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Abstract
Data augmentation is a useful technique to
enlarge the size of the training set and prevent
overfitting for different machine learning tasks
when training data is scarce. However, current
data augmentation techniques rely heavily on
human design and domain knowledge, and
existing automated approaches are yet to fully
exploit the latent features in the training dataset.
In this paper we propose Parallel Adaptive
GAN Data Augmentation(PAGANDA), where
the training set adaptively enriches itself with
sample images automatically constructed from
Generative Adversarial Networks (GANs) trained
in parallel. We demonstrate by experiments that
our data augmentation strategy, with little model-
specific considerations, can be easily adapted to
cross-domain deep learning/machine learning
tasks such as image classification and image
inpainting, while significantly improving model
performance in both tasks. Our source code and
experimental details are available at https:
//github.com/miaojiang1987/
k-folder-data-augmentation-gan/.

1. Introduction
Deep learning and machine learning models produce highly
successful results when given sufficient training data. How-
ever, when training data is scarce, overfitting will occur and
the resulting model will generalize poorly. Data augmenta-
tion(DA) ameliorates such issues by enlarging the original
data set and making more effective use of the information
in existing data. Much prior work has centered on data
augmentation strategies based on human design, including
heuristic data augmentation strategies such as crop, mir-
ror, rotation and distortion (Krizhevsky et al., 2012; Simard
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et al., 2003), interpolating through labeled data points in fea-
ture spaces (DeVries & Taylor, 2017), and adversarial data
augmentation strategies based on (Teo et al., 2008; Fawzi
et al., 2016). These methods have greatly aided many deep
learning tasks across several domains such as classification
(Krizhevsky et al., 2012), image segmentation (Yang et al.,
2017) and image reconstruction/inpainting (Alvarez-Gila
et al., 2017).

Despite their success, these DA methods generally require
domain-specific expert knowledge, manual operations and
extensive amount of tuning depending on actual contexts
(Ciresan et al.; Dosovitskiy et al., 2016). In particular, the
need to directly operate on existing data with domain knowl-
edge prevents many previous data augmentation strategies
from being applicable to more general settings. To circum-
vent the need for specific domain knowledge in data aug-
mentation, more recent work (Antoniou et al., 2017) utilizes
generative adversarial networks(GANs) (Goodfellow et al.,
2014) to produce images that better encode features in the
latent space of training data. By alternatively optimizing the
generator G and the discriminator D in the GAN, the GAN
is able to produce images similar to the original data and ef-
fectively complement the training set. It has been shown in
experiments (Antoniou et al., 2017) that GAN-based meth-
ods have indeed significantly boosted the performance of
classifiers under limited data through automatic augmenta-
tion, but applications into other tasks are yet to be explored.
Furthermore, given the computational complexity of GANs,
a natural way to reduce runtime is to consider parallelism
(Intrator et al., 2018; Durugkar et al., 2016).

In view of these considerations, we propose in this paper
Parallel Adaptive Generative Adversarial Network Data
Augmentation(PAGANDA), where the training set adap-
tively enriches itself with sample images automatically con-
structed from Generative Adversarial Networks (GANs)
trained in parallel. Our contributions can be summarized as
follows:

• We propose a general adaptive black-box data augmen-
tation strategy to diversify enhance training data, with
no task-specific requirements.

• We also include in our model a novel K-fold paral-
lel framework, which helps make the most use of the
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existing data.

• Experiments over various datasets and tasks demon-
strate the effectiveness of our method in different con-
text.

2. Related Work
Data Augmentation(DA) Previous work on data augmen-
tation can be classified into several groups. Traditional
Heuristic DA strategies such as crop, mirror, rotation and
distortion (Krizhevsky et al., 2012; Simard et al., 2003) have
found their way in many deep classification tasks, but these
method generally require domain-specific expert knowl-
edge, manual operations and extensive amount of tuning
depending on actual contexts (Ciresan et al.; Dosovitskiy
et al., 2016). Other DA methods used interpolation through
labeled data points in feature spaces (DeVries & Taylor,
2017), but their dependence on class labels makes them
inapplicable for tasks with weak or no supervision. Ad-
versarial Data Augmentation strategies (Teo et al., 2008;
Fawzi et al., 2016) choose from a select number of trans-
formation operations to maximize the loss function of the
end classification model involved in the task. While good
motivations for our methods, these methods make strong
assumptions over the types of augmentation and are diffi-
cult to generalize. (Ratner et al., 2017; Cubuk et al., 2018)
transform the problem of choosing data augmentation strate-
gies into a reinforcement learning policy search problems,
but the choice of augmentation methods are still limited
and the reinforcement learning algorithms have non-trivial
computation overhead in addition to the main task.

