic programming language implemen-
tations (e.g. similar to optimisations for Church (Perov and Mansinghka, 2012) and Ven-
ture (Mansinghka et al., 2014)), further/alternative optimisations can be made by tracking
the dependency of a complex model graph to make sure that for computing {si} and {s′i}
we only evaluate/re-evaluate the necessary sub-parts of a program/model. That is, a more
“intelligent” probabilistic programming engine can perform static/dynamic analysis on the
computation graph (maybe even potentially a form of “just-in-time” compilation for infer-
ence) such that a user even don’t need to make the variable evaluation “lazy” themselves
in the model but rather the engine can determine itself what parts of the graph needs to
be evaluated and when.

Also note that for efficient memory usage, “copy-on-write” strategies (Wikipedia, 2019;
Paige and Wood, 2014) can be applied when making intervention/prediction on parts of the
sample si in the process of producing and using for prediction the intervened (i.e. modified)
sample s′i.

13. Note that if we were doing a full, exact enumeration over the posterior space (rather than importance
sampling), all samples {si} are expected to be unique (i.e. different from each other). However, after
the intervention some samples can become identical like si == sj for i 6= j; if we want to represent
the “counterfactual” probability space, their weights should be summed (like wi + wj) for the final
representation of that probability space. For importance sampling, it does not matter too much because
we usually enumerate and calculate statistics of interest over all samples s′i like

∑N
i=1 s

′
iwi, no matter

whether they are unique or not.
14. Note that if we are to do “counterfactual conditioning”, which involves taking into the account additional

observations on the counterfactual world after abduction and intervention, and before the prediction step,
then the weights should be updated accordingly in that step as well (e.g. they should be set to 0 for the
points of the counterfactual space that do not satisfy “counterfactual conditioning” “observations”).
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C.4. Other forms of inference for counterfactual queries

In this paper, we consider importance sampling. To be clear, counterfactual inference can be
performed with any appropriate inference scheme, whether it is sampling or optimisation-
based, as the abduction step can always be performed separately on its own. We focus
on importance sampling for the first version of MultiVerse. Importance sampling is a
conceptually straightforward15 way of showing what is perhaps one of the key insights of
this paper: designing a probabilistic programming system with counterfactual and causal
reasoning in mind enables further optimisations that existing general-purpose probabilistic
programming system might not achieve right now (but they can be improved in the future
with similar ideas). Some of these optimisations are described in Section 2.2.

Note that using basic optimisation-based approaches instead, e.g. basic variational
inference approaches, might not be efficient because one of the important considerations
for counterfactual inference is the necessity to operate on the joint posterior distribution,
where the joint is over all hidden variables including noise variables. Hence, approaches
such as mean-field approximations are not particularly suitable, if a good precision of the
final counterfactual query is desired, and more sophisticated optimisation-based approaches
that preserve the relation between variables in the joint need to be used.

C.5. Note on the contradiction in counterfactual probabilistic notation

The notation P (K ′ | Y = e; do(D = d)) may seem contradictory at first glance, as it
could be that D ⊆ Y (if we intervene on a variable that we’ve already observed) or/and
K ′ ⊆ Y (if we are interested in a variable we’ve already observed). In reality, if D ⊆ Y
or K ′ ⊆ Y , they are variables in model M ′ once we have replaced the distribution P (X)
by P (X | Y = e). Hence, no contradiction occurs, but it does highlight the limited power
of a standard probabilistic expression to express the intuition of the counterfactual. This
contradiction explains the name “counterfactual” and necessitates the three-part inference
procedure. In this short paper, we employ this “abused” notation to denote (left to right)
first the abduction, then the intervention, in service of prediction.

Pearl (2000) offers one notational resolution by denoting K ′
Y as the distribution of K ′

with X already updated and replaced by P (X | Y = e). Balke and Pearl (1994) offers an-
other resolution via Twin Networks, where all endogenous nodes in the Structural Causal
Model are copied but share the same noise values, thus creating endogenous counterfac-
tual counterpart variables that are separate. Richardson and Robins (2013) offers Single
World Intervention Graphs, a resolution similar to Balke and Pearl (1994) that changes the
graphical representation of counterfactual and intervened variables.

