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ABSTRACT

Neural Architecture Search (NAS) aims at automatically finding neural network
architectures within an enormous designed search space. The search space usu-
ally contains billions of network architectures which causes extremely expensive
computing costs in searching for the best-performing architecture. One-shot and
gradient-based NAS approaches have recently shown to achieve superior results
on various computer vision tasks such as image recognition. With the weight shar-
ing mechanism, these methods lead to efficient model search. Despite their suc-
cess, however, current sampling methods are either fixed or hand-crafted and thus
ineffective. In this paper, we propose a learnable sampling module based on vari-
ational auto-encoder (VAE) for neural architecture search (NAS), named as VAE-
NAS, which can be easily embedded into existing weight sharing NAS framework,
e.g., one-shot approach and gradient-based approach, and significantly improve
the performance of searching results. VAENAS generates a series of competitive
results on CIFAR-10 and ImageNet in NasNet-like search space. Moreover, com-
bined with one-shot approach, our method achieves a new state-of-the-art result
for ImageNet classification model under 400M FLOPs with 77.4% in ShuffleNet-
like search space. Finally, we conduct a thorough analysis of VAENAS on NAS-
bench-101 dataset, which demonstrates the effectiveness of our proposed methods.

1 INTRODUCTION

Deep neural networks have greatly pushed the frontier of various influential applications by design-
ing novel neural architectures (Krizhevsky et al. (2012); Goodfellow et al. (2014); He et al. (2016)).
Automatic model design of neural network architectures without human intervention, known as neu-
ral architecture search (NAS), has drawn much attention of the community recently. It has resulted
in state-of-the-art performance in the domain of image recognition (Zoph et al. (2018); Real et al.
(2019)), object detection (Ghiasi et al. (2019); Chen et al. (2019)) and semantic segmentation (Liu
et al. (2019)).

Generally, the magnitude of search space for NAS tasks is enormous. For example, NasNet (Zoph
et al., 2018) presents a search space with 6 × 109 possible cells. Searching on such huge designed
space cost 2400 GPU days. Weight sharing mechanism has shown to be a promising avenue for
efficient NAS. Latest algorithms on efficient NAS fall into two categories: one-shot approaches
(Bender et al. (2018)) and gradient-based approaches (Liu et al. (2018b)). In one-shot approaches,
prior works focus on adopting a fixed sampling strategy (Guo et al. (2019); Bender et al. (2018); Chu
et al. (2019)). In gradient-based approaches, search is typically performed without sampling proce-
dure (Liu et al. (2018b); Xie et al. (2018)) or hand-crafted sampling (Liu et al. (2018a)). Despite the
success of these NAS methods on various benchmarks, however, these sampling approaches do not
interactively learn the architecture distribution as the search process goes along, which makes the
sampling procedure ineffective.

In this paper, we propose a learnable and interactive architecture sampling module based on VAE for
NAS, named as VAENAS. There are two advantages of VAENAS: 1) it learns the good-performing
architecture distribution which could be used to reduce search space. 2) it can be embedded into
existing NAS framework and improve the performance of current NAS methods.

After developing the generic VAENAS approach, we study in detail the application of VAENAS
module via two mainstream NAS approaches: one-shot approach (Brock et al. (2017); Guo et al.
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Figure 1: The illustration of VAENAS mechanism. VAENAS mechanism contains two modules,
one is VAE model, and the other is an architecture search system. These two modules are updated
alternately. Specifically, three steps are carried out on VAENAS mechanism. 1) Architectures are
sampled from VAE model and fed into the architecture search system. 2) The architecture search
system evaluates and sorts sampled architectures. 3) The VAE model is trained with top-50% archi-
tectures.

(2019)) and gradient-based approach (Liu et al. (2018b); Cai et al. (2018)), both of which have
obtained state-of-the-art performance on neural architecture search tasks. We show how VAENAS
module can be embedded in both approaches and make performance improvement consistently.

We validate VAENAS with various search space on two benchmark datasets (CIFAR-10 and Ima-
geNet) for image recognition. On NASNET-like search space, we apply VAENAS on both gradient-
based methods and one-shot methods. Specifically, combined with one-shot approach, VAENAS
achieves 2.26% test error on CIFAR-10 and 75.8% accuracy on ImageNet, outperforming state-of-
the-art NAS methods. On a Shufflenet-like search space, VAENAS combined with one-shot achieves
77.4% top-1 accuracy with 365M FLOPs on ImageNet classification, outperforming state-of-the-art
Efficient-B0 by 1.1% with 6.5% less computational complexity. Finally, we perform a thorough
analysis of VAENAS on NAS-101 benchmark, to show the effectiveness of our proposed architec-
ture sampling methods.