ML problems with limited data For classfication with lim-
ited samples, (Salamon & Bello, 2017) proposed a convo-
lutional neural network(CNN) to classify environmental
sounds with limited samples. Other algorithms have been
proposed in (Frid-Adar et al., 2018; Zhu et al., 2017), yet
many of them have assumptions/constraints that hurts their
capacity for generalization. For unsupervised learning mod-
els, recent research on sample complexity reduction in GAN
training seeks to reparametrize the input noise using varia-
tional inference (Gurumurthy et al., 2017; Nowozin et al.,
2016), but this method has severe mathematical limitation
that prevents further generalization. (Wang et al., 2018)
adopts transfer learning techniques to train a new GAN for
limited data from a pre-trained GAN network. While effec-
tive, this approach requires a pre-trained network in the first
place and doesn’t apply to the cases when data is scarce.

Parallel/Distributed GANs (Intrator et al., 2018; Du-
rugkar et al., 2016) proposed the first distributed multi-
discriminator generative adversarial models, yet these mod-
els require large datasets to train and have great computa-
tional complexity. Moreover, these models are trained on

Figure 1. Generative Data Augmentation

fixed given datasets, meaning they are still susceptible to
the inherent biases of the training data.

3. Proposed method
In this section we describe the details of Parallel Adap-
tive Generative Adversarial Network Data Augmentation
(PAGANDA). Our method consists of three interrelated
components: generative data augmentation, parallel image
generation with fold division, and adaptive weight adjust-
ment.

3.1. Generative Data Augmentation

To ensure that make full use of the information contained in
the existing images, the first part of our method involves gen-
erative data augmentation, which constructs varied images
given the training set by repeatedly generating samples from
and adding samples to the training set using a generative
adversarial net.

We start off with a limited training set, and consecutively run
the generative adversarial net using the set. After running a
fixed number t of regular training epochs, we proceed to the
augmentation epoch where the augmentation is conducted.
During the augmentation epoch, we extract a number of
sample images from the generator G using standard proce-
dures of sample image generation as described in (Radford
et al., 2015; Gulrajani et al., 2017). For this batch of sam-
ples, we calculate the Inception Score(IS) as defined by
(Salimans et al., 2016) to measure the authenticity of the
images generated, which we denote as w. Here the Incep-
tion Score provides a metric of the power of generator to
produce realistic images: the higher the value of w, the
more power the corresponding generator G. This batch of
images are then added back into the original training set for
subsequent augmentation epochs. We alternate running t
regular training epochs and the augmentation epoch for a
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fixed number of times or until convergence. Figure 1 is a
flow-chart of our procedure.

Notice that our procedure is agnostic to the specific archi-
tecture of generative adversarial net used to augment the
training data. Since GANs capture the information in the
latent feature space of the images and translate such infor-
mation into generated images, our method has the capacity
to reveal the potential features that are possibly not visually
evident in the original training images. Moreover, compared
with many other data augmentation strategies which require
one to pre-define the operations to be carried on the images,
our method automatically enriches the training set and does
not require human intervention.

Figure 2. Parallel Image Generation

3.2. Parallel Image Generation with Fold Division

The second part of our method consists of a parallel data
generation strategy, inspired by K-fold cross validation in
machine learning (Bishop, 2006). Dividing the training data
into K folds at the beginning, we run in parallel K inde-
pendent generators {Gi}Ki=1. Each generator Gi is trained
on one of data groups, and each data group i consists of
K−1 folds of the training set, except for the i-th fold. After
images are generated in each generator Gi in the training
epochs, the sample images produced by each generator dur-
ing the augmentation epoch are fed back into the respective
training data groups. To allow for maximal usage of each
generated image, we insert the images in a way such that the
images generated by one generator Gi are sent to the train-
ing data groups corresponding to all other K − 1 generators
except for that corresponding to Gi. This is to insure that
the different generators in parallel have access to as many

varied data pieces as possible in subsequent steps of training,
so as to prevent overfitting and bolster the robustness of our
strategy. Figure 2 demonstrates our algorithm.