15. It is also an efficient way if a good proposal is used e.g. with the help of amortised inference; see
Section C.2 for more details.
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Appendix D. More Notes on Related Languages and Other Related
Work for Counterfactual Inference

D.1. Counterfactual Inference in Existing Probabilistic Programming
Frameworks and Comparison to MultiVerse

Given an intervention mechanism such as exists natively in Pyro (Bingham et al., 2018)
(or as can be implemented in Edward as in Tran et al. (2018)), one can write the steps
of abduction, intervention and prediction, as it has been independently shown in (Ness,
2019c,b) using sampling16. However, the complex usage of existing methods introduces
redundancy, requires model modifications, creates multiple models, and doesn’t optimise
inference for counterfactuals.

D.2. Related Language: OmegaC probabilistic programming language, syntax
and semantics

A new paper17 by Tavares et al. (2018) proposes OmegaC, a causal probabilistic program-
ming language for inference in counterfactual generative models. This commendable work
develops its own syntax and semantics for a new language for counterfactual inference.
For future work, we are interested in: (a) how different approximate counterfactual infer-
ence techniques operate and can be optimised in OmegaC; (b) comparing the semantics
and syntax of counterfactuals with OmegaC, Pyro, MultiVerse and other languages, and
identifying ones that are optimal for counterfactuals; and (c) how to extend the insights
from OmegaC to other probabilistic languages and engines in order to make them more
expressible and/or more efficient for counterfactuals.

D.3. Causal and Counterfactual Reasoning in Probabilistic Logic
Programming

There is another important set of related work18 on causal reasoning and probabilistic
modelling/programming, specifically in the field of probabilistic logic programming, which
“combines logic programming with probability theory as well as algorithms that operate
over programs in these formalisms” (Organisers of the 6th Workshop on Probabilistic Logic
Programming, 2019). In particular, Baral and Hunsaker (2007) show how the probabilistic
logic programming language P-log (Baral et al., 2009) can be used for causal and counter-
factual reasoning e.g. with the help of special variable indexing and related encoding of
a model and a query. In another paper, Vennekens et al. (2009) develop CP-logic, a logi-
cal language for representing probabilistic causal laws in the settings of probabilistic logic
programming.

16. The suggested methodology in Ness (2019b) for Pyro explicitly requires resampling from the posterior
to calculate counterfactual queries. For ideas on other approaches to be explored see Section A.2.

17. The authors of this paper discovered the OmegaC paper a few days before the submission of this paper.
18. We thank our reviewers for the Second Approximate Inference Symposium (see http://

approximateinference.org/), to which our work has been accepted, for bringing this to our atten-
tion.
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Appendix E. Model design choices for counterfactual inference in
probabilistic programs

E.1. Observable Elementary Random Processes and their “intelligent”
proposal distributions

In counterfactual settings it is generally expected that all latent variables, including noise
variables, should be represented explicitly. That is, the joint posterior distribution P (X | Y =
e) in the “abduction” step must account for the joint of all sources of randomness. More-
over, it is one of the requirements of structural causal models that all exogenous variables
are explicitly represented.

On the other hand, the noise variables in probabilistic programming are often repre-
sented implicitly. Furthermore, often implementations of probabilistic programming sys-
tems force a user to represent them only in that implicit way. For example, an observation
with the normal noise is usually absorbed into the likelihood as in the example below:

Y = NORMAL(X, 1.5)

OBSERVE(Y, 2.3)

rather than with explicit representation of the separate, latent noise variable:

EPSILON_NOISE = NORMAL(0, 1.5)

Y = X + EPSILON_NOISE

OBSERVE(Y, 2.3)

There is a good reason, in general, for the implicit representation of noise variables in
existing probabilistic programming frameworks (which mostly perform only observational
inference) as it allows the OBSERVE statement to “absorb” the observation into the likeli-
hood without sampling the observed variable and without intractable rejection sampling.
To preserve the same benefit in our implementation but also to allow for proper coun-
terfactual inference, we suggest to define versions of “observable probabilistic procedures”
(OPP). For example, a Normal procedure Normal(µ, σ) can have a sibling procedure
ObservableNormal(µ, σ).