2 RELATED WORK

Neural Architecture Search. Recently the design of efficient neural networks has largely shifted
from leveraging human knowledge to automatic methods, which is known as neural architecture
search(NAS). Early NAS methods adopt reinforcement learning (RL)(Zoph et al., 2018) or evolu-
tionary strategy (Real et al., 2019) to search on thousands of individually evaluated networks, which
is computational-consuming. Recent works focus on efficient search methods, which falls into two
categories: one-shot approach (Guo et al. (2019); Chu et al. (2019)) and gradient-based approach
(Liu et al. (2018b); Cai et al. (2018)), both achieve state-of-the-art results on a series of benchmark
dataset (Chen et al. (2019); Ghiasi et al. (2019); Liu et al. (2019)) with various search space. We
argue that sampling method matters in NAS and a learnable sampling algorithm can significantly
improve the NAS performance.

Sampling. Some prior works have applied sampling methods to NAS framework. For one-shot
approach, Bender et al. (2018) randomly zero out a subset of the operations during super-network
training. Guo et al. (2019); Stamoulis et al. (2019) adopt uniform sampling and Chu et al. (2019) em-
ploy fair uniform sampling to reduce training bias in one-shot models. For gradient-based approach,
Cai et al. (2018) propose a multinomial distribution sampling to alleviate large memory consump-
tion issue in conventional gradient NAS methods (Liu et al. (2018b)). Our approach presents a new
perspective of sampling methods of NAS application.
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Algorithm 1 VAE Training Pipeline
Input: Architectures and corresponding performance set S = {(αi, ACCi)}Ni , # of training itera-

tions niters, parameters of VAE encoder φ, parameters of VAE deocder θ, ranking ratio K.
Output: Updated VAE parameters φ, θ
1: Rank S by the descending order of ACCi;
2: Select top K% architectures as VAE training dataset SK , SK ⊂ S ;
3: for j = 1, ..., niters do
4: Optimize φ and θ with SK .
5: end for

3 VAENAS

3.1 MOTIVATION

Many prior works in NAS have discussed modeling the architecture distribution Γ(α). The typical
Γ(α) is to adopt either fixed architecture distribution (e.g., uniform distribution Bender et al. (2018);
Guo et al. (2019)), or hand-crafted architecture distribution (e.g., Gumbel softmax distribution in
Liu et al. (2018b); Xie et al. (2018)).

Conceptually, it is expected that the architecture distribution Γ(α) can interactively learn from the
weight sharing super-network as the searching process goes along. To this end, we propose a learn-
able architecture distribution, where the distribution Γt(α) at time t is learned from the new incom-
ing architecture α and prior architecture distribution at t− 1 time is Γt−1(α), we can formalize the
distribution learning process as:

Γt(α)← T (Γt−1(α),Metrict−1(α)) (1)

where Metric denotes the predefined metric, e.g., accuracy or loss, and T denotes the stochastic
process. In equation 1, the distribution of architectures at time t is learned by both the prior knowl-
edge on architecture distribution Γ(α) and new architectures data α at t− 1 time, as in Figure 1. As
the architecture search proceeds, we randomly sample multiple architectures, rank these architec-
tures according to the predefined metric. The T incrementally refines the distribution of architec-
tures by continually learning the good-performing architectures from the weight sharing network.
Alternatively, the weight sharing network updates the architectures weights, where the architectures
is sampled from T . There are many methods that can be used to model this distribution, and we
choose VAE due to its training stability as well as the convenience to be embedded into the existing
NAS frameworks.

3.2 THE USAGE OF VAE

VAE approximates the marginal likelihood of architecture distribution log pθ(α) by maximizing
variational lower bound:

−DKL(qφ(z|α)||pθ(z)) + Ez∼qφ(z|α)[log pθ(α|z)] (2)

Specifically, the left term is the Kullback-Leibler divergence between the approximated posterior
(recognition model) qφ(z|α) and the prior p(z). And the right term is the expectation of reconstruc-
tion loss where pθ(α|z) denotes variational inference. As a result, to sample α from the marginal
distribution pθ(α), VAE samples latent variable z according to the prior distribution pθ(z) and feed
z into the inference model pθ(α|z). Commonly, the prior distribution pθ(z) can be set as standard
Gaussian distribution N(0, I).

