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ABSTRACT

We integrate two powerful ideas, geometry and deep visual representation learn-
ing, into recurrent network architectures for mobile visual scene understanding.
The proposed networks learn to “lift” 2D visual features and integrate them over
time into latent 3D feature maps of the scene. They are equipped with differ-
entiable geometric operations, such as projection, unprojection, egomotion sta-
bilization, in order to compute a geometrically-consistent mapping between the
world scene and their 3D latent feature space. We train the proposed architec-
tures to predict novel image views given short frame sequences as input. Their
predictions strongly generalize to scenes with a novel number of objects, appear-
ances and configurations, and greatly outperform predictions of previous works
that do not consider egomotion stabilization or a space-aware latent feature space.
Our experiments suggest the proposed space-aware latent feature arrangement and
egomotion-stabilized convolutions are essential architectural choices for spatial
common sense to emerge in artificial embodied visual agents.

1 INTRODUCTION

Figure 1: Internet vision versus robotic vision. Pictures taken by humans (left) (and uploaded on
the web) are the output of visual perception of a well-trained agent, the human photographer. The
content is skillfully framed and the objects appear in canonical scales and poses. Pictures taken by
mobile agents, such as a NAO robot during a robot soccer game (right), are the input to such visual
perception. The objects are often partially occluded and appear in a wide variety of locations, scales
and poses. We present recurrent neural architectures for the latter, that integrate visual information
over time to piece together the visual story of the scene.

Current state-of-the-art visual systems (5) accurately detect object categories that are rare and unfa-
miliar for many of us, such as gyromitra, a particular genus of mushroom (Figure 1 left). Yet, they
neglect the basic principles of object permanence or spatial awareness that a one-year-old child has
developed: once the camera turns away, or a person walks in front of the gyromitra, its detection
disappears and it is replaced by the objects detected in the new visual frame. We believe the ability
of current visual systems to detect rare and exquisite object categories and their inability to carry out
elementary spatial reasoning is due to the fact that they are trained to label object categories from
static Internet photos (contained in ImageNet and COCO datasets) using a single frame as input.
Our overexposure to Internet photos makes us forget how pictures captured by mobile agents look.
Consider Figure 1. Internet photos are skillfully captured by human photographers, are well framed
and show objects unoccluded, in canonical locations, scales and poses (left). Instead, photos cap-
tured by NAO robots during a soccer game show objects in a wide variety of scales, poses, locations,
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Figure 2: Left: Geometry-aware Recurrent Neural Networks (GRNNs) integrate visual infor-
mation over time in a 3D geometrically-consistent GRU memory of the visual scene. Right: Neural
components of GRNNs. RGB images are fed into a 2D U-net, the resulting deep features are unpro-
jected to 4D tensors, fed into a 3D U-net, oriented to cancel the camera motion with respect to the
3D GRU memory state mt−1 built thus far, and then used to update the 3D GRU memory state. The
memory map is projected to specific viewpoints and decoded into a corresponding RGB image.

and occlusion configurations (right). Often, it would not even make sense to label objects in such
images, as most objects appear only half-visible. In the case of Internet vision, the picture is the
output of visual perception of a well-trained visual agent, the human photographer; while for mo-
bile robotic vision, the picture is the input to such visual perception. Thus, different architectures
may be needed for each.

We present Geometry-aware Recurrent Neural Network architectures, which we call GRNNs, that
learn to “lift” 2D image features into 3D feature maps of the scene, while stabilizing against the
egomotion of the agent. They are equipped with a 3-dimensional latent feature state: the latent
feature vectors are arranged in a 3D grid, where every location of the grid encodes a 3D physical
location in the scene. The latent state is updated with each new input frame using egomotion-
stabilized features, as shown in Figure 2. GRNNs learn to map 2D input visual features to a 3D latent
feature map, and back, in a differentiable manner. To achieve such differentiable and geometrically-
consistent mapping between the world scene and the 3D latent feature space, they are equipped
with differentiable geometric operations, such as egomotion stabilization, 3D-to-2D projection, and
2D-to-3D unprojection. Beyond being space-aware, we do not impose any other constraints on the
learned representations: they are free to encode whatever is relevant for the downstream task.