An OPP behaves in the similar way as any PP but it has two special considerations:

1. An OPP must sample its noise explicitly into the program trace as an additional
random variable.

2. If an OPP is being OBSERVEd, then it must have a method of calculating an inverse
transformation and observing that noise variable into the appropriate value, as well
as calculating the marginalised likelihood of that for the trace weight.

It is also a possible design choice to make all PPs OPPs by default, if desired.
When writing an implementation of an OPP, including its sampling and inverse methods,

the similar considerations that are used for writing good proposals (i.e. “guides” in Pyro)
can be used:
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1. It is mandatory to ensure that no non-zero parts of the posterior are skipped due to
a proposal. For example, if there are two values of the noise variable that make the
emission variable match the observation, both of those values should be sampled with
non-zero probability.

2. Note that it is okay if given some specific values of the parents of an OPP, there is
no possible value that a noise variable can take to make the OPP match its observed
value; in that case, that sample just should be rejected.

E.2. The Use of a guide in Pyro instead of “Observable Elementary Random
Procedures”

For our experiments in Pyro, and generally, it is possible to use Pyro “guide”19 to force the
noise variables, which must be represented explicitly, to their inversed values. An example
of that is provided in Section B.3.

E.3. Examples of Gaussian models implying important design choices

(a) (b) (c)

Figure 4

In Figure 4 there are three different but very similar representations/models. In all
of them, there are two latent variables X and Z, which are a priori independent and
both follow prior distribution Normal(0, 1). The emission variables have extra Gaussian
noise Normal(0, 2). Figure 4a illustrates a representation of such model with one emission
variable; that is common to represent it in such way in probabilistic programming and
generally for “observational” inference. Figure 4b is a representation of the same model but
it explicitly represents the exogenous noise variable as an independent variable (highlighted
with gradient) such that the emission variable Y is a deterministic function of X, Z and ε
(that way, it is aligned with the general requirements of structural causal models). That way,
variable Y is just a sum of three variables. For the purpose of “observational” inference both
representations have the same joint posterior P (X,Z | Y = ŷ). However, counterfactual
query P (Y ′ | Y = ŷ, do(Z = z̃)) will be different for Figures 4a and 4b, because in the
former case the randomness over the noise has not been recorded in the joint and cannot
be used for the counterfactual prediction. In other words, “by design”, in the former case
variable Y has to be resampled from its prior given the posterior and intervention over its

19. “Guide” is Pyro terminology for a model that defines a proposal or variational distribution for more
efficient inference.
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hyperparameters. Note that if anyone tries to, “technically”, compute the “counterfactual”
query P (Y ′ | Y = ŷ, do(Z = z̃)) given the model representation in Figure 4a, it will be
the same as counterfactual query P (Y ′

2 | Y1 = ŷ, do(Z = z̃)) in Figure 4c rather than in
Figure 4b as it might had been expected. We could argue that a choice of a representation
and a query should be based on an informed and mindful decision of a user (otherwise,
someone accidentally would run a counterfactual query on a model as in Figure 4c if they
implement a model as in Figure 4a, although their aim might had been to run a query
on a model as in Figure 4b). For making such a decision, someone also should consider
what variables in the observed (i.e. abducted) world should still be following their prior
distribution, if any at all. Figures 4b and 4c, with exogenous noise separated from its
deterministic child, represent quasi-Structural Causal Models (they are quasi- because the
exogenous and endogenous variables for e.g. X and Y are combined); other model types
(e.g. with not additive noise) should have different representations.

Figure 5

For illustration, Figure 5 shows a properly defined (i.e. not “quasi-”) Structural Causal
Model for Figure 4c. Variables ex, ex, ε and ε2 are exogenous variables, and variables X,
Z, Y1 and Y2 are endogenous variables.