Let α = {oi}ni be a sequence of operation oi representing an architecture string, where n is the
total number of nodes in a network or cell. We use an encoder E to take α as input and maps it
into parameters µα and σα corresponding to a normal distribution N(µα,σα). Symmetrically, a
decoderD is used to map ze to a reconstructed architecture ᾱ, where ze ∼ N (µe,σe). The encoder
E corresponds qφ(z|α) and the decoder D corresponds pθ(α|z). Specifically, the encoder E and the
decoder D are implemented by two LSTM networks.
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Algorithm 2 VAENAS - One-Shot
Input: Super-network training iterations nsupiters, VAE training iterations nvaeiters, interval to train

VAE nvae, # of sampled architectures (rank) Ns, # of architectures seed Nseeds, super-network
G, search space A, network weightsW , exploitation increase parameter εinc, ranking ratio K,
parameters of VAE module φ and θ.

Output: The final architecture α∗
1: Define Γ(α) = (1− ε) ∗ U(α) + ε ∗ pθ(α|z); Set ε = 0;
2: for i = 1, ..., nsupiters do
3: Sample α ∼ Γ(α);
4: Update network weightsWα;
5: if i mod nvae == 0 then
6: Sample Ns number of architectures {α} from Γ(α), α ∼ Γ(α);
7: Evaluate {α}, obtain accuracy {ACC};
8: Set S = {(αi, ACCi)}Nsi ;
9: Call algorithm 1 VAE(S, φ, θ, nvaeiters,K) to update VAE module;

10: end if
11: ε← ε+ εinc;
12: end for
13: Sample Nseeds number of architectures {α} from pθ(α|z), α ∼ pθ(α|z);
14: Set Sseeds = {α}.
15: Derive the final architecture α∗ from Search(G,A, Sseeds);

4 VAENAS FOR NEURAL ARCHITECTURE SEARCH

In this section, we demonstrate how VAENAS is integrated into existing NAS frameworks. Section
4.1 gives the formal definition of weight sharing mechanism. Section 4.2 gives detailed descrip-
tion of VAENAS combined with one-shot framework. Section 4.3 shows VAENAS combined with
gradient-based framework.

4.1 WEIGHT-SHARING MECHANISM

Weight sharing approaches construct a super-network G(α,W ) that contains all the valid architec-
tures α with shared weights W . Any architecture α is a sub-graph in the super-network and inherits
corresponding weights Wα. Thus we can formalize the training of weight sharing mechanism as
solving a bi-level optimization problem:

W ∗α = arg min
Wα

Eα∼Γ(α)[Ltrain(G(α,Wα))] (3)

α∗ = arg min
α∈α

Lval(G(α,W ∗α)) (4)

where Γ(α) is an architecture distribution. There are two main frameworks which utilize weight-
sharing mechanism: one-shot approach and gradient-based approach.

4.2 ONE-SHOT FRAMEWORK

Review of One-Shot Architecture Search. Generally, one-shot approaches (Liu et al. (2018b); Cai
et al. (2018); Xie et al. (2018)) consist of three steps: 1) train a weight sharing super-network. 2)
rank architectures based on its performance on the super-network. 3) derive the final architecture via
a search strategy. Previous methods typically adopt hand-crafted sampling methods (Bender et al.,
2018; Guo et al., 2019; Chu et al., 2019).

Combine One-Shot Approach with VAENAS. Algorithm 2 shows the detailed pipeline of VAE-
NAS combined with one-shot approach. VAENAS-OS utilizes one-shot framework and optimizes
sampling distribution:

Γ(α) = (1− ε) ∗ U(α) + ε ∗ pθ(α|z) (5)

where U(α) is random uniform distribution, pθ(α|z) is variational distribution, and ε is exploitation
parameter. On supernet training, architectures are sampled from pθ(α|z) and U(α) with probability
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Algorithm 3 VAENAS - Gradient-Based
Input: Ranking ratio K, network training iterations niters, VAE training iterations nvaeiters, interval

to train VAE nvae, # of sampled architectures (rank) Ns, network weights W , architecture
weights w, parameters of VAE module φ and θ.