3.3. Adaptive Generator Weighting

Furthermore, to determine which generators are the most
effective in generating authentic images, we introduce adap-
tive generator weighting at each augmentation epoch. At the
initial stage, all the generators are treated equally. Before
the batch of sample images generated by one generator Gi

are sent to the data group corresponding to other K − 1
generators, we collect the inception scores {wi}Ki=1 com-
puted in section 3.1. Since higher inception scores imply
better performance of the generator, we define the generator
weight pi of a generator Gi as

pi =
wi∑K
j=1 wj

,

and use this weight to determine how many images should
be sampled from generator Gi to be sent to other data groups
for subsequent training in the very next augmentation epoch.
When the total number of samples to be collected from
generators are fixed, this method enables generators with
better realistic image generation power to contribute more
to the future training data groups. More realistic training
sets thus augmented, in turn, exert more positive influence
on the images to be generated.

Note that all three strategies introduced go hand in hand,
with no need for model specific considerations. As demon-
strated by our experiments Section 4, training different
GANs in parallel from different folds of data substantially
boosts the quality of the training set and that of the generated
images.

4. Experiments
4.1. Multitask Experimental Settings

To illustrate the effectiveness of PAGANDA for multiple ma-
chine learning tasks, we have applied our data augmentation
method to two tasks: image classification and image inpaint-
ing. For image classification we constructed our dataset
from Imagenet and Cifar-10 by randomly drawing 5000 im-
ages from each dataset respectively and applied PAGANDA
on these reduced datasets. The augmented datasets are then
used to train an AlexNet CNN classifier, and the classifica-
tion results are compared with the results obtained from an
AlexNet trained on the corresponding original unaugmented
datasets.

For image inpainting, we constructed our datasets from
Places dataset. We chose images from the Ocean subset
from Places to obtain the reduced Places Dataset.
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Figure 3. Adaptive Generator Weighting

original image masked image with PAGANDA w/o PAGANDA

Figure 4. Inpainting results on reduced datasets

To ensure the parallelism of the experiments, we trained our
model in a multi-threaded environment to make simultane-
ously training. Under such a setting, all the data groups are
trained at the same time, and each GAN model correspond-
ing to each data group is trained in a separate thread. All
of our experiments are conducted on a server with Tesla-V
GPU (32GB RAM, 7.8 TeraFLOPS) and Intel Xeon Proces-
sor E5 (2.00 GHz).

4.2. Evaluation on Classification

For our experiments on classification, we first augment the
reduced Cifar-10 and reduced Imagenet datasets, and then
train the CNN classifier with the augmented dataset. The
classifier accuracies with and without augmentation are
listed in Table 1 below.

Table 1. Image Classification Accuracy, with/without Augmenta-
tion

Datasets w/o PAGANDA with PAGANDA
Cifar-10 74.7 81.3
Imagenet 82.7 88.1

4.3. Evaluation on Inpainting

For the task of inpainting, we augment the reduced dataset
constructed in the experiment. Without loss of generality,
we train a WGAN-GP model for inpainting from the aug-

mented dataset. We then select testing images that are not
selected in the training set, and add to them gray masks
covering the center part of these images. We then applied
our trained WGAN-GP to generate patches that cover the
masked portion of the inpainting image.

Figure 4 lists a couple of generated images with and without
augmentation. Visual comparisons demonstrate the effec-
tiveness of our method.

5. Conclusion and Future Work
In sum, our paper shows that PAGANDA effectively im-
proves the performances for different machine learning tasks
with little task-specific considerations. Our strategy is not
only simple to implement, but also demonstrates capability
to generate onto different settings since it does not require
specific information about the task being analyzed.

As a further step, we are investigating the relationship be-
tween our proposed approach and other established methods.
We hope to apply our idea to other generative models such
as VAE (Kingma & Welling, 2014) and further optimize our
strategy using recent theoretical advances, and wish to inves-
tigate the scenarios where the tasks involved are interrelated.
Application wise, we are aiming to apply our parallel GAN
model to multi-modal image synthesis/generation where
training data is limited.
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