E.4. Code for models in Figure 4

Code for Figure 4a where, as described above, the noise for Y will follow its prior distri-
bution:

X, Z = NormalERP(0 , 1 ) , NormalERP(0 , 1)
Y = NormalERP(X + Z , 2 , depends on =[X, Z ] )
observe (Y, ev idence y )
do (Z , i n t e r v e n e d z )
p r e d i c t (Y, c o u n t e r f a c t u a l=True )

Code for Figure 4b without ObservableNormalERP that leads to rejection sampling
(very inefficient and generally futile (unless discretisation is used for continuous values)):

X, Z = NormalERP(0 , 1 ) , NormalERP(0 , 1)
EPSILON = Normal (0 , 2)
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Y = X + Z + EPSILON
# Same s t e p s f o r OBSERVE, DO, PREDICT

Code for Figure 4b with ObservableNormalERP, which creates an explicit Normal(0, 2)
noise inside the probabilistic program execution trace and which also allows to propagate
the observation inside that noise:

X, Z = NormalERP(0 , 1 ) , NormalERP(0 , 1)
Y = ObservableNormalERP (X + Z , 2 , depends on =[X, Z ] )
# Same s t e p s f o r OBSERVE, DO, PREDICT

Code for Figure 4c with ObservableNormalERP:

X, Z = NormalERP(0 , 1 ) , NormalERP(0 , 1)
Y1 = ObservableNormalERP (X + Z , 2 , depends on =[X, Z ] )
Y2 = ObservableNormalERP (X + Z , 2 , depends on =[X, Z ] )
observe (Y1 , ev idence y )
do (Z , i n t e r v e n e d z )
p r e d i c t (Y2 , c o u n t e r f a c t u a l=True )

E.5. Nuance About Intervened Variables and Their Descendants in
Probabilistic Programs

Note a nuance about re-evaluating the stochastic (i.e. non-deterministic) variables that are
descendants of any variables in set D. Following the convention suggested by Pearl et al.
(e.g. see (Pearl, 2000)) for Structural Causal Models, to the best of our understanding,
it only makes sense for a do operation to entail an intervention on endogenous variables
(Pearl, 2000). (It is however technically possible to intervene on exogenous variables.)

Following a similar principle in that convention, any variable that is a descendent (direct
or indirect) of an intervened variable should also be an endogenous variable. That is one
of the requirements of working with structural causal models. Note that in general in
probabilistic programming a variable that is a descendent of any variable in D can be a
random variable with some hyperparameters; in other words such a variable is both an
exogenous variable (defined by its own randomness (e.g. noise) that is not expressed as a
separate part of the model and hence breaks the assumptions of structural causal models)
and an endogenous variable (by virtue of having hyperparameters that depend on other
variables in the model).

There are at least three management strategies for this scenario:

1. Be very careful when you are performing the modelling and formulate queries by
ensuring you have strict structural causal models and all your queries are appropriate.

2. Introduce checks and restrictions in a probabilistic programming language/implemen-
tation to make sure that only endogenous can be observed or intervened, as well as
that any descendants of endogenous variables should be also endogenous.

3. A “heretical” approach is to use this hidden randomness for the sake of using the prior
conditional distributions for such variables in the counterfactual world. For example,
someone can assume it might be useful if we assume that in our counterfactual query
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the noise is defined by its prior distribution even in the counterfactual’s intervention
step. However, it is only a “hack” due to the implementation, and if someone would
like to model something like that, it might be the best to introduce proper language
syntax constructions for that (e.g. by specifying what variables should be resampled
from their prior (or follow a completely different distribution) in the interventional
part of a counterfactual query20; or by adjusting the model and doing “partial” coun-
terfactual queries as shown in one of the examples in Figure 4c) in Section E.3.

E.6. Illustrations of ObservableNormalERP and ObservableBernoulliERP

Figure 6 illustrates the Observable Normal ERP with its inverse function (for the proposal)
ε := ObservedV alue−f(X1, . . . , XN), if there is an observation. That way, the observation
is satisfied.