Output: The final architectures α∗
1: for i = 1, ..., niters do
2: Sample α ∼ pθ(α|z);
3: Update architecture weights wα.
4: Update super-network weightWα

5: if i mod nvae == 0 then
6: Sample Ns number of architectures {α} from U(α), α ∼ U(α);
7: Evaluate {α}, obtain accuracy {ACC};
8: set S = {(αi, ACCi)}Nsi ;
9: Call algorithm 1 VAE(S, φ, θ, nvaeiters,K) to update VAE module;

10: end if
11: end for
12: Derived the final architecture α∗ based on the learned w.

ε and 1− ε. As the search phase continues, the ε increases, thus the super-network trains more sam-
ples from VAENAS. The good-performing architectures, for example, with k% highest accuracy,
are collected every nvae epochs and fed into the VAENAS module to train. As the training phase
proceeds, the variational distribution pθ(α|z) would converge to generating good-performing archi-
tectures. On search phase, the initial seeds are sampled from pθ(α|z) and then search with genetic
algorithm as Guo et al. (2019). Due to the weights of good-performing architectures are trained
more adequately, intuitively, the super-network would be more predictive. Algorithm 2 shows the
detailed pipeline of VAENAS combined with the one-shot approach.

Why Architecture-Dependent Sampling for One-Shot? The conventional sampling methods for
one-shot NAS, such as zero out random operations (Bender et al. (2018)), uniform sampling (Guo
et al. (2019)) and fair sampling (Chu et al. (2019)) are fixed sampling methods.

One issue of fixed architecture distribution in one-shot approach is its ineffectiveness to sample
good-performing architectures, both during super-network training and architecture search. When
train a super-network with architectures sampled from a pre-defined architecture distribution such
as uniform distribution, it is likely that the best-performing architectures are not picked; thus the
search algorithm fails to seek them out due to the low performance of best architectures on the
super-network. Moreover, the search strategy usually adopts evolution/RL algorithms, where a set
of architectures are selected as seeds via sampling method. Due to the evaluation process is ex-
pensive, only a small set of architectures are evaluated and ranked. Thereby the initialized set for
search strategy can be sub-optimal. VAENAS resolve above issues by adopting an architecture-
dependent distribution on super-network training and search phase. By learning the distribution of
good-performing architectures, VAENAS ensures the sampling procedure effective since the sam-
ples from the variational distribution pθ(α|z) are guaranteed to have good performance on the super-
network.

4.3 GRADIENT-BASED FRAMEWORK

Review of Gradient-Based Architecture Search. Gradient-based approaches (Liu et al. (2018b);
Cai et al. (2018); Xie et al. (2018)) employ an independent discrete architecture parameter to model
the networks, thus we can follow the exact bi-level optimization process as we describe in equation
3 and 4. The common practice of gradient-based approach does not contain sampling process.
Proxylessnas (Cai et al. (2018)) introduce a multinomial distribution sampling process prior to the
optimization step of architecture weights.

Combine Gradient-Based Approach With VAENAS. Alternatively, we consider replacing the
sampling procedure by VAENAS:

Γ(α) = pθ(α|z) (6)
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Table 1: Comparison with state-of-the-art architectures on CIFAR-10 under the NASNET-like
search space. * denotes model is trained with cutout. OS denotes one-shot approach. G denotes
gradient-based approach. † indicates hard parameters constraint in search phase.

Architecture Test Error Params Search Method
(%) (M)

NASNet-A* (Zoph et al. (2018)) 2.65 3.3 RL
AmoebaNet-B∗ (Real et al. (2019)) 2.55±0.05 2.8 Evolution
Hierarchical Evolution (Liu et al. (2017)) 3.75±0.12 15.7 Evolution
PNAS (Liu et al. (2018a)) 3.41±0.09 3.2 SMBO
ENAS* (Pham et al. (2018)) 2.89 4.6 RL
NAO-weight-sharing *(Luo et al. (2018)) 3.53 2.5 Gradient
DARTS* (Liu et al. (2018b)) 2.76±0.09 3.4 Gradient
SNAS* (Xie et al. (2018)) 2.76±0.09 3.4 Gradient
GraphHypernet* (Zhang et al. (2018a)) 4.3±0.1 5.1±0.6 Gradient
DSO-share* (Zhang et al. (2018b)) 2.84±0.07 3.0 Gradient
BayesNAS* (Zhou et al. (2019)) + λ = 0.01 2.81±0.04 3.4 Gradient

VAENAS-G* 2.40 4.4 Gradient
VAENAS-OS*† 2.50 3.4 Evolution
VAENAS-OS* 2.26 5.2 Evolution

Specifically, we sample an architecture αi from pθ(α|z), and update super-network weights Wαi
and multinomial distribution parameters xi accordingly. Algorithm 3 shows the detailed pipeline.