We train GRNNs in a self-supervised manner to predict image views from novel camera viewpoints,
given short frame sequences as inputs. We empirically show GRNNs learn to predict novel views
and strongly generalize to novel scenes with different number, appearances and configuration of ob-
jects. They greatly outperform geometry-unaware networks of previous works that are trained under
the exact same view-prediction loss, but do not use egomotion-stabilized convolutions or a 3D latent
space. We argue strong generalization is a necessary condition for claiming the ability to spatially
reason. Furthermore, the resulting representations support scene arithmetic: adding/subtracting la-
tent scene representations, and decoding the resulting representation from a particular viewpoint,
matches the result of adding/subtracting 3D world scenes directly.

2 GEOMETRY-AWARE RECURRENT NETWORKS

The proposed GRNNs are recurrent neural networks whose latent state m ∈ Rw×h×d×c learns a 3D
deep feature map of the visual scene. We use the terms 4D tensor and 3D feature map interchange-
ably, to denote a set of feature channels, each being 3-dimensional. The memory map is updated
with each new camera view in a geometrically-consistent manner, so that information from 2D pixel
projections that correspond to the same 3D physical point end up nearby in the memory tensor, as
illustrated in Figure 2 (right). This permits later convolutional operations to have a correspondent
input across frames, as opposed to it varying with the motion of the observer. We believe this is a
key for generalization. The main components of GRNNs are illustrated in Figure 2 (right) and are
detailed right below.
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Unprojection At each timestep, we feed the input RGB image I to a 2D convolutional encoder-
decoder network with skip-connections (2D U-net (6)) to obtain a set of 2D feature maps F ∈
Rw×h×c. We then unproject all feature maps to create a 4D feature tensor V ∈ Rw×h×d×c as
follows: For each ”cell” in the 3D feature grid indexed by (i, j, k), we compute the 2D pixel location
(x, y) which the center of the cell projects onto, from the current camera viewpoint:

[x, y] = [f · i/k, f · j/k],

where f is the focal length of the camera. Then, Vi,j,k,: is filled with the bilinearly interpolated
2D feature vector at that pixel location (x, y). All voxels lying along the same ray casted from the
camera center will be filled with nearly the same image feature vectors. The unprojected tensor
V enters a 3D encoder-decoder network with skip connections (3D U-net) to produce a resulting
feature tensor V̄ ∈ Rw×h×d×c.

Egomotion stabilization and recurrent map update Next, we orient the tensor V̄ to cancel the
relative rotation r̄ with respect to our 3D memory map mt−1, we denote the oriented tensor as V̄′.
Once the feature tensor has been properly oriented, we feed V̄′ as input to a 3D convolutional Gated
Recurrent Unit (3) layer, whose hidden state is the memory map m ∈ Rw×h×d×c, as shown in
Figure 2 (right). The hidden state is initialized to zero at the beginning of the frame sequence.
For our view prediction experiments (Section 3) we found that when the number of views is fixed
to (T = 4), then average pooling (m = 1

N

∑
V̄ ′) works equally well to using the GRU update

equations, while being much faster.

Projection and decoding Given a 3D feature state m and a desired viewpoint q, we first rotate the
3D feature map so that its depth axis is aligned with the query camera axis. We then generate for each
depth value k a corresponding projected feature map pk ∈ Rw×h×c. Specifically, for each depth
value, the projected feature vector at a pixel location (x, y) is computed by first obtaining the 3D
location it is projected from and then inserting bilinearly interpolated value from the corresponding
slice of the 4D tensor m. In this way, we obtain d different projected maps, each of dimension
w × h × c. Our d depths range from D − 1 to D + 1, where D is the distance to the center of
the feature map, and are equally spaced. Note that we do not attempt to determine visibility of
features at this projection stage. The stack of projected maps is processed by 2D convolutional
operations and is decoded using a residual convLSTM decoder, similar to the one proposed in (4), to
an RGB image. We do not supervise visibility directly. The network implicitly learns to determine
visibility and choose appropriate depth slices from the stack of projected feature maps.