Figure 6

Figure 7 shows the Observable Bernoulli ERP where its noise variable ε flips the output
of the binary function f(X1, . . . , XN) if ε = 1; however, if ε = 0, then the emission variable
Y just returns the value of function f(X1, . . . , XN). The inverse function works as follows:
if the output of function f(. . .) matches the observed value for Y , then the noise variable
value is set (proposed with probability 1.0) to value 0 (because no flipping is required);
otherwise, the noise variable value is set (proposed with probability 1.0) to value 1 to
enforce the flip. This helps to satisfy the observed value.

E.7. More sophisticated example of an Observable ERP: the Observable Noisy
OR

A popular stochastic “gate”/procedure is a noisy OR procedure (Pearl, 2014). One of the
definitions of the noisy-OR variable Y given its N parents X1, . . . , XN is as follows:

P (Y = False | X1, . . . , XN) = 1.0− λ0
N∏

i=1 s.t. Xi=True

λi.

20. One way to think about that is to say that do operator might intervene on a variable to define a new
distribution for it rather than just one value.
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Figure 7

Figure 8 illustrates a noisy-OR gate. Each parent j, if active, can switch the noisy-
OR variable Y but with only probability 1 − λj . In other words, there is a noisy variable
associated with each parent: only if both the parent j is True and the associated noise
variable εj is True, then the noisy-OR variable Y becomes True. There is also one more,
independent, “leak” cause for the noisy-OR variable Y to be switched on: that is if the
noise (leak) variable ε0 = Bernoulli(1.0 − λ0) is True. By that definition, the noisy-OR
variable Y is False only if all εj , such that j includes j = 0 and j includes all parents that
have state True, are False; that is exactly what the equation above calculates.

For the Observable Noisy-OR procedure, the proposal for noise variables εj is more
sophisticated. For example, a proposal might be as follows:

1. If the observed value is False, then: (a) for any Xi that is True, the associated noise
variables εj should be set (i.e. proposed with probability 1.0) to False; (b) the noise
variable ε0 should be set to False; (c) all other noise variables εj can be sampled
from any non-degenerated proposal (i.e. such that both True and False states have
non-zero probability).

2. If the observed value is True, then: (a) all εj s.t. j >= 1 can be sampled from any
non-generative proposal; then (b-1) if that is enough, with the states of the parents,
to enable Y to be True, then variable ε0 can be sampled from any non-generative
distribution; alternatively, (b-2) if that is not enough, variable ε0 must be set to
True.

Note that the proposal describe just above is one of many possible proposals. Another
proposal might be that if the observed value is True, then absolutely all εj including j = 0
are sampled from some non-generative proposal, and if that does not result in variable Y
being True, then that sample is just rejected (in other words, its weight will be 0).

E.8. Interventions and possible consequences of volatile program control flows

Note that, to the best of our understanding, for counterfactual inference, if an intervention
(that happens after abduction) provokes an execution control flow change in a program, then
it by default leads to the new control flow sub-trace part to be resampled from its prior. For
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Figure 8

example if in probabilistic program21 (if (Bernoulli 0.1) (Normal 1 1) (Bernoulli

0.5)) the value of the predicate expression (Bernoulli 0.1) has been intervened from
1 to 0, then the value of the alternative if-branch expression Bernoulli(0.5) by default
will be resampled from its prior. That resampling is similar to the resampling of the noise
from its prior as discussed in Section E.5 and might have similar implications as discussed
in Section E.3, in particular similarly to the model and query for Figure 4a.

Appendix F. Details of MultiVerse Implementation

MultiVerse is implemented in Python. Generally, any MultiVerse probabilistic program can
be represented simple and conveniently as a Python function:

from mul t i ve r s e import (
NormalERP ,
ObservableNormalERP ,
observe , do , pred i c t ,
run in f e r enc e ,

)

def my mode l a s probab i l i s t i c p rogram ( param1 , param2 ) :
X1 = NormalERP(0 , 5 , proposal mean =1.5)
X2 = NormalERP(X1 + 2 , 7 , depends on =[X1 ] )
X3 = NormalERP(0 , 8 , p r o p o s a l s t d =2.5)
Y1 = ObservableNormalERP (