Why Independent Sampling Module Necessary? Conventional gradient-based methods (Liu et al.
(2018b)) do not contain the sampling process: all architecture operations are updated during training
at each iteration. These methods bring overwhelming memory and computation consumption issue,
such that direct model search and direct dataset search are incapable. Proxylessnas (Cai et al. (2018))
present multinomial distribution to sample the architectures in the search phase.

However, the probability of multinomial distribution is obtained by applying softmax to architecture
weights. The principal limitation is that the model weights and architecture weights are mutually
interactional. To be concrete, if an architecture gets more training, more likely it will be sampled
again in the next iteration. This winner takes all effect causes premature convergence and reduces the
diversity of architectures. Moreover, the gradient tends to flow through non-parameter operations,
such as identity (the architectures derived by gradient-based method is typically small, i.e., 3.4M
on CIFAR10 (Liu et al. (2018b)). The VAENAS sampling module, which serves as an independent
sampling module, helps to 1) increase the diversity of architectures that can be exploited in the
training process, as a result, alleviate the premature convergence phenomenon, 2) search for large
models. Large models naturally obtain better performance than small models.

5 EXPERIMENTS

5.1 NASNET-LIKE SEARCH SPACE.

The detailed training strategy, search space and hyper-parameters settings can be found in Appendix
A.1. Our VAENAS is evaluated on both gradient-based and one-shot approaches, and compared
with the state-of-the-art NAS methods under the same search space. We use ’OS’ to denote one-shot
approach and use ’G’ to denote gradient-based approach.

Performance on CIFAR-10. We present the results on Table 1. Combined with gradient-based
method, our method achieves 2.4% test error with 4.4M parameters. Combined with one-shot ap-
proach, our method gives two results. The first one is searched with parameter constraint of 3.5M
parameters, and obtain 2.5% test error, and the second one is trained without any constraint and
obtain 2.26% test error with 5.2M parameters.

Performance on ImageNet. We present the results on Table 2. Combined with gradient-based
approach, our method obtains 75.6% top-1 accuracy with 568M FLOPs. Combined with one-shot
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Table 2: Comparison with state-of-the-art architectures on ImageNet (mobile setting) under
NASNET-like search space. † denotes direct search on ImageNet.

Architecture FLOPs Params Top-1 Acc. Top-5 Acc.
(M) (M) (%) (%)

NASNet-A (Zoph et al. (2018)) 564 5.3 74.0 91.6
AmoebaNet-A (Real et al. (2019)) 555 5.3 74.0 91.5
AmoebaNet-B (Real et al. (2019)) 555 5.1 74.5 92.0
AmoebaNet-C (Real et al. (2019)) 570 6.4 75.7 92.4
PNAS (Cai et al. (2018)) 588 5.1 74.2 91.9
GraphHypernet (Zhang et al. (2018a)) 569 6.1 73.0 91.3
BayesNAS (Zhou et al. (2019)) - 3.9 73.5 91.1
DARTS (Liu et al. (2018b)) 574 4.7 73.3 91.3
SNAS (Xie et al. (2018)) 522 4.3 72.7 90.8

VAENAS-G† 568 6.0 75.6 92.3
VAENAS-OS† 573 6.1 75.8 92.7

Table 3: Comparison with state-of-the-art architectures on ImageNet (200M-400M FLOPs) under
ShuffleNet-like search space. * denotes results reported using AutoAugment.

Architecture FLOPs Params Top-1 Acc. Top-5 Acc.
(M) (M) (%) (%)

ShuffleNet V2 1.5 (Ma et al. (2018)) 300 - 72.6 -
MobileNet V2 1.0 (Sandler et al. (2018)) 300 3.4 72.0 91.0
MobileNet V3 Large 1.0 (Howard et al. (2019)) 219 5.4 75.2 92.2

MnasNet-A2 (Tan et al. (2019)) 340 4.8 75.6 92.7
FBNet-B (Wu et al. (2019)) 295 4.5 74.1 -
Proxyless GPU (Cai et al. (2018)) 320 4.0 74.6 92.2
Single-Path NAS (Guo et al. (2019)) 365 4.3 75.0 92.2
FairNAS-A (Chu et al. (2019)) 388 4.6 75.3 92.4
EfficientNet-B0* (Tan & Le (2019)) 390 5.3 76.3 93.2

Baseline 360 6.7 77.1 93.3
VAENAS-OS 365 6.7 77.4 93.6

approach, our method obtains 75.8% top-1 accuracy with 573M FLOPs. Both results surpass previ-
ous state-of-the-art results.