3 EXPERIMENTS

We consider the following simulation datasets: i) ShapeNet arrangement from (2) which consists
of scenes that have synthetic 3D object models from ShapeNet (1). We follow the same train/test
split of ShapeNet (1) so that object instances which appear in the training scenes do not appear
in the test scenes. Each scene contains two objects, and each image is rendered from a viewing
sphere which has 3 × 18 possible views with 3 camera elevations (20◦, 40◦, 60◦) and 18 azimuths
(0◦, 20◦, . . . , 340◦). There are 300 different scenes in the training set and 32 scenes with novel
objects in the test set. ii) Shepard-metzler shapes dataset from (4). It contains scenes which consist
of seven colored cubes stuck together in random arrangements. iii) Rooms-ring-camera dataset
from (4), a random rooms environment consisting of random floor and wall colors and textures, and
variable numbers of shapes in each room of different geometries and colors.

We compare the proposed GRNNs against the recent ”tower” architecture of Eslami et al. (4), a
2D network trained under a similar view prediction loss, that has a 2D instead of 3D feature space,
and no egomotion-stabilized convolutions. The tower architecture takes as input each 2D image and
performs a series of convolutions on it. The camera pose from which the image was taken is tiled
on the width and height axes and then concatenated into the feature map after the third convolution.
Finally, the feature maps from all views are combined via average pooling. Both our model and the
baseline use the same autoregressive decoder network.

Test results are shown in Figure 3. On the left of Figure 3, the distribution of the test scenes matches
the training scene distribution. Our model outperforms the baseline in visual fidelity. On the right
in Figure 3, the test scene distribution does not match the training one: we test our model and
baseline on scenes with four objects, while both models are trained on scenes with exactly
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Figure 3: View prediction results for the proposed GRNNs and the tower model of Eslami et al.
(4). On the left, we show results from the ShapeNet arrangement test set of (2) and the Shepard-
Metzler and Rooms-ring-camera datasets of (4). On the right, we show test results on scenes with
four objects from the ShapeNet arrangement dataset. While both models were trained only on scenes
with two objects, GRNNs outperform the baseline by a large margin and strongly generalize under
a varying number of objects.
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Figure 4: Scene arithmetic from the proposed GRNNs and the model of Eslami et al. (4) (tower).
Each row is a separate ”equation”. We start with the representation of the scene in the leftmost
column, then subtract (the representation of) the scene in the second column, and add the (repre-
sentation of the) scene in the third column. We decode the resulting representations into an image
view. The groundtruth image is shown in the forth column. It is much more visually similar to the
prediction of GRNNs than to the tower baseline.

two objects. In this case, our model shows strong generalization and outperforms by a margin
than our geometry-unaware baseline of (4). Indeed, the ability for spatial reasoning should not be
affected by the number of the objects present in the scene. The results above suggest that geometry-
unaware models may be merely memorizing views with small interpolation capabilities, as opposed
to learning to spatially reason. We attribute this to their inability to represent space efficiently in
their latent vectors, a problem the proposed architectures correct for.

Scene arithmetics In Figure 4, we show the learnt representations of GRNNs under view pre-
diction are capable of scene arithmetic. The ability to add and subtract individual objects from 3D
scenes just by adding and subtracting their corresponding latent representations demonstrates that
our model disentangles what from where. In other words, our model learns to store object-specific
information in the regions of the memory which correspond to the spatial location of the correspond-
ing object in the scene. Therefore, it is relatively straightforward to carry out scene arithmetic with
our model.
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