X1 + s i n (X2) + X3 , 2 ,
depends on =[X1 , X2 , X3 ] )

Y2 = ObservableNormalERP (X1 + s i n (X2) + X3 , 2 ,
depends on =[X1 , X2 , X3 ] )

21. To the best of our understanding, if it had been a Structural Causal Model, we might have expected
variables that are used in both the if-consequent and if-alternative branches to be sampled somewhere
earlier in the trace as “exogenous” variables like a = Normal(1, 1) and b = Bernoulli(0.5), and then
just reused inside these if-branches like (if (Bernoulli 0.5) a b).
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observe (Y1 , param1 )
do (X2 , param2 )
p r e d i c t (Y1 . va lue )
p r e d i c t (Y2 . va lue )

In the code above, we define latent variables X1, X2, X3. We then define emission
variables Y 1 and Y 2, which have Gaussian noise. Because we use ObservableNormalERP,
that Gaussian noise will be represented explicitly in the trace and it will be part of the joint
model posterior for further counterfactual prediction. Proposal parameters can be provided
to probabilistic procedure object calls.

We then put an observation of Y 1 for value param1, which is passed as an input argu-
ment to the probabilistic program. We also do an intervention for variable X2 to force it
to value param2. At the end, we predict the values of Y 1 and Y 2.

Since in Python it is not easy to automatically track dependencies between objects
(which are mutable in general), we have to explicitly specify the dependencies of each
probabilistic procedure.22,23

Observations, similarly to other probabilistic programming languages, are provided with
instruction observe(erp, value).24

By default, instruction do(erp, value, do_type=DOTYPE_CF) performs a counterfac-
tual intervention and instruction predict(expr, predict_counterfactual=True) per-
forms a counterfactual prediction.

It is also possible to perform a “simple” intervention on the original model by calling
instruction do(erp, value, do_type=DOTYPE_IV), which is equivalent to modifying the
original model. It is also possible to perform an “observational” (i.e. not counterfactual)
prediction predict(expr, predict_counterfactual=False). Of course, it is possible to
combine all of these instructions in one model/query if desired. Also note that without any
counterfactual interventions do(..., do_type=DOTYPE_CF), the counterfactual prediction
is equivalent to the “observational” prediction.

Performing inference is as simple as providing the evidence and the interventions, and
calling run_inference method with the selected number of samples:

r e s u l t s = r u n i n f e r e n c e (
lambda : my mode l a s probab i l i s t i c p rogram ( 3 . 5 , 2 . 5 ) ,
num samples ,

)

The output of run_inference contains all predictions per each sample and samples’
weights. Those can be used to compute any statistics of interest, e.g. the expected values.
Method run_inference can run inference in parallel using multiple cores.

Each ERP object creation call can be provided with its trace address by a user, e.g.
X2 = NormalERP(0, 1, trace_address="X2"). Providing such an address is optional

22. Note that that is required for counterfactual inference. It is not a requirement for observational inference.
23. In the future implementations in other languages, e.g. in the subset of Clojure, the dependencies can be

tracked automatically.
24. Note that currently MultiVerse allows observations and interventions only on statically defined random

procedures; those procedures can’t be determined based on the stochastic trace execution. It is the
future work to explore that.
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because by default the engine uses a simple incremental addressing scheme. However
if a probabilistic program has a changing control flow (e.g. there is a statement like
if predicate: X2 = X1 + Normal(0, 1, ...); else: ... such that if statement pred-
icate is not deterministic), then the user must use their own probabilistic procedure address-
ing scheme to ensure consistency for book keeping of probabilistic procedures and their
values.

We chose Python for our prototype implementation because Python is a very popular
language. This way, our implementation allows anyone, who knows Python, to run coun-
terfactual queries for any probabilistic program written in Python. On the other hand, the
most of the optimisations that we mentioned in Section 2.2 are harder to implement and,
further, fully automatise in Python. There might be implementations of a similar engine in
a restricted subset of Python or in languages like Clojure. Also, similar ideas can be imple-
mented in existing probabilistic programming languages like Pyro, Anglican (Wood et al.,
2014; Tolpin et al., 2015, 2016), Venture, Church (Goodman et al., 2012) language engines,
Gen (Cusumano-Towner and Mansinghka, 2018), and others (Probabilistic Programming
Wiki Authors, 2019).