5.2 IMAGENET CLASSIFICATION UNDER MOBILE SETTING

Comparison with State-of-the-art methods. Table 3 lists a number of state-of-the-art models’
FLOPs on ImageNet dataset. We select models with the range of FLOPS from 200M to 400M.
Notably, VAENAS-OS outperforms state-of-the-art models by a large margin. In particular, the
accuarcy of VAENAS is 1.1% higher than EfficientNet-B0 (Tan & Le, 2019), recent state-of-the-
art method, while using 6.5% less computational budget. To best of our knowledge, VAENAS-OS
is the first model surpass 77% under 400M FLOPs without using strong regularization and data
augmentation techniques such as AutoAugment.

5.3 VAENAS ON NAS-BENCH-101 DATASET

NAS-Bench-101 dataset (Ying et al., 2019) is a carefully constructed architecture dataset for NAS
research, including over 5 million already trained architectures on CIFAR-10. The ground-truth ac-
curacy of architectures can be gotten from NAS-Bench-101 dataset directly. We compare VAENAS
sampling with uniform sampling (also known as random search Li & Talwalkar (2019)).
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Table 4: Comparison of VAENAS and random search on NAS-Bench-101 dataset.
Methods Max accuracy for K samples (%) Evolution

10 50 100 300

Random Search 92.93 93.30 93.53 93.86 93.39

Weight-sharing 93.72 93.95 93.98 94.23 94.12

Non-weight-sharing + noise 0 93.56 93.71 93.95 94.13 94.14
Non-weight-sharing + noise 0.1% 93.64 93.73 93.97 94.17 93.75
Non-weight-sharing + noise 0.5% 92.24 93.35 93.63 93.83 93.33

We design two methods for training VAENAS. The weight-sharing method follows Section 4.1,
where VAENAS is trained with a super-network on NAS-Bench-101 search space. The design of
super-network is described in Appendix A.5. The non-weight-sharing method trains VAENAS with
a set of high-accuracy architectures. 6000 trained architectures are sampled and the top-1500 models
form the training set.

Influence of noise on accuracy. The training of VAENAS is based on high-accuracy architectures,
while ground-truth accuracy of architectures is hard to be obtained in most cases. We add various
levels of noise on the accuracy, then rank architectures and select high-accuracy architectures to
train corresponding VAENAS module. As displayed in Table 4 and Fig. 2, VAENAS is robust to a
certain extent of noise. Futhermore, the accuracy of architectures in weight-sharing methods have
a noise on super-network, while the accuracy on super-network is inconsistent with ground-truth
accuracy. The results of VAENAS trained by weight-sharing method proof that VAENAS works
well with NAS frameworks.

Comparisons of sampling methods. We sample a number architectures by VAENAS and random
method and evaluate the maximum accuracy of architectures, which is shown in Table 4. VAENAS,
trained with super-network or clear ground-truth accuracy, outpeforms random sampling (+0.79%
with 10 samples). In addition, we sample 5000 architectures with random sampling and VAENAS
sampling, then display the distribution of samples in Fig. 2. The distribution of VAENAS covers
high-accuracy architectures, while the distribution of random sampling is relatively dispersed.

Combination with evolution search. We execute evolution search on NAS-Bench-101 and replace
random sampling by VAENAS during the initialization of population. The results are shown in
Table 4. VAENAS outperforms uniform sampling by 0.7%. It proves that VAENAS is helpful to the
search strategy, since the convergence of evolution search is accelerated.

(a) (b) (c) (d)

Figure 2: Compare the distribution of VAE Sampling with Random Sampling. (a) VAENAS trained
with super-network. (b) VAENAS trained with ground truth accuracy. (c) VAENAS trained with
0.1% noise on accuracy. (d) VAENAS trained with 0.5% noise on accuracy.