F.1. “MultiVerse Optimised” methods to make inference faster

For “MultiVerse Optimised” experiments as discussed in Section A.2, we redefined the model
such that all variables are computed in “a lazy way” (hence computed only if necessary),
and we used some methods of MultiVerse engine that allowed us to skip computations unless
they are necessary.

That is, instead of computing all variables in the model (as we did for “MV” and for
“Pyro”) in all steps as follows:

def program ( ) :
d i c t v a l u e s = {}
for node in toposor ted nodes :

d i c t v a l u e s [ node ] = c r e a t e p r o b p r o c o b j e c t ( node , d i c t v a l u e s )

for var name , va l in EVIDENCE. items ( ) :
observe ( d i c t v a l u e s [ var name ] , va l )

for var name , va l in INTERVENTION. items ( ) :
do ( d i c t v a l u e s [ var name ] , va l )

p r e d i c t (
d i c t v a l u e s [VAR TO PREDICT ] . value ,
p r e d i c t c o u n t e r f a c t u a l=True )

we rather compute variables only if required as shown in code snippet below. That is, if we
know that we want to compute the variable of interest VAR TO PREDICT, so we shall compute
it. Our method compute var helper can compute any variable, but first it will compute
all its parents (and it will do so recursively for the parents of the parents, etc.). Also,
we wrap calls to compute var helper in our method compute var, in which we rely on
MultiVerse’s method compute procedure if necessary to check whether we really need
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to compute a variable, or it has been intervened and we don’t need to compute it (and hence
its parents as well unless they should be computed for other reasons). MultiVerse’s method
compute procedure if necessary(trace, procedure caller) takes a variable trace and
if that trace has been intervened, MultiVerse will return a Delta-distribution with the
intervened variable’s value instead; if it was not intervened, MultiVerse will compute that
variable by calling function procedure caller which is provided by us. The similar logic is
used for the variables that needs to be observed (i.e. EVIDENCE variables) or intervened (i.e.
INTERVENTION variables). Finally, we wrap all observations in block IF OBSERVE BLOCK and
all interventions in block IF DO BLOCK; that way, MultiVerse will execute those blocks only
when required (e.g. we don’t need to compute any observation-related parts of the program
after we already did abduction step; similarly, we need to record intervention only during
the initial run of the program when we record all variables that have been intervened).

from mul t i ve r s e import (
IF OBSERVE BLOCK,
IF DO BLOCK,
compute procedure i f nece s sa ry ,

)

def compute var he lper ( var name , d i c t v a l u e s ) :
for parent in c p t s p a r e n t v a r i a b l e s [ var name ] :

i f parent not in d i c t v a l u e s : # save some r e c u r s i o n
compute var ( d i c t v a l u e s , parent )

return c r e a t e p r o b p r o c o b j e c t (
var name , d i c t v a l u e s )

def compute var ( d i c t v a l u e s , var name ) :
i f var name in d i c t v a l u e s :

return d i c t v a l u e s [ var name ]
d i c t v a l u e s [ var name ] = compute p roc edur e i f n e c e s s a ry (

var name ,
lambda : compute var he lper ( var name , d i c t v a l u e s ) )

return d i c t v a l u e s [ var name ]

def optimised program ( ) :
d i c t v a l u e s = {}
i f IF OBSERVE BLOCK ( ) :

for var name , va l in EVIDENCE. items ( ) :
observe (

compute var ( d i c t v a l u e s , var name ) ,
va l )

i f IF DO BLOCK ( ) :
for var name , va l in INTERVENTION. items ( ) :

do (
compute var ( d i c t v a l u e s , var name ) ,
va l )
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p r e d i c t (
compute var ( d i c t v a l u e s , VAR TO PREDICT) . value ,
p r e d i c t c o u n t e r f a c t u a l=True )
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