6 CONCLUSION

In this paper, we argue sampling matters in NAS and present a learnable sampling method based on
VAE. The VAENAS learns the architecture distribution and is interactive with NAS search process.
As a result, by embedding into the existing efficient NAS framework, we achieve a series of state-of-
the-art results on various dataset and search space. Overall, we believe that the VAENAS approach
provides a practical new perspective on sampling methods in neural architecture search.
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Table 5: The comparison of architectures searched with (w/) or without (w/o) VAENAS.

Model Dataset w/o VAENAS w/ VAENAS

CIFAR-10 Params Top-1 Acc. Params Top-1 Acc.(gain.)

Gradient 3 3.7M 2.84% 4.4M 2.40%(+0.44%)

One-Shot 3 4.3M 3.33% 5.2M 2.26%(+0.93%)

Model Dataset w/o VAENAS w/ VAENAS

ImageNet FLOPs Top-1 Acc. FLOPs Top-1 Acc.(gain.)

Gradient 3 519M 74.1% 568M 75.6%(+1.5%)

One-Shot 3 553M 73.3% 573M 75.8%(+2.5%)

A APPENDIX

A.1 IMPLEMENTATION DETAILS OF VAENAS

VAENAS-OS ShuffleNet training details. VAENAS-OS is trained for 480 epochs with batch size
1024 on 8 2080-Ti GPUs. It is based on the Pytorch (Paszke et al. (2017)). The network parameters
are optimized using an SGD optimizer with an initial learning rate of 0.5 (decayed linearly after
each iteration), a momentum of 0.9 and a weight decay of 3 × 10−5. Additional enhancements
including label smoothing (Szegedy et al. (2016)) and Dropout with 0.5 on last FC layer. We follow
the common practice to use inception augmentation. No other data augmentation method is used.

VAENAS-OS/VAENAS-G NASNet training details:
ImageNet. The model is trained for 300 epochs with batch size 512 on 8 2080-Ti GPUs. It is based
on the Pytorch (Paszke et al. (2017)). The network parameters are optimized by using an SGD opti-
mizer with an initial learning rate of 0.5 (decayed linearly after each iteration), a momentum of 0.9
and a weight decay of 3× 10−5. Additional enhancements include label smoothing (Szegedy et al.
(2016)) and auxiliary tower with 0.4. We follow the common practice to use inception augmentation.
The initial width is 48 and depth is 14, which follows the same setting as Liu et al. (2018b).

CIFAR-10. The model is trained by following the common pipeline (Liu et al. (2018b); Real et al.
(2019); Zoph et al. (2018); Pham et al. (2018); Liu et al. (2018a)). it is trained for 600 epochs
with batch size 48 on single GPU. Additional enhancements include label smoothing (Szegedy et al.
(2016)), auxiliary tower with 0.4, drop path with 0.2 and Cutout (DeVries & Taylor (2017)).

A.2 IMPORTANCE OF VAENAS

More ablation study will be available in the Appendix A.3. In this section, we use gradient-based
NAS approach and one-shot NAS approach as two baseline framework, and compare the result with
VAENAS and without VAENAS using the same search and training strategy. The baseline method
of gradient-based approach is re-implemented based on Cai et al. (2018) and one-shot approach is
re-implemented based on Guo et al. (2019). The results are shown in Table 5. We can observed that
the the framework with VAENAS achieve significantly better performance on both CIFAR-10 and
ImageNet.

A.3 ABLATION STUDY

Influence of Depth Gap between Search and Evaluation. One issue encountered in prior works
with both one-shot NAS approach and gradient-based approach is the challenge of search on the
network with the same depth as the evaluated models. We therefore study the effect of VAENAS
from the perspective of direct model search. Table 6 shows the results of baseline with different
depth that one-shot method fails to find the good architecture when directly search on target model.
One explanation is that the search space is too large for the conventional uniform sampling.
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Table 6: NAS framework with different model depth on CIFAR-10.

Model Params Top-1 Acc. Search Depth

One-Shot Baseline 4.3M 3.33% 20
One-Shot Baseline 3.7M 2.89% 8
VAENAS-OS 5.2M 2.26% 20

One-Shot Baseline 3.4M 2.91% 8
One-Shot Baseline 3.7M 2.84% 20
VAENAS-Gradient 4.3M 2.40% 20

A.4 NETWORK ARCHITECTURE

This section shows the details of network structures which we searched for NASNet-like search
space and ShuffleNet-like search space.

ShuffleNet-like search space. We designed a search space based on ShuffleNetV2. Specifically,
we construct a over-parameterized network with 20 layers, each layer can choose between four
operations:

• Shuffle Convolution 3x3

• Shuffle Convolution 5x5

• Shuffle Convolution 7x7

• Shuffle Xception 3x3

ReLU non-linearity are replaced by Swish if conv 5x5, conv 7x7 or Xception are chosen. Squeeze-
and-Exited module are also adopted if conv 7x7 and Xception are chosen. We utilized VAENAS
combined with one-shot framework to do the search.

NASNet search space. We modify the search space of DARTS (Liu et al., 2018b). A cell is a
directed acyclic graph, and every edge in the graph represents a kind of computation operation.
Different from DARTS, in our search space, one node could have more than two predecessors in one
cell. The maximum number of edges in one cell is 2 + 3 + 4 + 5 = 14, while ’None’ is an available
operation in our search space. The list of candidate operations is listed as follows:

• None

• Average Pooling 3x3

• Max Pooling 3x3

• Skip Connect

• Separate Convolution 3x3

• Separate Convolution 5x5

• Separate Convolution 7x7

• Dilated Convolution 3x3

The magnitude of search space is 82×14, while normal cell and reduction cell are searched jointly.
We present the cell searched by our methods in Fig.4 and Fig.5.

A.5 SUPER-NETWORK AND VAENAS ON NAS-BENCH-101 SEARCH SPACE

Super-network. NAS-Bench-101 is a cell-based search space, and the details of NAS-Bench-101
search space is introduced in Ying et al. (2019). While NAS-Bench-101 is not proposed for weight-
sharing NAS methods, we design one super-network which covers architectures in NAS-Bench-101.

The output of one cell in NAS-Bench-101 search space is the concatenation of input nodes. The
illustration Fig.6 shows one sampled cell on the super-network. However, the output channels of
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Figure 3: VAENAS-OS ShuffleNet architectures. We highlight the input and output tensor shape.
Conv denotes convolution layer. SF denotes ShuffleNetV2 module. SE denotes Squeeze-and-
Excitation module.

Figure 4: VAENAS-OS normal cell trained on CIFAR-10.

Figure 5: VAENAS-OS reduction cell trained on CIFAR-10.
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Figure 6: One sampled cell on NAS-Bench-
101 super-network. Every path contains 9
edges, while some edges may be useless in
the cell.

Figure 7: One example of weight-shared ten-
sors for convolution kernel. O×C×K×K
is the size of kernel. The blue cube shows
the whole tensor, and the green cube shows
the part used for the O

2 ×
C
2 ×K ×K con-

volution operation.

one middle node is not fixed, so weight-shared tensor is utilized to save the parameters of convo-
lutional operations. The illustration Fig.7 shows one example of dividing convolutional kernel for
computation.

Representation and Sampling. In NAS-Bench-101 dataset, one architecture can be represented as
a 7x7 upper-triangle adjacent matrix and 5 operations. To simply the representation of architectures,
the adjacent matrix is converted to a list of edges a = {a1, a2, ..., a21}, ai ∈ {0, 1}, and operations
compose a vector op = {op1, op2, ..., op5}, opi ∈ {conv1×1, conv3×3,maxpool}. The integrated
architecture is a vector α = concat(a,op).

Two constraints of edges determine the validity of one sampled cell. One is the number of edges in
one cell is no more than 9 in a cell. The other is that at least one path connect the input node and
output node in a cell, which indicate the connectivity of the cell. Under these two constraints, we
design the following sampling strategy. 21 number in range [0, 1] is sampled by random sampling
or VAE sampling, then the indexes of top-9 numbers is selected as IDX . We set ai = 1 when
ai ∈ IDX , and set aj = 0 when j /∈ IDX . If the sampled cell is not connected, we perform above
sampling process again.

Evolution Search on NAS-Bench-101. The setting of evolution search follows (Guo et al. (2019)).
In addition, to make sure the validity of descendants, the mutation and crossover of the edge list a
should be planned carefully.

For mutation, an index i, ai = 1 and another index j, aj = 0 are selected randomly. Another new
sample a′ is generated by exchanging ai and aj . We repeat this process until a′ satisfy connectivity.

For crossover, two edge lists ax and ay are selected randomly. Then an index i, axi = 1, ayi = 0 and
another index j, axj = 0, ayj = 1 are selected. One new sample a′ is generated by exchanging axi
and axj . If a′ does not maintain connectivity, it will be dropped, and the crossover process will be
repeated.
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